Chapter 6
Finding the Roots of $f(x) = 0$
6–2 The function \(f(x) = \sin(x^2) + x^2 - 2x - 0.09 \) has four roots in the interval \(-1 \leq x \leq 3\). Given the m-file \texttt{fx.m}, which contains

\begin{verbatim}
function f = fx(x)
 f = sin(x.^2) + x.^2 - 2*x - 0.09;
end
\end{verbatim}

the statement

\begin{verbatim}
>> brackPlot('fx',-1,3)
\end{verbatim}

produces only two brackets. Is this result due to a bug in \texttt{brackPlot} or \texttt{fx}? What needs to be changed so that all four roots are found? Demonstrate that your solution works.

Partial Solution: The statement

\begin{verbatim}
>> Xb = brackPlot('fx',-1,3)
Xb =
 -0.1579 0.0526
 2.1579 2.3684
\end{verbatim}

returns two brackets. A close inspection of the plot of \(f(x) \) reveals that \(f(x) \) crosses the \(x \)-axis twice near \(x = 1.3 \). These two roots are missed by \texttt{brackPlot} because there default search interval is too coarse. There is no bug in \texttt{brackPlot}. Implementing a solution using a finer search interval is left as an exercise.

6–11 Use the \texttt{bisect} function to evaluate the root of the Colebrook equation (see Exercise 8) for \(\epsilon/D = 0.02 \) and \(\text{Re} = 1 \times 10^5 \). Do not modify \texttt{bisect.m}. This requires that you write an appropriate function m-file to evaluate the Colebrook equation.

Partial Solution: Using \texttt{bisect} requires writing an auxiliary function to evaluate the Colebrook equation in the form \(F(f) = 0 \), where \(f \) is the friction factor. The following form of \(F(f) \) is used in the \texttt{colebrkz} function listed below.

\[F(f) = \frac{1}{\sqrt{f}} + 2\log_{10} \left(\frac{\epsilon/D}{3.7} + \frac{2.51}{\text{Re}\epsilon/\sqrt{f}} \right) \]

Many other forms of \(F(f) \) will work.

\begin{verbatim}
function ff = colebrkz(f)
 \% COLEBRKZ Evaluates the Colebrook equation in the form F(f) = 0
 \% for use with root-finding routines.
 \%
 \% Input: f = the current guess at the friction factor
 \%
 \% Global Variables:
 \% EPSDIA = ratio of relative roughness to pipe diameter
 \% REYNOLDS = Reynolds number based on pipe diameter
 \%
 \% Output: ff = the "value" of the Colebrook function written y = F(f)
 \%
 \% Global variables allow EPSDIA and REYNOLDS to be passed into
 \% colebrkz while bypassing the bisect.m or fzero function
 global EPSDIA REYNOLDS
 ff = 1.0/sqrt(f) + 2.0*log10(EPSDIA/3.7 + 2.51/(REYNOLDS*sqrt(f)));
\end{verbatim}

Because the \texttt{bisect} function (unlike \texttt{fzero}) does not allow additional parameters to be passed through to the \(F(f) \) function, the values of \(\epsilon/D \) and \(\text{Re} \) are passed to \texttt{colebrkz} via global variables. Running \texttt{bisect} with \texttt{colebrkz} is left to the reader. For \(\text{Re} = 1 \times 10^5 \) and \(\epsilon/D = 0.02 \) the solution is \(f = 0.0490 \).
Chapter 6: Finding the Roots of $f(x) = 0$

6–13 Derive the $g_3(x)$ functions in Example 6.4 and Example 6.5. (*Hint*: What is the fixed-point formula for Newton’s method?)

Partial Solution: The fixed point iteration formulas designated as $g_3(x)$ in Example 6.4 and Example 6.5 are obtained by applying Newton’s method. The general form of Newton’s method for a scalar variable is

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Example 6.4: The $f(x)$ function and its derivative are

$$f(x) = x - x^{1/3} - 2 \quad f'(x) = 1 - \frac{1}{3}x^{-2/3}$$

Substituting these expressions into the formula for Newton’s method and simplifying gives

$$x_{k+1} = x_k - \frac{x_k - x^{1/3} - 2}{1 - (1/3)x_k^{-2/3}} = \frac{x_k(1 - (1/3)x_k^{-2/3}) - (x_k - x^{1/3} - 2)}{1 - (1/3)x_k^{-2/3}} = \frac{x_k - (1/3)x^{1/3}_k - x_k + x^{1/3}_k + 2}{1 - (1/3)x_k^{-2/3}} = \frac{(2/3)x_k^{1/3} + 2}{1 - (1/3)x_k^{-2/3}} = \frac{2x_k^{1/3} + 6}{3 - x_k^{-2/3}}$$

Repeating this analysis for Example 6.5 is left as an exercise.
Finding the Roots of $f(x) = 0$

$$3.06 = \frac{(1 - x)(3 + x)^{1/2}}{x(1 + x)^{1/2}}$$

for x. Obtain a fixed-point iteration formula for finding the roots of this equation. Implement your formula in a MATLAB function and use your function to find x. If your formula does not converge, develop one that does.

Partial Solution: One fixed point iteration formula is obtained by isolating the factor of $(3 + x)$ in the numerator.

$$\frac{3.06x(1 + x)^{1/2}}{1 - x} = (3 + x)^{1/2} \quad \Rightarrow \quad x = \left[\frac{3.06x(1 + x)^{1/2}}{1 - x} \right]^2 - 3$$

$$\Rightarrow \quad g_1(x) = \left[\frac{3.06x(1 + x)^{1/2}}{1 - x} \right]^2 - 3$$

Another fixed point iteration formula is obtained by solving for the isolated x in the denominator to get

$$x = \frac{(1 - x)(3 + x)^{1/2}}{3.06(1 + x)^{1/2}} \quad \Rightarrow \quad g_2(x) = \frac{(1 - x)(3 + x)^{1/2}}{3.06(1 + x)^{1/2}}$$

Performing 10 fixed point iterations with $g_1(x)$ gives

\[
\begin{array}{c|c}
\text{it} & \text{xnew} \\
1 & -7.6420163e-01 \\
2 & -2.5857113e+00 \\
3 & -1.0721050e+01 \\
4 & -7.9154865e+01 \\
5 & -6.861688e+02 \\
6 & -6.6855377e+03 \\
7 & -6.2576617e+04 \\
8 & -5.8590795e+05 \\
9 & -5.4861826e+06 \\
10 & -5.1370394e+07 \\
\end{array}
\]

Thus, $g_1(x)$ does not converge. The $g_2(x)$ function does converge to the true root of $x = 0.340327\ldots$. MATLAB implementations of the fixed point iterations are left as an Exercise.
Create a modified `newton` function (say, `newtonb`) that takes a bracket interval as input instead of a single initial guess. From the bracket limits take one bisection step to determine x_0, the initial guess for Newton iterations. Use the bracket limits to develop relative tolerances on x and $f(x)$ as in the `bisect` function in Listing 6.4.

Solution: The `newtonb` function is listed below. The `demoNewtonb` function, also listed below, repeats the calculations in Example 6.8 with the original `newton` function and with the new `newtonb` function.

Running `demoNewtonb` gives

```matlab
>> demoNewtonb
```

Original `newton` function:

```matlab
Newton iterations for fx3n.m
k  f(x)  dfdx     x(k+1)
1  -4.422e-01  8.398e-01  3.52664429313903
2   4.507e-03  8.561e-01  3.52138014739733
3   3.771e-07  8.560e-01  3.52137970680457
4   2.665e-15  8.560e-01  3.52137970680457
5    0.000e+00  8.560e-01  3.52137970680457
```

`newtonb` function:

```matlab
Newton iterations for fx3n.m
k  f(x)  dfdx     x(k+1)
1  -4.422e-01  8.398e-01  3.52664429313903
2   4.507e-03  8.561e-01  3.52138014739733
3   3.771e-07  8.560e-01  3.52137970680457
4   2.665e-15  8.560e-01  3.52137970680457
5    0.000e+00  8.560e-01  3.52137970680457
```

The two implementations of Newton's method give identical results because the input to `newtonb` is the bracket $[2, 4]$. This causes the initial bisection step to produce the same initial guess for the Newton iterations that is used in the call to `newton`.

```matlab
function demoNewtonb
% demoNewtonb Use newton and newtonb to find the root of f(x) = x - x^(1/3) - 2
% % % Synopsis: demoNewton
% % % Input: none
% % % Output print out of convergence history, and comparison of methods
fprintf('\nOriginal newton function:\n');
r = newton('fx3n',3,5e-16,5e-16,1);
fprintf('\nnewtonb function:\n');
rb = newtonb('fx3n',[2 4],5e-16,5e-16,1);
```

Copyright © 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.
function r = newtonb(fun,x0,xtol,ftol,verbose)

% newtonb Newton's method to find a root of the scalar equation \(f(x) = 0 \)
% Initial guess is a bracket interval
% Synopsis: r = newtonb(fun,x0)
% r = newtonb(fun,x0,xtol)
% r = newtonb(fun,x0,xtol,ftol)
% r = newtonb(fun,x0,xtol,ftol,verbose)
% Input: fun = (string) name of mfile that returns \(f(x) \) and \(f'(x) \).
% x0 = 2-element vector providing an initial bracket for the root
% xtol = (optional) absolute tolerance on x. Default: xtol=5*eps
% ftol = (optional) absolute tolerance on f(x). Default: ftol=5*eps
% verbose = (optional) flag. Default: verbose=0, no printing.
% Output: r = the root of the function

if nargin < 3, xtol = 5*eps; end
if nargin < 4, ftol = 5*eps; end
if nargin < 5, verbose = 0; end
xeps = max(xtol,5*eps); feps = max(ftol,5*eps); % Smallest tols are 5*eps

if verbose
 fprintf('
Newton iterations for %s.m
',fun);
 fprintf(' k f(x) dfdx x(k+1)\n');
end

xref = abs(x0(2)-x0(1)); % Use initial bracket in convergence test
fa = feval(fun,x0(1));
fb = feval(fun,x0(2));

if nargin < 5, verbose = 0; end
xeps = max(xeps,5*eps); feps = max(feps,5*eps);

while k <= maxit
 k = k + 1;
 [f,dfdx] = feval(fun,x); % Returns \(f(x(k-1)) \) and \(f'(x(k-1)) \)
dx = f/dfdx;
x = x - dx;
 if verbose, fprintf('%d %12.3e %12.3e %18.14f
',k,f,dfdx,x(k+1)); end
 if (abs(f/fref) < feps) | (abs(dx/xref) < xeps), r = x; return; end
end
warning(sprintf('root not found within tolerance after %d iterations\n',k));
6–27 Implement the secant method using Algorithm 6.5 and Equation (6.13). Test your program by re-creating the results in Example 6.10. What happens if 10 iterations are performed? Replace the formula in Equation (6.13) with

\[x_{k+1} = x_k - f(x_k) \left[\frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1}) + \varepsilon} \right], \]

where \(\varepsilon \) is a small number on the order of \(\varepsilon_m \). How and why does this change the results?

Partial Solution: The `demoSecant` function listed below implements Algorithm (6.5) using Equation (6.13). The \(f(x) \) function, Equation 6.3, is hard-coded into `demoSecant`. Note also that `demoSecant` performs ten iterations without checking for convergence.

```matlab
function demoSecant(a,b);
    % demoSecant Secant method for finding the root of f(x) = x - x^(1/3) - 2 = 0
    % Implement Algorithm 6.5, using Equation (6.13)
    % Synopsis: demoSecant(a,b)
    % Input: a,b = initial guesses for the iterations
    % Output: print out of iterations; no return values.
    % copy initial guesses to local variables
    xk = b; % x(k)
    xkm1 = a; % x(k-1)
    fk = fx3(b); % f( x(k) )
    fkm1 = fx3(a); % f( x(k-1) )
    fprintf('
Secant method: Algorithm 6.5, Equation (6.13) 
');
    fprintf(' n  x(k-1)  x(k)  f( x(k) )
');
    fprintf('%3d %12.8f %12.8f %12.5e
',0,xkm1,xk,fk);
    for n=1:10
        x = xk - fk* ( xk-xkm1 )/( fk - fkm1); % secant formula for updating the root
        f = fx3(x);
        fprintf('%3d %12.8f %12.8f %12.5e
',n,xk,x,f);
        xkm1 = xk; xk = x; % set-up for next iteration
        fkm1 = fk; fk = f;
    end
```

Copyright © 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.
Running `demoSecant` with an initial bracket of \([3, 4]\) (the same bracket used in Example 6.10) gives:

```
>> demoSecant(3,4)
```

<table>
<thead>
<tr>
<th>n</th>
<th>x(k-1)</th>
<th>x(k)</th>
<th>f(x(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.00000000</td>
<td>4.00000000</td>
<td>4.125990e-01</td>
</tr>
<tr>
<td>1</td>
<td>4.00000000</td>
<td>3.51734262</td>
<td>-3.455470e-03</td>
</tr>
<tr>
<td>2</td>
<td>3.51734262</td>
<td>3.52135125</td>
<td>-2.435980e-05</td>
</tr>
<tr>
<td>3</td>
<td>3.52135125</td>
<td>3.52137971</td>
<td>1.567300e-09</td>
</tr>
<tr>
<td>4</td>
<td>3.52137971</td>
<td>3.52137971</td>
<td>-8.881780e-16</td>
</tr>
<tr>
<td>5</td>
<td>3.52137971</td>
<td>3.52137971</td>
<td>-2.220450e-16</td>
</tr>
<tr>
<td>6</td>
<td>3.52137971</td>
<td>3.52137971</td>
<td>0.000000e+00</td>
</tr>
<tr>
<td>7</td>
<td>3.52137971</td>
<td>3.52137971</td>
<td>0.000000e+00</td>
</tr>
</tbody>
</table>

Warning: Divide by zero.

The secant method has fully converged in 6 iterations. Continuing the calculations beyond convergence gives a floating point exception because \(f(x_k) - f(x_{k-1}) = 0\) in the denominator of Equation (6.13). In general, it is possible to have \(f(x_k) - f(x_{k-1}) = 0\) before the secant iterations reach convergence. Thus, the floating point exception exposed by `demoSecant` should be guarded against in any implementation of the secant method.

Implementing the fix suggested in the problem statement is left as an exercise for the reader.
Write an m-file function to compute h, the depth to which a sphere of radius r, and specific gravity s, floats. (See Example 6.12 on page 281.) The inputs are r and s, and the output is h. Only compute h when $s < 0.5$. The $s \geq 0.5$ case is dealt with in the following Exercise. If $s \geq 0.5$ is input, have your function print an error message and stop. (The built-in `error` function will be useful.) Your function needs to include logic to select the correct root from the list of values returned by the built-in `roots` function.

Partial Solution: The `floata` function listed below performs the desired computations. We briefly discuss three of the key statements in `floata`.

The coefficients of the polynomial are stored in the `p` vector. Then

```matlab
c = getreal(roots(p));
```

finds the real roots of the polynomial. The `getreal` subfunction returns only the real elements of a vector. Using `getreal` is a defensive programming strategy. The sample calculation in Example 6.12 obtained only real roots of the polynomial, so `getreal` would not be necessary in that case. The

```matlab
k = find(c>0 & c<r);
```

statement extracts the indices in the `c` vector satisfying the criteria $0 \leq c_k \leq r$. Then

```matlab
h = c(k);
```

copies those roots satisfying the criteria to the `h` vector. No assumption is made that only one root meets the criteria. If more than one root is found a warning message is issued before leaving `floata`.

Testing of `floata` is left to the reader.
function h = flota(r,s)
% float Find water depth on a floating, solid sphere with specific gravity < 0.5
%
% Synopsis: h = flota(r,s)
%
% Input: r = radius of the sphere
% s = specific gravity of the sphere (0 < s < 1)
%
% Output: h = depth of the sphere

if s>=0.5
 error('s<0.5 required in this version')
else
 p = [1 -3*r 0 4*s*r^3]; % h^3 - 3*r*h + 4*s*r^3 = 0
 c = getreal(roots(p));
 k = find(c>0 & c<r); % indices of elements in c such that 0 < c(k) < r
 h = c(k); % value of elements in c satisfying above criterion
end

if length(h)>1, warning('More than one root found'); end

% ==============================
function cr = getreal(c)
% getreal Copy all real elements of input vector to output vector
%
% Synopsis: cr = getreal(c)
%
% Input: c = vector of numerical values
%
% Output: cr = vector of only the real elements of c
% cr = [] if c has only imaginary elements
n = 0;
for k=1:length(c)
 if isreal(c(k))
 n = n + 1;
 cr(n) = c(k);
 end
end
if n==0, cr = [] ; warning('No real elements in the input vector'); end