FIGURE 4.1 A closed-loop system.

FIGURE 4.2 An open-loop system with a disturbance input, $T_d(s)$. (a) Signal-flow graph. (b) Block diagram.

FIGURE 4.3 Open-loop control system (without feedback). (a) Signal-flow graph. (b) Block diagram.

FIGURE 4.4 A closed-loop control system. (a) Signal-flow graph. (b) Block diagram.

FIGURE 5.6 Step response of a second-order system.

In regulator systems the load varies and the setpoint is fixed.

In tracking or servo systems the load if fixed and the setpoint varies

Error constants

Step-error (position-error) constant

$$K_p := \lim_{s \to 0} G(s)$$

Ramp-error (velocity-error) constant

$$K_v := \lim_{s \to 0} sG(s)$$

Parabolic-error (acceleration-error) constant

$$K_a := \lim_{s \to 0} s^2 G(s)$$

Kp, Kv, Ka: ability to reduce steady-state error

Reference input $r(t) = Ru_s(t)$ r(t)y(t)R Output y(t)0

Summary of Steady-State Errors

Input

Type Number	Step, $r(t) = 1$ R(s) = 1/s	Ramp, $r(t) = t$, $R(s) = 1/s^2$	Parabola, $r(t) = t^2/2$, $R(s) = 1/s^3$	
0	$e_{\rm ss} = \frac{1}{1 + K_p}$	∞	∞	
1	$e_{\rm ss}=0$	$\frac{1}{K_v}$	∞	
2	$e_{ss} = 0$	0	$\frac{1}{K_a}$	

perfect tracking only for type 1 & 2 finite error for type 0

type D Court track finite evroz for type 1 Perfect tracking for type 2 type D& (can't track type 2 can but with finite error

FIGURE 5.18 Block diagram of steering control system for a mobile robot.

FIGURE 5.19 Triangular wave response.

Mathematical definitions of stability

BIBO (Bounded-Input-Bounded-Output) stability: Any bounded input generates a bounded output.

Asymptotic stability:

Any ICs generates y(t) converging to zero.

Stability via epsilon method

• **Problem:** Determine the stability of the closed-loop transfer function.

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$

Stability via epsilon method

• Solution (continued):

55	. 1	3	5
s ⁴	2	6	3
<u>5</u> 3	Æ €	$\frac{7}{2}$	0
s ²	<u>6∈ − 7</u> ∈	3	0
s^{1}	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	0	0
s^{θ}	3	0	0

Table 6.1 The Routh–Hurwitz Stab	oility Criterion
----------------------------------	------------------

n Characteristic Ed	quation
---------------------	---------

Criterion

$$2 s^2 + bs + 1 = 0$$

$$3 s^3 + bs^2 + cs + 1 = 0$$

$$bc - 1 > 0$$

$$4 s^4 + bs^3 + cs^2 + ds + 1 = 0$$

$$bcd - d^2 - b^2 > 0$$

$$5 s^5 + bs^4 + cs^3 + ds^2 + es + 1 = 0$$
 $bcd + b - d^2 - b^2e > 0$

$$bcd + b - d^2 - b^2e > 0$$

 $6 s^6 + bs^5 + cs^4 + ds^3 + es^2 + fs + 1 = 0 (bcd + bf - d^2 - b^2e)e + b^2c - bd - bc^2f - f^2 + bfe + cdf > 0$

Note: The equations are normalized by $(\omega_n)^n$.