Numerical Integration of Ordinary Differential Equations for Initial Value Problems

Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with MATLAB: Implementations and Applications, by Gerald W. Recktenwald, (© 2000–2006, Prentice-Hall, Upper Saddle River, NJ. These slides are copyright (© 2000–2006 Gerald W. Recktenwald. The PDF version of these slides may be downloaded or stored or printed only for noncommercial, educational use. The repackaging or sale of these slides in any form, without written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material for the book, can be found at www.prenhall.com/recktenwald or web.cecs.pdx.edu/~gerry/nmm/.

Version 0.92 August 22, 2006

page 1

Overview

- Motivation: ODE's arise as models of many applications
- Euler's method
 - ▷ A low accuracy prototype for other methods
 - \triangleright Development
 - \triangleright Implementation
- ▷ Analysis
- Midpoint method
- Heun's method
- Runge-Kutta method of order 4
- $\bullet~{\rm MATLAB}{}^{\prime}{\rm s}$ adaptive stepsize routines
- Systems of equations
- Higher order ODEs

Application: Newton's Law of Motion

Newton's Law of Motion is

F = ma

Acceleration is the time derivative of velocity, so

 $\frac{dv}{dt} = a$

 $\frac{dv}{dt} = \frac{F}{m}$

and

If F(t) and v(0) are known, we can (at least in principle) integrate the preceding equation to find v(t)

Application: Newton's Law of Cooling

The cooling rate of an object immersed in a flowing fluid is

$$Q = hA(T_s - T_\infty)$$

where Q is the heat transfer rate, h is the heat transfer coefficient, A is the surface area, ${\cal T}_s$ is the surface temperature, and T_∞ is the temperature of the fluid.

When the cooling rate is primarily controlled by the convection from the surface, the variation of the object's temperature with is described by an ODE.

NMM: Integration of ODEs

Example: Analytical Solution

The ODE

$$\frac{dy}{dt} = -y \qquad y(0) = y_0$$

1.

can be integrated directly:

$$\frac{dy}{y} = -dt$$
$$\ln y = -t + C$$
$$\ln y - \ln C_2 = -t$$
$$\ln \frac{y}{C_2} = -t$$
$$y = C_2 e^{-t}$$
$$y = y_0 e^{-t}$$

Apply an energy balance

$$mc\frac{dT}{dt} = -Q = -hA(T_s - T_\infty)$$

 $mc\frac{dT}{dt} = -hA(T - T_{\infty})$

 $\frac{dT}{dt} = -\frac{hA}{mc}(T - T_{\infty})$

Assume material is highly conductive $\Rightarrow T_s = T$

or

page 5

Numerical Integration of First Order ODEs (1)

The generic form of a first order ODE is

$$\frac{dy}{dt} = f(t, y); \qquad y(0) = y_0$$

where the right hand side f(t, y) is any single-valued function of t and y. The approximate numerical solution is obtained at discrete values of \boldsymbol{t}

$$t_j = t_0 + jh$$

where h is the "stepsize"

NMM: Integration of ODEs

page 7

NMM: Integration of ODEs

page 4

page 6

 T_{∞} m, c Newton's Law of Cooling

Numerical Integration of ODEs (2)

Graphical Interpretation

page 8

Euler's Method (1)

Consider a Taylor series expansion in the neighborhood of t_0

$$y(t) = y(t_0) + (t - t_0) \left. \frac{dy}{dt} \right|_{t_0} + \frac{(t - t_0)^2}{2} \left. \frac{d^2y}{dt^2} \right|_{t_0} + \dots$$

Retain only first derivative term and define

$$f(t_0,y_0)\equiv \left. rac{dy}{dt}
ight|_{t_0}$$

to get

$$y(t) \approx y(t_0) + (t - t_0)f(t_0, y_0)$$

Nomenclature

$$y(t) =$$
 exact solution
 $y(t_j) =$ exact solution evaluated at t_j
 $y_j =$ approximate solution at t_j
 $f(t_j, y_j) =$ approximate r.h.s. at t_j

NMM: Integration of ODEs

Euler's Method (2)

Given $h = t_1 - t_0$ and initial condition, $y = y(t_0)$, compute

$$y_{1} = y_{0} + h f(t_{0}, y_{0})$$
$$y_{2} = y_{1} + h f(t_{1}, y_{1})$$
$$\vdots \qquad \vdots$$
$$y_{j+1} = y_{j} + h f(t_{j}, y_{j})$$
$$y_{j} = y_{j-1} + h f(t_{j-1}, y_{j-1})$$

NMM: Integration of ODEs

or

page 9

NMM: Integration of ODEs

Example: Euler's Method

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y \qquad y(0) = 1$$

The exact solution is

$$y = \frac{1}{4} \left[2t - 1 + 5e^{-2t} \right]$$

			Euler	Exact	Error
j	t_j	$f(t_{j-1}, y_{j-1})$	$y_j = y_{j-1} + hf(t_{j-1},y_{j-1})$	$y(t_j)$	$y_j - y(t_j)$
0	0.0	NA	(initial condition) 1.0000	1.0000	0
1	0.2	0 - (2)(1) = -2.000	1.0 + (0.2)(-2.0) = 0.6000	0.6879	-0.0879
2	0.4	0.2 - (2)(0.6) = -1.000	0.6 + (0.2)(-1.0) = 0.4000	0.5117	-0.1117
3	0.6	0.4 - (2)(0.4) = -0.400	0.4 + (0.2)(-0.4) = 0.3200	0.4265	-0.1065

NMM: Integration of ODEs

page 12

Reducing Stepsize Improves Accuracy (1)

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y; \qquad y(0) = 1$$

for a sequence of smaller h (see demoEuler).

For a given h, the largest error in the numerical solution is the *Global Discretization Error* or *GDE*.

NMM: Integration of ODEs

page 13

Reducing Stepsize Improves Accuracy (2)

Local error at any time step is	Here are results for the sample problem plotted on previous slide:
$e_j = y_j - y(t_j)$ where $y(t_j)$ is the exact solution	dy/dt = t - 2y; y(0) = 1
evaluated at t_j .	$h = \max(e_j)$
$GDE = \max(e_j), j = 1, \dots$	0.200 0.1117
	0.100 0.0502
For Euler's method, GDE decreases	0.050 0.0240
linearly with h.	0.025 0.0117

Implementation of Euler's Method

function [t :	<pre>r] = odeEuler(diffeg,tn,h,y0)</pre>
5	Culer's method for integration of a single, first order ODE
%	Alter 5 method for integration of a single, first order opp
	<pre>[t,y] = odeEuler(diffeq,tn,h,y0)</pre>
% Synopsis.	[c,y] = odecuter(diffed,cn,n,yo)
	diffeq = (string) name of the m-file that evaluates the right
% input:	hand side of the DDE written in standard form
%	
%	tn = stopping value of the independent variable
	h = stepsize for advancing the independent variable
%	y0 = initial condition for the dependent variable
%	
·· ·	t = vector of independent variable values: t(j) = (j-1)*h
%	y = vector of numerical solution values at the t(j)
t = (0:h:tn);	; % Column vector of elements with spacing h
n = length(t)	; % Number of elements in the t vector
	<pre>, % Preallocate y for speed</pre>
5 5 5 5 5 5	
% Begin Eul	er scheme; j=1 for initial condition
for j=2:n	
y(j) = y(j)	-1) + h*feval(diffeq,t(j-1),y(j-1));
end	

Analysis of Euler's Method (1)

Rewrite the discrete form of Euler's method as

$$\frac{y_j - y_{j-1}}{h} = f(t_{j-1}, y_{j-1})$$
 (discrete)

Compare with original ODE

$$\frac{dy}{dt} = f(t, y) \tag{continuous}$$

Substitute the exact solution into the discrete approximation to the ODE to get

$$\frac{y(t_j) - y(t_{j-1})}{h} - f(t_{j-1}, y(t_{j-1})) \neq 0$$

NMM: Integration of ODEs

page 16

Analysis of Euler's Method $\ensuremath{\scriptscriptstyle (2)}$

Introduce a family of functions $z_j(t)$, which are the exact solutions to the ODE given the approximiate solution produced by Euler's method at step j.

$$\frac{dz_j}{dt} = f(t, y);$$
 $z_j(t_{j-1}) = y_{j-1}$

Due to truncation error, Euler's method produces a value of y_{j+1} that is different from $z_j(t_{j+1})$ even though by design, $y_j = z(t_j)$.

In other words

$$y_{j+1} - z(t_{j+1}) \neq 0$$

because y_{j+1} contains truncation error.

NMM: Integration of ODEs

page 17

Analysis of Euler's Method (3)

$$\frac{dy}{dt} = t - 2y; \qquad y(0) = 1$$

The plot shows the numerical solution (•) obtained with h=0.5. The z(t) curve starting at each of the numerical solution points is shown as a solid line.

Analysis of Euler's Method (4)

The local discretization error (LDE) is the residual obtained when the exact $z_j(t)$ is substituted into the discrete approximation to the ODE

$$au(t,h) = rac{z(t_j) - z(t_{j-1})}{h} - f(t_{j-1}, z_j(t_{j-1}))$$

Note:

- User chooses h, and this affects LDE
- LDE also depends on t, the position in the interval

Analysis of Euler's Method (5)

Using a Taylor series expansion for $z_j(x)$ we find that

$$\frac{z(t_j) - z(t_{j-1})}{h} - f(t_{j-1}, z_j(t_{j-1})) = \frac{h}{2} z_j''(\xi)$$

where $t_{j-1} \leq \xi \leq t_j$ and $z_j'' \equiv d^2 z_j / dt^2$.

Thus, for Euler's method the local discretization error is

$$\tau(t,h) = \frac{h}{2} z_j''(\xi)$$

Since ξ is not known, the value of $z''_i(\xi)$ cannot be computed.

Analysis of Euler's Method (6)

Assume that $z_i''(\xi)$ is bounded by M in the interval $t_0 \leq t \leq t_N$. Then

 $au(t,h) \leq rac{hM}{2}$ LDE for Euler's method

Although M is unknown we can still compute the effect of reducing the stepsize by taking the ratio of $\tau(t,h)$ for two different choices of h

$ au(t,h_2)$	_	h_2
$\overline{ au(t,h_1)}$	_	$\overline{h_1}$

NMM: Integration of ODEs

page 21

Global Discretization Error for Euler's Method

General application of Euler's method requires several steps to compute the solution to the ODE in an interval, $t_0 \leq t \leq t_N$. The local truncation error at each step accumulates. The result is the **global discretization error** (GDE)

The GDE for Euler's method is $\mathcal{O}(h)$. Thus

$$\frac{\text{GDE}(h_1)}{\text{GDE}(h_2)} = \frac{h_1}{h_2}$$

Summary of Euler's Method

Development of Euler's method has demonstrated the following general ideas

- The numerical integration scheme is derived from a truncated Taylor series approximation of the ODE.
- The local discretization error (LDE) accounts for the error at each time step.

 $LDE = \mathcal{O}(h^p)$

where h is the stepsize and p is an integer $p \ge 1$.

• The global discretization error (GDE) includes the accumulated effect of the LDE when the ODE integration scheme is applied to an interval using several steps of size *h*.

 $GDE = \mathcal{O}(h^p)$

• The implementation separates the logic of the ODE integration scheme from the evaluation of the right hand side, f(t, y). A general purpose ODE solver requires the user to supply a small m-file for evaluating f(t, y).

NMM: Integration of ODEs

NMM: Integration of ODEs

Higher Order Methods

We now commence a survey of one-step methods that are more accurate than Euler's method.

- Not all methods are represented here
- Objective is a logical progression leading to RK-4
- Sequence is in order of increasing accuracy and increasing computational efficiency

Methods with increasing accuracy, lower GDE

Method	GDE
Euler	$\mathcal{O}(h)$
Midpoint	$\mathcal{O}(h^2)$
Heun	$\mathcal{O}(h^2)$
RK-4	$\mathcal{O}(h^4)$

Note that since h < 1, a GDE of $\mathcal{O}(h^4)$ is much smaller than a GDE of $\mathcal{O}(h)$.

NMM: Integration of ODEs

page 24

Midpoint Method (1)

Increase accuracy by evaluating slope twice in each step of size \boldsymbol{h}

 $k_1 = f(t_i, y_i)$

Compute a tentative value of y at the midpoint

$$y_{j+1/2} = y_j + \frac{h}{2}f(t_j, y_j)$$

1.

1_

re-evaluate the slope

$$k_2 = f(t_j + \frac{n}{2}, y_j + \frac{n}{2}k_1)$$
 Compute final value of y at the end of the full interval

$$y_{j+1} = y_j + hk_2$$

 $LDE = GDE = \mathcal{O}(h^2)$

NMM: Integration of ODEs

page 25

Midpoint Method (2)

function [t	y] = odeMidpt(diffeq,tn,h,y0)
6 odeMidpt	Midpoint method for integration of a single, first order ODE
6	
	<pre>[t,y] = odeMidpt(diffeq,tn,h,y0)</pre>
6	
	diffeq = (string) name of the m-file that evaluates the right
6	hand side of the ODE written in standard form
%	<pre>tn = stopping value of the independent variable</pre>
6	h = stepsize for advancing the independent variable
%	y0 = initial condition for the dependent variable
6	
% Output:	<pre>t = vector of independent variable values: t(j) = (j-1)*h</pre>
6	y = vector of numerical solution values at the t(j)
t = (0:h:tn)	'; % Column vector of elements with spacing h
n = length(;); % Number of elements in the t vector
y = y0*ones	(n,1); % Preallocate y for speed
h2 = h/2;	% Avoid repeated evaluation of this constant
= h/2; Begin M:	
for j=2:n	
k1 = feva	al(diffeq,t(j-1),y(j-1));
k2 = feva	al(diffeq,t(j-1)+h2,y(j-1)+h2*k1);
y(j) = y	(j-1) + h*k2;
end	

Midpoint Method (3)

Comparison of Midpoint Method with Euler's Method

Midpoint method requires twice as much work per time step. Does the extra effort pay off?

Consider integration with Euler's method and h = 0.1. Formal accuracy is $\mathcal{O}(0.1)$.

Repeat calculations with the midpoint method and h=0.1. Formal accuracy is $\mathcal{O}(0.01).$

For Euler's method to obtain the same accuracy, the stepsize would have to be reduced by a factor of 10. The midpoint method, therefore, achieves the same (formal) accuracy with one fifth the work!

Solve

 $\frac{dy}{dt} = -y; \qquad y(0) = 1; \qquad 0 \le t \le 1$

The exact solution is $y = e^{-t}$

>>	compEM	

h	nrhsE	errE	nrhsM	errM	
0.20000	6	4.02e-02	12	2.86e-03	
0.10000	11	1.92e-02	22	6.62e-04	
0.05000	21	9.39e-03	42	1.59e-04	
0.02500	41	4.65e-03	82	3.90e-05	
0.01250	81	2.31e-03	162	9.67e-06	
0.00625	161	1.15e-03	322	2.41e-06	

For comparable accuracy:

- \succ Midpoint method with h=0.2 evaluates the right hand side of the ODE 12 times, and gives max error of $2.86\,\times\,10^{-3}$
- \succ Euler's method with h=0.0125 evaluates the right hand side of the ODE 81 times, and gives max error of 2.31×10^{-3}

NMM: Integration of ODEs

page 29

Heun's Method (1)

Compute the slope at the starting point

$$k_1 = f(t_j, y_j)$$

Compute a tentative value of y at the endpoint

$$y_j^* = y_j + hf(t_j, y_j)$$

re-evaluate the slope

NMM: Integration of ODEs

$$k_2 = f(t_i + h, y_i^*) = f(t_i + j, y_i + hk_1)$$

Compute final value of y with an average of the two slopes

$$y_{j+1} = y_j + h \, \frac{k_1 + k_2}{2}$$

 $LDE = GDE = \mathcal{O}(h^2)$

page 28

Heun's Method (2)

Runge-Kutta Methods

- Summary So Far
- \succ Euler's method evaluates slope at beginning of the step
- > Midpoint method evaluates slope at beginning and at midpoint of the step
- \succ Heun's method evaluates slope at beginning and at end of step

Can we continue to get more accurate schemes by evaluating the slope at more points in the interval? Yes, but there is a limit beyond which additional evaluations of the slope increase in cost (increased flops) faster than the improve the accuracy.

Generalize the idea embodied in Heun's method. Use a *weighted average of the slope* evaluated at multiple in the step

$$y_{j+1} = y_j + h \sum \gamma_m k_m$$

where γ_m are weighting coefficients and k_m are slopes evaluated at points in the interval $t_j \leq t \leq t_{j+1}$

 $\sum \gamma_m = 1$

In general,

NMM: Integration of ODEs

page 32

Fourth Order Runge-Kutta

Compute slope at four places within each step

$$k_{1} = f(t_{j}, y_{j})$$

$$k_{2} = f(t_{j} + \frac{h}{2}, y_{j} + \frac{h}{2}k_{1})$$

$$k_{3} = f(t_{j} + \frac{h}{2}, y_{j} + \frac{h}{2}k_{2})$$

$$k_{4} = f(t_{j} + h, y_{j} + hk_{3})$$

Use weighted average of slopes to obtain y_{j+1}

$$y_{j+1} = y_j + h\left(\frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6}\right)$$

 $LDE = GDE = \mathcal{O}(h^4)$

NMM: Integration of ODEs

page 34

NMM: Integration of ODEs

Fourth Order Runge-Kutta

NMM: Integration of ODEs

·		
& Synopsis: &	<pre>[t,y] = odeRK4(fun,tn,h,y0)</pre>	
% Input:	diffeq = (string) name of the m	-file that evaluates the right
%	hand side of the ODE w	ritten in standard form
%	tn = stopping value of the ind	lependent variable
%	h = stepsize for advancing th	e independent variable
%	y0 = initial condition for the	dependent variable
	t = vector of independent varia	ble values: t(j) = (j-1)*h
%	y = vector of numerical solution	n values at the t(j)
t = (0:h:tr)'; % Column v	ector of elements with spacing h
n = length(t); % Number of	f elements in the t vector
y = y0*ones	(n,1); % Prealloc	ate y for speed
h2 = h/2;	h3 = h/3; h6 = h/6; % Avoid re	peated evaluation of constants
0	4 integration; j=1 for initial co	ndition
for j=2:n		
	al(diffeq, t(j-1), y(j-1)	
	al(diffeq, t(j-1)+h2, y(j-1)+h2*)	
	-1 (3:44 +(: 1):10(: 1):10+1	2):
k3 = fev	al(diffeq, t(j-1)+h2, y(j-1)+h2*k al(diffeq, t(j-1)+h, y(j-1)+h*k3	

page 36

```
Comparison of Euler, Midpoint and RK4 (1)
```

Solve

$$\frac{dy}{dt} = -y; \qquad y(0) = 1; \qquad 0 \le t \le 1$$

>> compEMRK4

h	nrhsE	errE	nrhsM	errM	nrhsRK4	err4
0.20000	6	4.02e-02	12	2.86e-03	24	5.80e-06
0.10000	11	1.92e-02	22	6.62e-04	44	3.33e-07
0.05000	21	9.39e-03	42	1.59e-04	84	2.00e-08
0.02500	41	4.65e-03	82	3.90e-05	164	1.22e-09
0.01250	81	2.31e-03	162	9.67e-06	324	7.56e-11
0.01250	161	2.31e-03 1.15e-03	322	2.41e-06	324 644	4.70e-11

NMM: Integration of ODEs

page 37

Comparison of Euler, Midpoint and RK4 (2)

	Error	step size	RHS evaluations
Euler	1.2×10^{-3}	0.00625	161
Midpoint	2.9×10^{-3}	0.2	12
Midpoint	2.4×10^{-6}	0.00625	322
RK-4	5.8×10^{-6}	0.2	24

Conclusion:

NMM: Integration of ODEs

- \succ RK-4 is much more accurate (smaller GDE) than Midpoint or Euler
- Although RK-4 takes more flops per step, it can achieve comparable accuracy with much larger time steps. The net effect is that RK-4 is more accurate and more efficient

Summary: Accuracy of ODE Integration Schemes

- GDE decreases as *h* decreases
- Need an upper limit on \boldsymbol{h} to achieve a desired accuracy
- Example: Euler's Method

 $y_j = y_{j-1} + h f(t_{j-1}, y_{j-1})$

when h and $\left|f(t_{j},y_{j})\right|$ are large, the change in y is large

• The product, $h f(t_j, y_j)$, determines accuracy

Procedure for Using Algorithms Having Fixed Stepsize

- Develop an m-file to evaluate the right hand side
- Use a high order method, e.g. RK-4
- Compare solutions for a sequence of smaller *h*
- When the change in the solution between successively smaller h is "small enough", accept that as the h-independent solution.

The goal is to obtain a solution that does not depend (in a significant way) on h.

Adaptive Stepsize Algorithms

Let the solution algorithm determine h at each time step

- Set a tolerance on the error
- When $|f(t_{j-1},y_{j-1})|$ is decreases, increase h to increase efficiency and decrease round-off
- When $|f(t_{j-1}, y_{j-1})|$ is increases, decrease h to maintain accuracy

NMM: Integration of ODEs

page 40

NMM: Integration of ODEs

page 41

Adaptive Stepsize Algorithms (2)

How do we find the "error" at each step in order to judge whether the stepsize needs to be reduced or increased?

Two related strategies:

- \succ Use two h values at each step:
 - 1. Advance the solution with $h = h_1$
 - 2. Advance the solution with two steps of size $h_2 = h/2$
 - 3. If solutions are close enough, accept the h_1 solution, stop
 - 4. Otherwise, replace $h_1=h_2$, go back to step 2
- ➤ Use *embedded* Runge-Kutta methods

Embedded Runge-Kutta Methods (1)

There is a pair of RK methods that use the same six k values Fourth Order RK:

$$y_{j+1} = y_j + c_1k_1 + c_2k_2 + c_3k_3$$

$$+ c_4k_4 + c_5k_5 + c_6k_6 + \mathcal{O}(h^4)$$

Fifth Order RK:

$$y_{j+1}^* = y_j + c_1^* k_1 + c_2^* k_2 + c_3^* k_3 + c_4^* k_4 + c_5^* k_5 + c_6^* k_6 + \mathcal{O}(h^5)$$

Therefore, at each step an estimate of the truncation error is

 $\Delta = y_{j+1} - y_{j+1}^*$

NMM: Integration of ODEs

page 42

Embedded Runge-Kutta Methods (2)

Possible outcomes

- If Δ is smaller than tolerance, accept the y_{j+1} solution.
- If Δ is much smaller than tolerance, accept the y_{j+1} solution, and try increasing the stepsize.
- If Δ is larger than tolerance, reduce h and try again.

- Matlab ode45 Function
- User supplies error tolerance, *not* stepsize
- $\bullet~{\rm Simultaneously~compute}~4^{th}$ and 5^{th} order Runge-Kutta solution
- Compare two solutions to determine accuracy
- Adjust step-size so that error tolerance is maintained

NMM: Integration of ODEs

page 44

NMM: Integration of ODEs

page 45

MATLAB ode45 Function (2)

Error tolerances are

 $\tilde{\tau} < \max(\text{RelTol} \times |y_j|, \text{AbsTol})$

where $\tilde{\tau}$ is an estimate of the local truncation error, and RelTol and AbsTol are the error tolerances, which have the default values of

$$RelTol = 1 \times 10^{-3}$$
 $AbsTol = 1 \times 10^{-6}$

Using ode45

Syntax:

[t,Y] = ode45(diffeq,tn,y0)

[t,Y] = ode45(diffeq, [t0 tn], y0)

[t,Y] = ode45(diffeq,[t0 tn],y0,options)

[t,Y] = ode45(diffeq,[t0 tn],y0,options,arg1,arg2,...)

User writes the *diffeq* m-file to evaluate the right hand side of the ODE.

Solution is controlled with the odeset function

options = odeset('parameterName',value,...)
[y,t] = ode45('rhsFun',[t0 tN],y0,options,...)

Syntax for ode23 and other solvers is the same.

MATLAB's Built-in ODE Routines

Function	Description
ode113	Variable order solution to nonstiff systems of ODEs. ode113 uses an explicit predictor-corrector method with variable order from 1 to 13.
ode15s	Variable order, multistep method for solution to stiff systems of ODEs. ode15s uses an implicit multistep method with variable order from 1 to 5.
ode23	Lower order adaptive stepsize routine for non-stiff systems of ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.
ode23s	Lower order adaptive stepsize routine for moderately stiff systems of ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.
ode45	Higher order adaptive stepsize routine for non-stiff systems of ODEs. ode45 uses Runge-Kutta schemes of order 4 and 5.

The ode45 function attempts to obtain the solution to within the user-specified error tolerances. In some situations the solution can be obtained within the tolerance by taking so few time steps that the solution appears to be unsmooth. To compensate for this, ode45 automatically interpolates the solution between points that are obtained from the solver.

Interpolation Refinement by ode45 (1)

Consider

$$\frac{dy}{dt} = \cos(t), \qquad y(0) = 0$$

The following statements obtain the solution with the default parameters.

>> rhs = inline('cos(t)','t','y');
>> [t,Y] = ode45(rhs,[0 2*pi],0);
>> plot(t,Y,'o')

(See plot on next slide)

NMM: Integration of ODEs

NMM: Integration of ODEs

page 48

page 49

Interpolation Refinement by ode45 (2)

Interpolation Refinement by ode45 (3)

NMM: Integration of ODEs

page 50

Consider

$$\frac{dy_1}{dt} = f_1(t, y_1, y_2)$$
$$\frac{dy_2}{dt} = f_2(t, y_1, y_2)$$

These equations must be advanced simultaneously.

Coupled ODEs (2)

Apply the 4th Order Runge-Kutta Scheme:

$$\begin{aligned} k_{1,1} &= f_1 \left(t_j, y_{j,1}, y_{j,2} \right) \\
k_{1,2} &= f_2 \left(t_j, y_{j,1}, y_{j,2} \right) \\
k_{2,1} &= f_1 \left(t_j + \frac{h}{2}, y_{j,1} + \frac{h}{2}k_{1,1}, y_{j,2} + \frac{h}{2}k_{1,2} \right) \\
k_{2,2} &= f_2 \left(t_j + \frac{h}{2}, y_{j,1} + \frac{h}{2}k_{1,1}, y_{j,2} + \frac{h}{2}k_{1,2} \right) \\
k_{3,1} &= f_1 \left(t_j + \frac{h}{2}, y_{j,1} + \frac{h}{2}k_{2,1}, y_{j,2} + \frac{h}{2}k_{2,2} \right) \\
k_{3,2} &= f_2 \left(t_j + \frac{h}{2}, y_{j,1} + \frac{h}{2}k_{2,1}, y_{j,2} + \frac{h}{2}k_{2,2} \right) \end{aligned}$$

 $\begin{aligned} k_{4,1} &= f_1 \left(t_j + h, y_{j,1} + h k_{3,1}, y_{j,2} + h k_{3,2} \right) \\ k_{4,2} &= f_2 \left(t_j + h, y_{j,1} + h k_{3,1}, y_{j,2} + h k_{3,2} \right) \end{aligned}$

NMM: Integration of ODEs

page 52

Coupled ODEs (3)

Update y_1 and y_2 only after all slopes are computed

$y_{j+1,1} = y_{j,1} + h$	$\left(rac{k_{1,1}}{6}+ ight.$	$\frac{k_{2,1}}{3} +$	$\frac{k_{3,1}}{3} +$	$\frac{k_{4,1}}{6} \biggr)$
$y_{j+1,2} = y_{j,2} + h$	$\left(rac{k_{1,2}}{6}+ ight.$	$\frac{k_{2,2}}{3} +$	$\frac{k_{3,2}}{3} +$	$\frac{k_{4,2}}{6} \biggr)$

Example: Predator-Prey Equations

$$\frac{dp_1}{dt} = \alpha_1 p_1 - \delta_1 p_1 p_2 \tag{prey}$$

$$\frac{\alpha p_2}{dt} = \alpha_2 p_1 p_2 - \delta_2 p_2 \qquad (\text{preditor})$$

NMM: Integration of ODEs

NMM: Integration of ODEs

Evaluate RHS of Preditor-Prey Model

Preditor-Prey Results

NMM: Integration of ODEs

page 56

NMM: Integration of ODEs

page 57

Example: Second Order Mechanical System

 $\sum F = ma$

Forces acting on the mass are

$$F_{spring} = -kx$$

$$F_{damper} = -c\dot{x}$$

$$F(t) - kx - c\dot{x} = m\ddot{x}$$

Second Order Mechanical System

Governing equation is a second order ODE

$$\ddot{x} + 2\zeta\omega_n \dot{x} + \omega_n^2 x = \frac{F}{m}$$
$$\zeta \equiv \frac{c}{2\sqrt{km}}$$

 $\omega_n \equiv \sqrt{k/m}$

 ζ and ω_n are the only (dimensionless) parameters

NMM: Integration of ODEs

page 58

NMM: Integration of ODEs

Equivalent Coupled First Order Systems

Define

$$y_1 \equiv x \qquad y_2 \equiv \dot{x}$$

then

NMM: Integration of ODEs

$$\frac{dy_1}{dt} = \dot{x} = y_2$$
$$\frac{dy_2}{dt} = \ddot{x}$$
$$= \frac{F}{m} - 2\zeta \omega_n \dot{x} - \omega_n^2 x$$
$$= \frac{F}{m} - 2\zeta \omega_n y_2 - \omega_n^2 y_1$$

page 60

Solve Second Order System with ODE45

NMM: Integration of ODEs

page 61

Solve Second Order System with ODE45

rhsSmd F	light-hand sides of coupled ODEs for a spring-mass-damper system
	<pre>dydt = rhsSmd(t,y,flag,zeta,omegan,a0)</pre>
Input:	t = time, the independent variable
	y = vector (length 2) of dependent variables
	y(1) = displacement and y(2) = velocity
	<pre>flag = dummy argument for compatibility with ode45</pre>
	zeta = damping ratio (dimensionless)
	omegan = natural frequency (rad/s)
	a0 = input force per unit mass
Output:	dydt = column vector of dy(i)/dt values
f t<=0, fo lse, fo nd	<pre>ynm = 0.0; ynm = a0; % Force/mass (acceleration)</pre>

Response of Second Order System to a Step Input

General Procedure for Higher Order ODEs

Given The transformation is

$$\frac{d^{n}u}{dt^{n}} = f(t, u) \qquad \begin{array}{ccc} \text{Define } y_{i} & \text{ODE for } y_{i} \\ \hline y_{1} = u & \frac{dy_{1}}{dt} = y_{2} \\ y_{2} = \frac{du}{dt} & \frac{dy_{2}}{dt} = y_{3} \\ y_{3} = \frac{d^{2}u}{dt^{2}} & \frac{dy_{3}}{dt} = y_{4} \\ \vdots & \vdots \\ y_{n} = \frac{d^{n-1}u}{dt^{n-1}} & \frac{dy_{n}}{dt} = f(t, u) \end{array}$$

NMM: Integration of ODEs