ECE 371 Project #1

DUE: October 31

The N-th order finite impulse response (FIR) digital filter has the transfer function

$$H(z) = \sum_{k=0}^{N-1} a_k z^{-k}$$

where the a_k 's are constants. In the frequency domain $z = \exp(j\omega)$ whereas in the time domain z^{-k} denotes a time delay of k clock periods. We are interested in implementing a FIR filter with N=4 (i.e., a 4th-order filter). Our concern is with the time domain implementation. The filter block diagram is shown in the figure below.

The input to this filter is a sequence $\{x_0 \ x_1 \ x_2 \ \ldots\}$ which results in an output response $\{y_0 \ y_1 \ y_2 \ \ldots\}$ where

$$\begin{array}{rcl} y_0 & = & a_0x_0 \\ y_1 & = & a_0x_1 + a_1x_0 \\ y_2 & = & a_0x_2 + a_1x_1 + a_2x_0 \\ y_3 & = & a_0x_3 + a_1x_2 + a_2x_1 + a_3x_0 \\ y_4 & = & a_0x_4 + a_1x_3 + a_2x_2 + a_3x_1 + a_4x_0 \\ y_5 & = & a_0x_5 + a_1x_4 + a_2x_3 + a_3x_2 + a_4x_1 \\ & \vdots \\ y_k & = & a_0x_k + a_1x_{k-1} + a_2x_{k-2} + a_3x_{k-3} + a_4x_{k-4} \end{array}$$

In this project you are to create an assembly language program that implements a 4th-order FIR in the time domain with $a_0 = a_4 = -0.100$, $a_1 = a_3 = 0.303$, and $a_2 = 0.600$.

Run your program on the ARM simulator and record $\{y_0 \ y_1 \ ...\}$ for the input sequence $\{x_k\} = \{0x0, 0x1c, 0x2222, 0x5aac, 0x3, 0x9876, 0x230d, 0xe285\}.$

NOTES:

- 1. All a_k 's are implemented using 12-bit integer scaling (with an integer ceiling).
- 2. Each x_k is to be represented as a half word
- 3. Use the DCW pseudo-op to define the input sequence.
- 4. There are two ways to store the y_k values: store them in memory and then read them at the end using the debugger, or set a breakpoint to stop the program every time a new y_k is computed.
- 5. Be sure to include the following in your program in ensure the simulator terminates properly:

```
STOP  \begin{array}{cccc} \text{MOV} & \text{R0, } \#0\text{x18} & ; & \text{EXIT routine} \\ \text{LDR} & \text{R1, } =0\text{x20026} \\ \text{SWI} & 0\text{x123456} \end{array}
```

- 6. Your project report should contain
 - A brief description of the problem
 - a printout of the *.lst file
 - a list of y_k for k = 0, 1, ..., 7
- 7. Your project report must be typed and any block diagrams or schematics drawn with some sort of graphics software—no hand drawings!