Manually solve $QRx = b$ for x where

\[
Q = \begin{bmatrix}
1/\sqrt{2} & 0 & -1/\sqrt{2} \\
0 & 1 & 0 \\
1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}
\quad R = \sqrt{2} \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\quad b = \begin{bmatrix}
2 \\
0 \\
4
\end{bmatrix}
\]

Hint: Take advantage of the properties of Q identified in the preceding problem.

Solution: Before any detailed (i.e. element-by-element) computations are performed, manipulate the given equation as products of matrices and vectors. From Exercise 8.3 we know that $Q^TQ = I$, so that $Q^{-1} = Q^T$, and Q is an orthogonal matrix.

Multiplying both sides of $QRx = b$ by Q^T and simplifying gives

\[
Q^TQRx = Q^Tb \quad \implies \quad Rx = Q^Tb
\]

For convenience, let $z = Q^Tb$ (z is a 3×1 column vector). If the z vector is known, we can solve $Rx = z$ with backward substitution. Given the preceding manipulations we can obtain an “easy” solution to $QRx = b$ with the following two steps

1. Evaluate $z = Q^Tb$
2. Solve $Rx = z$ with backward substitution

This completes the solution strategy. All that remains is performing the computations.

Use the row view of the matrix-vector product to evaluate Q^Tb

\[
z = Q^Tb = \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1 & 0 \\
-1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}
\begin{bmatrix}
2 \\
2\sqrt{2} \\
4
\end{bmatrix} = \left[\begin{array}{c}
2/\sqrt{2} + 0 + 4/\sqrt{2} \\
0 + 2\sqrt{2} + 0 \\
-2/\sqrt{2} + 0 + 4/\sqrt{2}
\end{array}\right] = \begin{bmatrix}
6/\sqrt{2} \\
2\sqrt{2} \\
2/\sqrt{2}
\end{bmatrix}
\]

Next solve

\[
\sqrt{2} \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
6/\sqrt{2} \\
2\sqrt{2} \\
2/\sqrt{2}
\end{bmatrix}
\]

with backward substitution. For convenience, first divide through by the factor of $\sqrt{2}$

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
6/\sqrt{2} \\
2\sqrt{2} \\
2/\sqrt{2}
\end{bmatrix}
\implies \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix}
\]

Work from x_3 up to x_1 (backward substitution):

\[
x_3 = 1
\]

\[
x_2 + x_3 = 2\quad \implies x_2 = 2 - x_3 = 1
\]

\[
x_1 + x_2 + x_3 = 3\quad \implies x_1 = 3 - x_2 - x_3 = 1
\]

Therefore the solution is $x = [1, 1, 1]^T$. The following MATLAB statements double-check the manual solution. First, define the Q, R, and b vectors as given
>> s2 = sqrt(2);
>> Q = [1/s2 0 -1/s2; 0 1 0; 1/s2 0 1/s2]
Q =
 0.7071 0 -0.7071
 0 1.0000 0
 0.7071 0 0.7071

>> R = s2*[1 1 1; 0 1 1; 0 0 1]
R =
 1.4142 1.4142 1.4142
 0 1.4142 1.4142
 0 0 1.4142

>> b = [2; 2*s2; 4]
b =
 2.0000
 2.8284
 4.0000

As a check, verify that $Q^TQ = I$

>> Q'*Q - eye(3)
ans =
 1.0e-15 *
 -0.2220 0 0.0224
 0 0 0
 0.0224 0 -0.2220

Now, obtain the solution by computing z, and then computing x by backward substitution.

>> z = Q'*b
z =
 4.2426
 2.8284
 1.4142

>> x(3) = z(3)/R(3,3)
x =
 0 0 1.0000

>> x(2) = (z(2) - R(2,3)*x(3))/R(2,2)
x =
 0 1.0000 1.0000

>> x(1) = (z(1) - R(1,2)*x(2) - R(1,3)*x(3))/R(1,1)
x =
 1.0000 1.0000 1.0000

>> x = x(:) % convert x to column vector
x =
 1.0000
 1.0000
 1.0000
We used to the most general form of the backward substitution steps, and did not exploit the fact that all of the upper triangular elements of R are equal to one. Conversion of x from a row vector to a column vector with $x = x(:)$ is necessary because the x was first created as a row vector with the statement $x(3) = z(3)/R(3,3)$.

8.12 Starting with the code in the GEshow function, develop a GErect function that performs Gaussian Elimination only (no backward substitution) for rectangular $(m \times n)$ matrices. The GErect function should return \hat{A}, the triangularized coefficient matrix, and \hat{b}, the corresponding right hand side vector. Use the GErect function to solve Exercise 11.

Partial Solution: The prologue and partial code for the GErect function is shown below. The only substantial difference between GEshow and GErect is that GErect does not perform backward substitution.

```matlab
function [At,bt] = GErect(A,b,ptol)
% GErect Gauss elimination for rectangular coefficient matrices
% No pivoting is used.
% % Synopsis: [At,bt] = GErect(A,b)
% % [At,bt] = GErect(A,b,ptol)
% % Input: A,b = coefficient matrix and right hand side vector
% % ptol = (optional) tolerance for detection of zero pivot
% % Default: ptol = 50*eps
% % Output: At = triangularized coefficient matrix obtained by elimination
% % bt = right hand side vector transformed by the same row
% % operations necessary to obtain At

if nargin<3, ptol = 50*eps; end
[m,n] = size(A);
 nb = n+1; Ab = [A b]; % Augmented system
fprintf('\nBegin forward elimination with Augmented system:\n'); disp(Ab);

... more code goes here

At = Ab(:,1:n); bt = Ab(:,nb);
```
Write an `lsolve` function to solve $Ax = b$ when A is a lower triangular matrix. Test your function by comparing the solutions it obtains with the solutions obtained with the left division operator.

Partial Solution: The `lsolve` function is listed below. The reader is left to complete the Exercise by devising appropriate tests for `lsolve`.

```matlab
function x = lsolve(L,b)
% lsolve solves the lower triangular system Lx = b
% Synopsis: x = lsolve(L,b)
% Input: L = lower triangular coefficient matrix
% b = right hand side vector
% Output: x = solution vector

[m,n] = size(L);
if m~=n, error('L matrix is not square'); end
x = zeros(n,1); % preallocate x for speed
x(1) = b(1)/L(1,1); % begin forward substitution
for i=2:n
    x(i) = (b(i) - L(i,1:i-1)*x(1:i-1))/L(i,i);
end
```

The inverse matrix A satisfies $AA^{-1} = I$. Using the column view of matrix–matrix multiplication (see Algorithm 7.5 on page 327) we see that the jth column of A^{-1} is the vector x such that $Ax = e_{(j)}$, where $e_{(j)}$ is the jth column of the identity matrix (e.g., $e_3 = [0, 0, 1, \ldots, 0]^T$). By solving $Ax = e_{(j)}$ for $j = 1, \ldots, n$ the columns of A^{-1} can be produced one at a time.

(a) Write a function called `invByCol` that computes the inverse of an $n \times n$ matrix one column at a time. Use the backslash operator to solve for each column of A^{-1}.

(b) Use the estimates in Table 8.1 to derive an order-of-magnitude estimate for how the flop count of `invByCol` depends on n for an $n \times n$ matrix.

(c) Verify the estimate derived in part (b) by measuring the flop count of `invByCol` for matrices of increasing size. Use $A = \text{rand}(n,n)$ for $n = 2, 4, 8, 16, 32, \ldots, 128$. Compare the flop count of `invByCol` with those of the built-in `inv` command. Note that the order-of-magnitude estimate will only hold as n becomes large. Users of MATLAB version 6 will not be able to use the `flops` function to measure the flops performed by `inv`. In that case, use the estimate that matrix inversion can be performed in $O(n^3)$ flops.

Solution (a): A is given. The objective is to solve a sequence of problems $Ax = e_{(j)}$, $j = 1, \ldots, n$. Each x becomes a column of A^{-1}. Doing so requires a loop, and a way to define $e_{(j)}$. The following statements do the job

```matlab
for j=1:n
    e = zeros(n,1); e(j) = 1;
    Ai(:,j) = A\e;
end
```
where \(n \) is the number of rows in \(A \). The expression \(A_i(:,j) = A \backslash e \) stores the solution to \(Ax = e(j) \) in the \(j \)th column of \(A_i \). The efficiency of the loop can be improved by preallocating memory for \(A_i \), and using a fixed zero vector \(z = \text{zeros}(n,1) \) instead of creating a new vector on each pass through the loop. These improvements, along with provisions for input and output and some basic error checking are incorporated into the \texttt{invByCol} function listed below.

```matlab
function Ai = invByCol(A)
% invByCol Compute matrix inverse of a matrix by columns
% Synopsis: Ai = invByCol(A)
% Input: A = square (n by n) matrix
% Output: Ai = inverse of A, if it exists
[m,n] = size(A);
if m~=n, error('Inverse is defined only for square matrices'); end
Ai = zeros(n,n); % pre-allocate for speed
z = zeros(n,1); % temporary vector
for j=1:n
    e = z; e(j) = 1; % reset column of I
    Ai(:,j) = A\e; % Solve for jth column of A^{-1}
end
```

A simple test of \texttt{invByCol} is

```matlab
>> A = rand(5,5); Ai = invByCol(A); E = Ai*A - eye(5)
E =
  1.0e-15 *
 -0.1110  -0.1661  -0.2774  -0.0659  -0.1029
 -0.0513   0.2220   0.0081  -0.0912  -0.1724
  0.1372   0.1194   0.4441   0.3129   0.0386
 -0.0205  -0.0691  -0.1924    0    0.0978
 -0.0833   0.0571   0.0031   0.0324    0

>> norm(A,1)
an =
   3.3992

>> norm(E,1)
an =
   9.2514e-16
```

Since \(\|E\|_1 \ll \|A\|_1 \) and \(A \) is reasonably well-conditioned (How do we know?), the \texttt{invByCol} function appears to be working. Note that the \(L_1 \) norm is chosen for efficiency. Both the \(L_\infty \) and \(L_2 \) norms would give equivalent results. The \(L_\infty \) norm would take less flops than the \(L_1 \) norm. Both \(L_1 \) and \(L_\infty \) norms are significantly more efficient than the \(L_2 \) norm. For a \(5 \times 5 \) matrix the efficiency differences are irrelevant, however.

Solution (b): Each solution of \(Ax = e(j) \) takes \(\mathcal{O}(n^3/3) \) flops. There are \(n \) columns of \(A^{-1} \) so the \texttt{invByCol} function takes \(n \times \mathcal{O}(n^3/3) = \mathcal{O}(n^4/3) \) flops for an \(n \times n \) matrix \(A \). This is an expensive way to compute \(A^{-1} \).

Solution (c): The \texttt{demoInvByCol} function (listed below) measures the flops performed by the \texttt{invByCol} function and the built-in \texttt{inv} function. These functions are applied to a sequence of
random $n \times n$ matrices is generated for $n = [2, 4, 8, 16, 32, 64, 128]$. The elements of matrix A are unimportant as long as A is nonsingular. It turns out that the matrices generated by the built-in \texttt{rand} function are rarely singular. The flop counts are measured with the built-in \texttt{flops} function. Note that these measurements will yield zero flops for MATLAB version 6 and later. Thus, the \texttt{demoInvByCol} function is useful only to users of MATLAB version 5 and earlier.

The flop count for each n is saved for plotting and analysis. The \texttt{powfit} function is used to obtain the least squares fit (see “Fitting Lines to Apparently Nonlinear Functions” in Chapter 9) to

$$f = c_1 n^{c_2}$$

where f is a vector of measured flop counts and n is the vector of matrix dimensions. The c_2 exponent should be 4 for the \texttt{invByCol} function because the flop count grows as $O(4)$. (See solution to part (b), above.) For the built-in \texttt{inv} function the c_2 exponent should be 3 because the \texttt{inv} function computes the inverse via LU factorization, flop count grows as $O(3)$.

The $n(3:end)$ and $f(n:end)$ vectors are passed to \texttt{powfit}. The $3:end$ index subexpression selects the third through last elements of the vector. This improves the estimate of c_2 because the order of magnitude estimates of the flop counts only applies for large n.

```matlab
function demoInvByCol
    \% demoInvByCol Measure flop count behavior of invByCol
    \% --- Count flops for invByCol and built-in inv functions
    n = [2 4 8 16 32 64 128]; \% Sizes of problems to run
    for i=1:length(n)
        A = rand(n(i),n(i));
        flops(0); Ai = invByCol(A); fcol(i) = flops;
        flops(0); Ai = inv(A); fInv(i) = flops;
    end
    \% --- Use least squares fits to obtain exponent of flops relationship
    c = powfit(n(4:end),fcol(4:end));
    cinv = powfit(n(4:end),fInv(4:end));
    \% --- Evaluate least squares fits and plot
    nfit = n(4:end);
    fcolfit = c(1)*nfit.^c(2);
    finvfit = cinv(1)*nfit.^cinv(2);
    loglog(n,fcol,'o',nfit,fcolfit,'-',n,fInv,'v',nfit,finvfit,'-')
    legend('invByCol flops','fit','inv flops','fit',2)
    xlabel('Number of unknowns'); ylabel('flops');
    \% --- Print summary
    fprintf('n\nFlop counts:

    n invByCol inv
    for i=1:length(n)
        fprintf(\n        end
    fprintf(\n    exponent 0(\%3.1f) 0(\%3.1f)\n',c(2),cinv(2));
```

Copyright © 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.
function c = powfit(x,y)
% expfit Least squares fit of data to y = c1*x^-c2
% Synopsis: c = powfit(x,y)
% Input: x,y = vectors of independent and dependent variable values
% Output: c = vector of coefficients: y = c(1)*x^-c(2)
if length(y)~=length(x), error('Dimensions of x and y are not compatible'); end
ct = linefit(log(x(:)),log(y(:))); % Line fit to transformed data
% Extract parameters from transformation
ct = [exp(ct(2)), ct(1)];

Running demoInvByCol produces the following output and the plot below.

>> demoInvByCol

Flop counts:

<table>
<thead>
<tr>
<th>n</th>
<th>invByCol</th>
<th>inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>96</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>768</td>
<td>242</td>
</tr>
<tr>
<td>8</td>
<td>7040</td>
<td>1412</td>
</tr>
<tr>
<td>16</td>
<td>76128</td>
<td>9598</td>
</tr>
<tr>
<td>32</td>
<td>952768</td>
<td>70942</td>
</tr>
<tr>
<td>64</td>
<td>13163520</td>
<td>545040</td>
</tr>
<tr>
<td>128</td>
<td>194685952</td>
<td>4276376</td>
</tr>
</tbody>
</table>

exponent O(3.8) O(2.9)

The invByCol function is clearly less efficient than the built-in inv function. The measured flops exponent for the inv function is close to the theoretical value of 3. The measured flops exponent for invByCol is somewhat less than the expected value of 4. The discrepancies are likely caused by the relatively small values of n used, and the way that MATLAB counts the flops for the backslash operator.

Exercise 8–21. Flop counts for invByCol and inv.
Extra Credit: The most costly phase of invByCol is repeatedly solving $Ax = e_j$. Rewrite the invByCol function to use LU factorization to reduce the computational work. Factor matrix A once, then (inside a loop) use triangular solves to produce each column of I. Compare the flop count of your new function with the original version of invByCol.

The extra credit solution is implemented in the invByColLU and demoInvByColLU functions (neither are listed here). Running demoInvByColLU gives

```matlab
>> demoInvByColLU

Flop counts:

<table>
<thead>
<tr>
<th>n</th>
<th>invByCol</th>
<th>inv</th>
<th>invByColLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>100</td>
<td>51</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>752</td>
<td>242</td>
<td>226</td>
</tr>
<tr>
<td>8</td>
<td>7168</td>
<td>1444</td>
<td>1588</td>
</tr>
<tr>
<td>16</td>
<td>77216</td>
<td>9594</td>
<td>11816</td>
</tr>
<tr>
<td>32</td>
<td>950400</td>
<td>70836</td>
<td>90960</td>
</tr>
<tr>
<td>64</td>
<td>13186432</td>
<td>545124</td>
<td>713376</td>
</tr>
<tr>
<td>128</td>
<td>194873088</td>
<td>4275098</td>
<td>5649728</td>
</tr>
</tbody>
</table>

exponent O(3.7) O(2.9) O(3.0)
```

The invByColLU function obtains the exact flops exponent value of 3 that is predicted by the order of magnitude work estimates. The built-in inv function uses the ideas embodied in invByColLU to compute A^{-1}.

8.25 An alternative way to resolve the singularity in the 3×3 coefficient matrix of Example 8.5 is to modify the elements of the matrix. Write a trivial equation involving v_b, v_c, and v_d that has the solution $v_d = 0$. Use this equation to replace the equation for v_d in the 3×3 system in Example 8.5. What is the value of V_{out} for $R_1 = R_3 = R_4 = R_5 = 10 \, \Omega$, $R_2 = 20 \, \Omega$ and $V_{\text{in}} = 5 \, V$.

Partial Solution: The trivial equation with the solution $v_d = 0$ is $(0)v_b + (0)v_c + (1)v_d = 0$, or $v_d = 0$.

8.33 Use the pumpCurve function developed in Exercise 32 to study the effect of perturbing the input data. Specifically, replace the second h value, $h = 114.2$, with $h = 114$, and re-evaluate the coefficients of the cubic interpolating polynomial. Let \tilde{c} be the coefficients of the interpolating polynomial derived from the perturbed data, and let c be the coefficients of the polynomial derived from the original data. What is the relative difference, $(\tilde{c}_i - c_i)/c_i$, in each of the polynomial coefficients? Evaluate and plot $h(q)$ for the two cubic interpolating polynomials at 100 data points in the range $\min(q) \leq q \leq \max(q)$. What is the maximum difference in h for the interpolants derived from the original and the perturbed data? Discuss the practical significance of the effect perturbing the data on the values of c and the values of h obtained from the interpolant.

Partial Solution: The computations are carried out in pumpPerturb (not listed here). Running pumpPerturb gives the following output and plot.

```matlab
>> pumpPerturb

Coefficients of cubic interpolant in descending powers of q:

<table>
<thead>
<tr>
<th>i</th>
<th>c(i)</th>
<th>ct(i)</th>
<th>percent diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.1870738e+10</td>
<td>-1.3978775e+10</td>
<td>17.8</td>
</tr>
<tr>
<td>2</td>
<td>1.0361305e+07</td>
<td>1.5209790e+07</td>
<td>46.8</td>
</tr>
</tbody>
</table>
```
3 -7.8023933e+03 -1.0627163e+04 36.2
4 1.1568850e+02 1.1592460e+02 0.2

Maximum difference of h values = 0.253 (m) occurs at $q = 3.89e^{-04}$
Condition numbers: $\kappa(A) = 2.7e+10$; $\kappa(A^T) = 2.7e+10$

c(i) are the coefficients of the cubic polynomial derived from the unperturbed data. $c_t(i)$ are the coefficients derived from the perturbed data. Although the coefficients have very large differences in magnitude, the values of the interpolants have a maximum difference of only 0.25 m in head. The perturbation has no significant effect on the condition number of the Vandermonde system.

Exercise 8–33. Interpolants from original and perturbed h data.