Numerical Integration of Ordinary Differential Equations for Initial Value Problems

Gerald Recktenwald
Portland State University
Department of Mechanical Engineering

> gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with MATLAB: Implementations and Applications, by Gerald W. Recktenwald © 2000-2006, Prentice-Hall, Upper Saddle River, NJ. These slides are copyright © ${ }^{\text {© }}$ 2000-2006 Gerald W. Recktenwald. The PDF version
of these slides may be downloaded or stored or printed only for of these slides may be downloaded or stored or printed only for noncommercial, educational use. Che repackaging or sale of these
slides in any form, without written consent of the author, is prohibited. The latest version of this PDF file, along with other supplemental material for the book, can be found at www.prenhall.com/recktenwald web. cecs.pdx.edu/ gerry/nmm/.

Overview

Application: Newton's Law of Motion

- Motivation: ODE's arise as models of many applications
- Euler's method
\triangleright A low accuracy prototype for other methods
\triangleright Development
\triangleright Implementation
\triangleright Analysis
- Midpoint method
- Heun's method
- Runge-Kutta method of order 4
- Matlab's adaptive stepsize routines
- Systems of equations
- Higher order ODEs

Application: Newton's Law of Cooling

The cooling rate of an object immersed in a flowing fluid is

$$
Q=h A\left(T_{s}-T_{\infty}\right)
$$

where Q is the heat transfer rate, h is the heat transfer coefficient, A is the surface area, T_{s} is the surface temperature, and T_{∞} is the temperature of the fluid.

When the cooling rate is primarily controlled by the convection from the surface, the variation of the object's temperature with is described by an ODE.

Example: Analytical Solution

The ODE

$$
\frac{d y}{d t}=-y \quad y(0)=y_{0}
$$

can be integrated directly:

$$
\begin{gathered}
\frac{d y}{y}=-d t \\
\ln y=-t+C
\end{gathered}
$$

$$
\ln y-\ln C_{2}=-t
$$

$$
\begin{aligned}
\ln \frac{y}{C_{2}} & =-t \\
y & =C_{2} e^{-t} \\
y & =y_{0} e^{-t}
\end{aligned}
$$

Apply an energy balance

$$
m c \frac{d T}{d t}=-Q=-h A\left(T_{s}-T_{\infty}\right)
$$

Assume material is highly conductive $\Rightarrow T_{s}=T$

$$
m c \frac{d T}{d t}=-h A\left(T-T_{\infty}\right)
$$

or

$$
\frac{d T}{d t}=-\frac{h A}{m c}\left(T-T_{\infty}\right)
$$

$\overline{\text { NMM: Integration of ODEs }}$

The generic form of a first order ODE is

$$
\frac{d y}{d t}=f(t, y) ; \quad y(0)=y_{0}
$$

where the right hand side $f(t, y)$ is any single-valued function of t and y.
The approximate numerical solution is obtained at discrete values of t

$$
t_{j}=t_{0}+j h
$$

where h is the "stepsize

Numerical Integration of ODEs (2)

Graphical Interpretation

$\overline{\text { NMM: Integration of ODEs }}$
page 8

Euler's Method ${ }^{1}$

Consider a Taylor series expansion in the neighborhood of t_{0}

$$
y(t)=y\left(t_{0}\right)+\left.\left(t-t_{0}\right) \frac{d y}{d t}\right|_{t_{0}}+\left.\frac{\left(t-t_{0}\right)^{2}}{2} \frac{d^{2} y}{d t^{2}}\right|_{t_{0}}+\ldots
$$

Retain only first derivative term and define

$$
\left.f\left(t_{0}, y_{0}\right) \equiv \frac{d y}{d t}\right|_{t_{0}}
$$

to get

$$
y(t) \approx y\left(t_{0}\right)+\left(t-t_{0}\right) f\left(t_{0}, y_{0}\right)
$$

Nomenclature

$$
\begin{aligned}
y(t) & =\text { exact solution } \\
y\left(t_{j}\right) & =\text { exact solution evaluated at } t_{j} \\
y_{j} & =\text { approximate solution at } t_{j} \\
f\left(t_{j}, y_{j}\right) & =\text { approximate r.h.s. at } t_{j}
\end{aligned}
$$

Euler's Method (2)

Given $h=t_{1}-t_{0}$ and initial condition, $y=y\left(t_{0}\right)$, compute

$$
\begin{gathered}
y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right) \\
y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right) \\
\vdots \\
\vdots \\
y_{j+1}
\end{gathered}=y_{j}+h f\left(t_{j}, y_{j}\right)
$$

or

$$
y_{j}=y_{j-1}+h f\left(t_{j-1}, y_{j-1}\right)
$$

Example: Euler's Method

Use Euler's method to integrate

$$
\frac{d y}{d t}=t-2 y \quad y(0)=1
$$

The exact solution is

$$
y=\frac{1}{4}\left[2 t-1+5 e^{-2 t}\right]
$$

			Euler	Exact	Error j
t_{j}	$f\left(t_{j-1}, y_{j-1}\right)$	$y_{j}=y_{j-1}+h f\left(t_{j-1}, y_{j-1}\right)$	$y\left(t_{j}\right)$	$y_{j}-y\left(t_{j}\right)$	
0	0.0	NA	(initial condition) 1.0000	1.0000	0
1	0.2	$0-(2)(1)=-2.000$	$1.0+(0.2)(-2.0)=0.6000$	0.6879	-0.0879
2	0.4	$0.2-(2)(0.6)=-1.000$	$0.6+(0.2)(-1.0)=0.4000$	0.5117	-0.1117
3	0.6	$0.4-(2)(0.4)=-0.400$	$0.4+(0.2)(-0.4)=0.3200$	0.4265	-0.1065

Reducing Stepsize Improves Accuracy (2)

Local error at any time step is

$$
e_{j}=y_{j}-y\left(t_{j}\right)
$$

where $y\left(t_{j}\right)$ is the exact solution evaluated at t_{j}.

$$
\mathrm{GDE}=\max \left(e_{j}\right), \quad j=1, \ldots
$$

For Euler's method, GDE decreases linearly with h.

Here are results for the sample problem plotted on previous slide:

$$
d y / d t=t-2 y ; \quad y(0)=1
$$

h	$\max \left(e_{j}\right)$
0.200	0.1117
0.100	0.0502
0.050	0.0240
0.025	0.0117

Reducing Stepsize Improves Accuracy (1)

Use Euler's method to integrate

$$
\frac{d y}{d t}=t-2 y ; \quad y(0)=1
$$

for a sequence of smaller h (see demoEuler).

For a given h, the largest error in the numerical solution is the Global Discretization Error or GDE.

Implementation of Euler's Method

```
odeEurer(aiffeq,tn,h,yo)
% odeEuler Euler's method for integration of a single, first order ODE
%% Synopsi
%. Input: diffeq = (string) name of the m-file that evaluates the right
% hand side of the ODE written in standard form
    tn =stopping value of the independent variable
    h =stepsize for advancing the independent variabie
% Output: }\quadt=\mathrm{ vector of independent variable values: }t(j)=(j-1)*\mathrm{ &
#
l
lol
% Begin Euler scheme; j=1 for initial condition
for j=2:n
y(j)=y(j-1)+h*feval(diffeq,t(j-1),y(j-1))
```


Analysis of Euler's Method (1)

Rewrite the discrete form of Euler's method as

$$
\frac{y_{j}-y_{j-1}}{h}=f\left(t_{j-1}, y_{j-1}\right)
$$

(discrete)
Compare with original ODE

$$
\frac{d y}{d t}=f(t, y)
$$

(continuous)
Substitute the exact solution into the discrete approximation to the ODE to get

$$
\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{h}-f\left(t_{j-1}, y\left(t_{j-1}\right)\right) \neq 0
$$

Analysis of Euler's Method (3)

Example: Solve

$$
\frac{d y}{d t}=t-2 y ; \quad y(0)=1
$$

The plot shows the numerical solution (\bullet) obtained with $h=0.5$. The $z(t)$ curve starting at each of the numerica solution points is shown as a solid line.

Analysis of Euler's Method (2)

Introduce a family of functions $z_{j}(t)$, which are the exact solutions to the ODE given the approximiate solution produced by Euler's method at step j.

$$
\frac{d z_{j}}{d t}=f(t, y) ; \quad z_{j}\left(t_{j-1}\right)=y_{j-1}
$$

Due to truncation error, Euler's method produces a value of y_{j+1} that is different from $z_{j}\left(t_{j+1}\right)$ even though by design, $y_{j}=z\left(t_{j}\right)$.

In other words

$$
y_{j+1}-z\left(t_{j+1}\right) \neq 0
$$

because y_{j+1} contains truncation error

Analysis of Euler's Method (4)

The local discretization error (LDE) is the residual obtained when the exact $z_{j}(t)$ is substituted into the discrete approximation to the ODE

$$
\tau(t, h)=\frac{z\left(t_{j}\right)-z\left(t_{j-1}\right)}{h}-f\left(t_{j-1}, z_{j}\left(t_{j-1}\right)\right)
$$

Note

- User chooses h, and this affects LDE
- LDE also depends on t, the position in the interval

Analysis of Euler's Method (5)

Using a Taylor series expansion for $z_{j}(x)$ we find that

$$
\frac{z\left(t_{j}\right)-z\left(t_{j-1}\right)}{h}-f\left(t_{j-1}, z_{j}\left(t_{j-1}\right)\right)=\frac{h}{2} z_{j}^{\prime \prime}(\xi)
$$

where $t_{j-1} \leq \xi \leq t_{j}$ and $z_{j}^{\prime \prime} \equiv d^{2} z_{j} / d t^{2}$.
Thus, for Euler's method the local discretization error is

$$
\tau(t, h)=\frac{h}{2} z_{j}^{\prime \prime}(\xi)
$$

Since ξ is not known, the value of $z_{j}^{\prime \prime}(\xi)$ cannot be computed.

Global Discretization Error for Euler's Method

General application of Euler's method requires several steps to compute the solution to the ODE in an interval, $t_{0} \leq t \leq t_{N}$. The local truncation error at each step accumulates. The result is the global discretization error (GDE)
The GDE for Euler's method is $\mathcal{O}(h)$. Thus

$$
\frac{\operatorname{GDE}\left(h_{1}\right)}{\operatorname{GDE}\left(h_{2}\right)}=\frac{h_{1}}{h_{2}}
$$

Analysis of Euler's Method (6)

Assume that $z_{j}^{\prime \prime}(\xi)$ is bounded by M in the interval $t_{0} \leq t \leq t_{N}$. Then

$$
\tau(t, h) \leq \frac{h M}{2} \quad \text { LDE for Euler's method }
$$

Although M is unknown we can still compute the effect of reducing the stepsize by taking the ratio of $\tau(t, h)$ for two different choices of h

$$
\frac{\tau\left(t, h_{2}\right)}{\tau\left(t, h_{1}\right)}=\frac{h_{2}}{h_{1}}
$$

Summary of Euler's Method

Development of Euler's method has demonstrated the following general ideas

- The numerical integration scheme is derived from a truncated Taylor series approximation of the ODE.
- The local discretization error (LDE) accounts for the error at each time step.

$$
L D E=\mathcal{O}\left(h^{p}\right)
$$

where h is the stepsize and p is an integer $p \geq 1$.

- The global discretization error (GDE) includes the accumulated effect of the LDE when the ODE integration scheme is applied to an interval using several steps of size h.

$$
G D E=\mathcal{O}\left(h^{p}\right)
$$

- The implementation separates the logic of the ODE integration scheme from the evaluation of the right hand side, $f(t, y)$. A general purpose ODE solver requires the user to supply a small m -file for evaluating $f(t, y)$.

Higher Order Methods

Midpoint Method (1)

We now commence a survey of one-step methods that are more accurate than Euler's method.

- Not all methods are represented here
- Objective is a logical progression leading to RK-4
- Sequence is in order of increasing accuracy and increasing computational efficiency

Methods with increasing accuracy, lower GDE

Method	GDE
Euler	$\mathcal{O}(h)$
Midpoint	$\mathcal{O}\left(h^{2}\right)$
Heun	$\mathcal{O}\left(h^{2}\right)$
RK-4	$\mathcal{O}\left(h^{4}\right)$

Note that since $h<1$, a GDE of $\mathcal{O}\left(h^{4}\right)$ is much smaller than a GDE of $\mathcal{O}(h)$.
$\overline{\text { NMM: Integration of ODEs }}$
page 24

Midpoint Method (2)

Increase accuracy by evaluating slope twice in each step of size h

$$
k_{1}=f\left(t_{j}, y_{j}\right)
$$

Compute a tentative value of y at the midpoint

$$
y_{j+1 / 2}=y_{j}+\frac{h}{2} f\left(t_{j}, y_{j}\right)
$$

re-evaluate the slope

$$
k_{2}=f\left(t_{j}+\frac{h}{2}, y_{j}+\frac{h}{2} k_{1}\right)
$$

Compute final value of y at the end of the full interval

$$
y_{j+1}=y_{j}+h k_{2}
$$

$\mathrm{LDE}=\mathrm{GDE}=\mathcal{O}\left(h^{2}\right)$
$\overline{\text { NMM: Integration of ODEs }}$

```
*)
odeMidpt Midpoint method for integration of a single, first order ODE
% Synop
    Synopsis: [t,y] = odeMidpt(diffeq,tn, h,yo)
% Input: diffeq = (string) name of the m-file that evaluates the right
tn = hand side of the ODE written in standard form
    tn = stopping value of the independent variable
    h =stepsize for advancing the independent variabl
    y0 = initial condition for the dependent variable
% Output: }\quad\begin{array}{l}{t=vector of independent variable values: t }\end{array}(j)=(j-1)*
= (0:h:tn)'; % Column vector of elements with spacing h
t=(0:h:tn); ; % % Column vector of elements with spaci
lol
2=h/2; (n,1), % Preallocate y for speed 
* Begin Midpoint scheme; j=1 for initial condition
or j=2:n
    k1 = feval(diffeq,t(j-1),y(j-1));
    k2=feval(diffeq, t(j-1)+h2,y(j-1)+h2*k1)
    y(j)=y(j-1)+h*k2;
end
```


Midpoint Method

Midpoint method requires twice as much work per time step. Does the extra effort pay off?
Consider integration with Euler's method and $h=0.1$. Formal accuracy is $\mathcal{O}(0.1)$.
Repeat calculations with the midpoint method and $h=0.1$. Formal accuracy is $\mathcal{O}(0.01)$.
For Euler's method to obtain the same accuracy, the stepsize would have to be reduced by a factor of 10. The midpoint method, therefore, achieves the same (formal) accuracy with one fifth the work!
$\overline{\text { NMM: Integration of ODEs }}$

Heun's Method

Compute the slope at the starting point

$$
k_{1}=f\left(t_{j}, y_{j}\right)
$$

Compute a tentative value of y at the endpoint

$$
y_{j}^{*}=y_{j}+h f\left(t_{j}, y_{j}\right)
$$

re-evaluate the slope

$$
k_{2}=f\left(t_{j}+h, y_{j}^{*}\right)=f\left(t_{j}+j, y_{j}+h k_{1}\right)
$$

Compute final value of y with an average of the two slopes

$$
y_{j+1}=y_{j}+h \frac{k_{1}+k_{2}}{2}
$$

$\mathrm{LDE}=\mathrm{GDE}=\mathcal{O}\left(h^{2}\right)$

Comparison of Midpoint Method with Euler's Method

Solve

$$
\frac{d y}{d t}=-y ; \quad y(0)=1 ; \quad 0 \leq t \leq
$$

The exact solution is $y=e^{-t}$.
>> compen

h	nrhsE	errE	nrhsM	errM
0.20000	6	$4.02 e-02$	12	$2.86 e-03$
0.10000	11	$1.92 e-02$	22	$6.62 e-04$
0.05000	21	$9.39-03$	42	$1.59-04$
0.02500	41	$4.65 e-03$	82	$3.90-05$
0.01250	81	$2.31-03$	162	$9.67 e-06$
0.00625	161	$1.15 e-03$	322	$2.41 e-06$

For comparable accuracy:

- Midpoint method with $h=0.2$ evaluates the right hand side of the ODE 12 times, and gives max error of 2.86×10^{-3}
$>$ Euler's method with $h=0.0125$ evaluates the right hand side of the ODE 81 times, and gives max error of 2.31×10^{-3}

Summary So Far

$>$ Euler's method evaluates slope at beginning of the step
> Midpoint method evaluates slope at beginning and at midpoint of the step
> Heun's method evaluates slope at beginning and at end of step
Can we continue to get more accurate schemes by evaluating the slope at more points in the interval? Yes, but there is a limit beyond which additional evaluations of the slope increase in cost (increased flops) faster than the improve the accuracy

Fourth Order Runge-Kutta

Compute slope at four places within each step

$$
\begin{aligned}
k_{1} & =f\left(t_{j}, y_{j}\right) \\
k_{2} & =f\left(t_{j}+\frac{h}{2}, y_{j}+\frac{h}{2} k_{1}\right) \\
k_{3} & =f\left(t_{j}+\frac{h}{2}, y_{j}+\frac{h}{2} k_{2}\right) \\
k_{4} & =f\left(t_{j}+h, y_{j}+h k_{3}\right)
\end{aligned}
$$

Use weighted average of slopes to obtain y_{j+1}

$$
y_{j+1}=y_{j}+h\left(\frac{k_{1}}{6}+\frac{k_{2}}{3}+\frac{k_{3}}{3}+\frac{k_{4}}{6}\right)
$$

$\mathrm{LDE}=\mathrm{GDE}=\mathcal{O}\left(h^{4}\right)$

Runge-Kutta Methods

Generalize the idea embodied in Heun's method. Use a weighted average of the slope evaluated at multiple in the step

$$
y_{j+1}=y_{j}+h \sum \gamma_{m} k_{m}
$$

where γ_{m} are weighting coefficients and k_{m} are slopes evaluated at points in the interval $t_{j} \leq t \leq t_{j+1}$
In general,

$$
\sum \gamma_{m}=1
$$

Fourth Order Runge-Kutta


```
odeRK4 F
% odeRK4 Fourth order Runge-Kutta method for a single, first order ODE
4 Synopsis: [t,y] = odeRK4(fun,tn, h,yo)
% Input: diffeq = (string) name of the m-file that evaluates the right
    hand side of the ODE written in standard form
        \iotan = stopping value of the independent variable
        h = stepsize for advancing the independent variabl
    Output: t = vector of independent variable values: t(j) = (j-1)*h
        y= vector of numerical solution values at the t(j)
t=(0:h:tn)'; % Column vector of elements with spacing h
n=length(t); ;
l
% Begin RK4 integration; j=1 for initial condition
    k1 = feval(dirfeq, t(j-1), y(j-1) , );
    k3=feval(diffeq, t(j-1)+h2, y(j-1)+h2*k1
    k4 = feval(diffeq, t(j-1)+h, y y (j-1)+h2*k\mp@code{ m}
    y(j) = y (j-1) +h6*(k1+k4)+h3*(k2+k3);
end
```

Comparison of Euler, Midpoint and RK4 (2)

	Error	step size	RHS
evaluations			

Conclusion:
> RK-4 is much more accurate (smaller GDE) than Midpoint or Euler
> Although RK-4 takes more flops per step, it can achieve comparable accuracy with much larger time steps. The net effect is that RK-4 is more accurate and more efficient

Comparison of Euler, Midpoint and RK4 (1)

Solve

$$
\frac{d y}{d t}=-y ; \quad y(0)=1 ; \quad 0 \leq t \leq 1
$$

> compenRk

h	nrhsE	erre	nrhsM	errM	nrhsRK4	err4
0.20000	6	$4.02 e-02$	12	$2.86 e-03$	24	$5.80 e-06$
0.10000	11	$1.92 e-02$	22	$6.62 e-04$	44	$3.33 e-07$
0.05000	21	$9.39 e-03$	42	$1.59 e-04$	84	$2.00 e-08$
0.02500	41	$4.655-03$	82	$3.90 e-05$	164	$1.22 e-09$
0.01250	81	$2.31 e-03$	162	$9.67 e-06$	324	$7.56 e-11$
0.00625	161	$1.15 e-03$	322	$2.41 e-06$	644	$4.70-12$

Summary: Accuracy of ODE Integration Schemes

- GDE decreases as h decreases
- Need an upper limit on h to achieve a desired accuracy
- Example: Euler's Method

$$
y_{j}=y_{j-1}+h f\left(t_{j-1}, y_{j-1}\right)
$$

when h and $\left|f\left(t_{j}, y_{j}\right)\right|$ are large, the change in y is large

- The product, $h f\left(t_{j}, y_{j}\right)$, determines accuracy

Procedure for Using Algorithms Having Fixed Stepsize

- Develop an m-file to evaluate the right hand side
- Use a high order method, e.g. RK-4
- Compare solutions for a sequence of smaller h
- When the change in the solution between successively smaller h is "small enough", accept that as the h-independent solution.

The goal is to obtain a solution that does not depend (in a significant way) on h.

Adaptive Stepsize Algorithms (2)

How do we find the "error" at each step in order to judge whether the stepsize needs to be reduced or increased?

Two related strategies
> Use two h values at each step:

1. Advance the solution with $h=h_{1}$
2. Advance the solution with two steps of size $h_{2}=h / 2$
3. If solutions are close enough, accept the h_{1} solution, stop
4. Otherwise, replace $h_{1}=h_{2}$, go back to step 2
$>$ Use embedded Runge-Kutta methods

Adaptive Stepsize Algorithms

Let the solution algorithm determine h at each time step

- Set a tolerance on the error
- When $\left|f\left(t_{j-1}, y_{j-1}\right)\right|$ is decreases, increase h to increase efficiency and decrease round-off
- When $\left|f\left(t_{j-1}, y_{j-1}\right)\right|$ is increases, decrease h to maintain accuracy

Embedded Runge-Kutta Methods (1)

There is a pair of RK methods that use the same six k values
Fourth Order RK:

$$
\begin{aligned}
y_{j+1}=y_{j}+c_{1} k_{1} & +c_{2} k_{2}+c_{3} k_{3} \\
& +c_{4} k_{4}+c_{5} k_{5}+c_{6} k_{6}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Fifth Order RK:

$$
\begin{aligned}
y_{j+1}^{*}=y_{j}+c_{1}^{*} k_{1} & +c_{2}^{*} k_{2}+c_{3}^{*} k_{3} \\
& +c_{4}^{*} k_{4}+c_{5}^{*} k_{5}+c_{6}^{*} k_{6}+\mathcal{O}\left(h^{5}\right)
\end{aligned}
$$

Therefore, at each step an estimate of the truncation error is

$$
\Delta=y_{j+1}-y_{j+1}^{*}
$$

Embedded Runge-Kutta Methods (2)

Possible outcomes

- If Δ is smaller than tolerance, accept the y_{j+1} solution.
- If Δ is much smaller than tolerance, accept the y_{j+1} solution, and try increasing the stepsize.
- If Δ is larger than tolerance, reduce h and try again.
$\overline{\text { NMM: Integration of ODEs }}$
page 44

Matlab ode45 Function (2)

Error tolerances are

$$
\tilde{\tau}<\max \left(\operatorname{RelTol} \times\left|y_{j}\right|, \text { AbsTol }\right)
$$

where $\tilde{\tau}$ is an estimate of the local truncation error, and RelTol and AbsTol are the error tolerances, which have the default values of

$$
\text { RelTol }=1 \times 10^{-3} \quad \text { AbsTol }=1 \times 10^{-6}
$$

Matlab ode45 Function

- User supplies error tolerance, not stepsize
- Simultaneously compute $4^{\text {th }}$ and $5^{t h}$ order Runge-Kutta solution
- Compare two solutions to determine accuracy
- Adjust step-size so that error tolerance is maintained

Syntax:

$[\mathrm{t}, \mathrm{Y}]=$ ode45(diffeq, $\mathrm{tn}, \mathrm{y} 0$)
$[t, Y]=\operatorname{ode45(diffeq,[t0~tn],y0)}$
$[\mathrm{t}, \mathrm{Y}]=\operatorname{ode45(diffeq,[t0\mathrm {tn}],y0\text {,options)}}$
$[\mathrm{t}, \mathrm{Y}]=$ ode45(diffeq, [to tn],y0,options,arg1,arg2,...)
User writes the diffeq m-file to evaluate the right hand side of the ODE.
Solution is controlled with the odeset function
options $=$ odeset ('parameterName', value, \ldots)
[$\mathrm{y}, \mathrm{t}]=$ ode45('rhsFun', [to tN], yO ,options,.. .)
Syntax for ode 23 and other solvers is the same.

Matlab's Built-in ODE Routines

Function	Description
ode113	Variable order solution to nonstiff systems of ODEs. ode113 uses an explicit predictor-corrector method with variable order from 1 to 13.
ode15s	Variable order, multistep method for solution to stiff systems of ODEs. ode15s uses an implicit multistep method with variable order from 1 to 5. Lower order adaptive stepsize routine for non-stiff systems of ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.
ode23s	Lower order adaptive stepsize routine for moderately stiff systems of ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.
	Higher order adaptive stepsize routine for non-stiff systems of ODEs. ode45 uses Runge-Kutta schemes of order 4 and 5.

Interpolation Refinement by ode45 (2)

>> rhs = inline ('cos(t)', 't', 'y');
$\gg[\mathrm{t}, \mathrm{Y}]=\operatorname{ode45(rhs,[02*\mathrm {pi}],0)\text {;}}$
$\gg \operatorname{plot}\left(t, Y,{ }^{\prime} O^{\prime}\right)$

Interpolation Refinement by ode45 (1)

The ode45 function attempts to obtain the solution to within the user-specified error tolerances. In some situations the solution can be obtained within the tolerance by taking so few time steps that the solution appears to be unsmooth. To compensate for this, ode 45 automatically interpolates the solution between points that are obtained from the solver.

Consider

$$
\frac{d y}{d t}=\cos (t), \quad y(0)=0
$$

The following statements obtain the solution with the default parameters.
>> rhs = inline('cos(t)','t','y');
\rightarrow [t,Y] = ode45(rhs,[0 2*pi],0);
>> plot(t,Y, 'o')
(See plot on next slide)
$\overline{\text { NMM: Integration of ODEs }}$

Interpolation Refinement by ode45 (3)

Repeat without interpolation:
>> options $=$ odeset('Refine',1)
>> [t2, Y2] $=$ ode45(rhs, [0 $2 * \mathrm{pi}], 0$,
\gg hold on
>> plot($\mathrm{t} 2, \mathrm{Y} 2$, 'rs-')
The two solutions are identical at the points obtained from the RungeKutta algorithm
$\gg \max (\mathrm{Y} 2-\mathrm{Y}(1: 4:$ end $)$
ans $=$
0

Coupled ODEs (1)

Consider

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=f_{1}\left(t, y_{1}, y_{2}\right) \\
& \frac{d y_{2}}{d t}=f_{2}\left(t, y_{1}, y_{2}\right)
\end{aligned}
$$

These equations must be advanced simultaneously.

Coupled ODEs ${ }_{(3)}$

Update y_{1} and y_{2} only after all slopes are computed

$$
\begin{aligned}
& y_{j+1,1}=y_{j, 1}+h\left(\frac{k_{1,1}}{6}+\frac{k_{2,1}}{3}+\frac{k_{3,1}}{3}+\frac{k_{4,1}}{6}\right) \\
& y_{j+1,2}=y_{j, 2}+h\left(\frac{k_{1,2}}{6}+\frac{k_{2,2}}{3}+\frac{k_{3,2}}{3}+\frac{k_{4,2}}{6}\right)
\end{aligned}
$$

Coupled ODEs (2)
Apply the $4^{\text {th }}$ Order Runge-Kutta Scheme:

$$
\begin{aligned}
& k_{1,1}=f_{1}\left(t_{j}, y_{j, 1}, y_{j, 2}\right) \\
& k_{1,2}=f_{2}\left(t_{j}, y_{j, 1}, y_{j, 2}\right) \\
& k_{2,1}=f_{1}\left(t_{j}+\frac{h}{2}, y_{j, 1}+\frac{h}{2} k_{1,1}, y_{j, 2}+\frac{h}{2} k_{1,2}\right) \\
& k_{2,2}=f_{2}\left(t_{j}+\frac{h}{2}, y_{j, 1}+\frac{h}{2} k_{1,1}, y_{j, 2}+\frac{h}{2} k_{1,2}\right) \\
& k_{3,1}=f_{1}\left(t_{j}+\frac{h}{2}, y_{j, 1}+\frac{h}{2} k_{2,1}, y_{j, 2}+\frac{h}{2} k_{2,2}\right) \\
& k_{3,2}=f_{2}\left(t_{j}+\frac{h}{2}, y_{j, 1}+\frac{h}{2} k_{2,1}, y_{j, 2}+\frac{h}{2} k_{2,2}\right) \\
& k_{4,1}=f_{1}\left(t_{j}+h, y_{j, 1}+h k_{3,1}, y_{j, 2}+h k_{3,2}\right) \\
& k_{4,2}=f_{2}\left(t_{j}+h, y_{j, 1}+h k_{3,1}, y_{j, 2}+h k_{3,2}\right)
\end{aligned}
$$

Example: Predator-Prey Equations

$$
\begin{aligned}
\frac{d p_{1}}{d t} & =\alpha_{1} p_{1}-\delta_{1} p_{1} p_{2} \\
\frac{d p_{2}}{d t} & =\alpha_{2} p_{1} p_{2}-\delta_{2} p_{2}
\end{aligned}
$$

Evaluate RHS of Preditor-Prey Model

```
unction dpdt = rhsPop2(t,p,flag,alpha,delta)
% rhsPop2 Right hand sides of coupled ODEs for 2 species predator-prey system
%
% Inut: t = time. Not used in this m-file, but needed by ode45
        flag =(not used) placeholder for compatibility with ode45
        1pha = vector (length 2) of growth coefficients
        *)
% Output: dpdt = vector of dp/dt values
```



```
    alpha(2)*p(1)*p(2)-delta(2)*p(2);
```


Example: Second Order Mechanical System

Forces acting on the mass are | $\sum F=m a$ | |
| ---: | :--- |
| $F_{\text {spring }}$ | $=-k x$ |
| $F_{\text {damper }}$ | $=-c \dot{x}$ |
| $F(t)-k x-c \dot{x}$ | $=m \ddot{x}$ |

Preditor-Prey Results

alpha(2) $=0.000200 \quad$ detta(2) $)=0.800000$

Second Order Mechanical System

Governing equation is a second order ODE

$$
\begin{gathered}
\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=\frac{F}{m} \\
\zeta \equiv \frac{c}{2 \sqrt{k m}} \\
\omega_{n} \equiv \sqrt{k / m}
\end{gathered}
$$

ζ and ω_{n} are the only (dimensionless) parameters

Equivalent Coupled First Order Systems

Define

$$
y_{1} \equiv x \quad y_{2} \equiv \dot{x}
$$

then

$$
\begin{aligned}
\frac{d y_{1}}{d t} & =\dot{x}=y_{2} \\
\frac{d y_{2}}{d t} & =\ddot{x} \\
& =\frac{F}{m}-2 \zeta \omega_{n} \dot{x}-\omega_{n}^{2} x \\
& =\frac{F}{m}-2 \zeta \omega_{n} y_{2}-\omega_{n}^{2} y_{1}
\end{aligned}
$$

Solve Second Order System with ODE45

```
function dydt =rhsSmd (t,y,flag,zeta, omegan,a0)
% rhsSmd Right-hand sides of coupled ODEs for a spring-mass-damper system
% Synopis: dydt = rhsSmd(t,y,flag,zeta,omegan,a0)
% Input: t = time, the independent variable
% y = vector (length 2) of dependent variables
    flag =dumny argument for compatibility with ode45
    zeta = damping ratio (dimensionless)
    omegan = natural frequency (rad/s)
    a0 = input force per unit mass
% Output: dydt = column vector of dy(i)/dt values
if }\textrm{t}=0,\mathrm{ fonm = 0.0;
else, fonm = a0; % Force/mass (acceleration)
dydt = [y(2); fonm - 2*zeta*omegan*y(2) -omegan*omegan*y(1)];
```

Solve Second Order System with ODE45

```
function demoSmd(zeta,omegan, tstop)
demoSmd Second order system of ODEs for a spring-mass-damper system
% Synopsis: smdsys(zeta,omegan,tstop)
Input: zeta =(optional) damping ratio; Default: zeta =0.1
omegan = (optional) natural frequency; Default: omegan = 35
    tstop =(optional) stopping time; Default: tstop = 1.5
% Output: plot of displacement and velocity versus time
lll}\begin{array}{ll}{\mathrm{ if nargin<1, zeta = 0.1; , end}}\\{\mathrm{ if nargin<2, omegan = 35; ,}}
if nargin<2, omegan = 35; end
y0=[0; 0]; a0 = 9.8; % Initial conditions and one g force/mass
[t,y] = ode45('rhssmd',tstop, yo, [],zeta, omegan, a0)
subplot (2,1,1);
plot(t,y(:,1)); ylabel('Displacement'); grid;
title(sprintf('zeta = %.3.3f omegan = %%.1f',zeta,omegan))
subplot (2,1,2)
subplot(2,1,2); xlabel('Time (s)'); ylabel('Velocity'); grid;
```


Response of Second Order System to a Step Input

General Procedure for Higher Order ODEs

Given The transformation is

Define y_{i}	ODE for y_{i}
$y_{1}=u$	$\frac{d y_{1}}{d t}=y_{2}$
$y_{2}=\frac{d u}{d t}$	$\frac{d y_{2}}{d t}=y_{3}$
$y_{3}=\frac{d^{2} u}{d t^{2}}$	$\frac{d y_{3}}{d t}=y_{4}$
\vdots	\vdots
$y_{n}=\frac{d^{n-1} u}{d t^{n-1}}$	$\frac{d y_{n}}{d t}=f(t, u)$

