Table 2.5 Block Diagram Transformations

Transformation

Original Diagram

Equivalent Diagram

1. Combining blocks in cascade

 G_1G_2 or

 $X_1 \qquad X_2$

 G_2G_1

2. Moving a summing point behind a block

3. Moving a pickoff point ahead of a block

Copyright ©2017 Pearson Education, All Rights Reserved

continued on next slide

Table 2.5 Block Diagram Transformations

4. Moving a pickoff point behind a block

Transformation

Original Diagram

5. Moving a summing point ahead of a block

6. Eliminating a feedback loop

Equivalent Diagram

Copyright ©2017 Pearson Education, All Rights Reserved

FIGURE 2.25 Multiple-loop feedback control system.

Copyright ©2017 Pearson Education, All Rights Reserved

FIGURE 2.26 Block diagram reduction of the system of Figure 2.25.

So When Do You Need to Separate the Loops in a Signal Flow Graph???

Take a look at the diagram below

The take off point A is before the summing point B. You need to represent the summing point and the take off points with separate nodes joined by a branch with a value of '1'. This will separate the loops. (Do the same if a take off point is directly behind a summing point.)

FIGURE 3.15 A block diagram model of an open-loop DC motor control with velocity as the output.

FIGURE 3.16 (a) The physical state variable signal-flow graph for the block diagram of Figure 3.15. (b) Physical state block diagram.

Copyright ©2017 Pearson Education, All Rights Reserved

Notice at 100 Hz the gain is $0.707 = 1/\sqrt{2}$

For a value of $C\!=\!1.0\mu f$, $\,R\approx 1.1 K^{\Omega}$