A Review of Linear Algebra

Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with MATLAB: Implementations and Applications, by Gerald W. Recktenwald, (© 2000-2006. Prentice-Hall, Upper Saddle River, NJ. These slides are copyright (© 2000-2006 Gerald W. Recktenwald. The PDF version of these slides may be downloaded or stored or printed only for noncommercial, educational use. The repackaging or sale of these slides in any form, without written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material for the book, can be found at www.prenhall.com/recktenwald or web.cecs.pdx.edu/~gerry/nmm/.

Version 0.99 August 22, 2006

page 1

Primary Topics

•	Vectors	

• Matrices

• Mathematical Properties of Vectors and Matrices

• Special Matrices

Notation

Variable		
type	Typographical Convention	Example
scalar	lower case Greek	σ, α, β
vector	lower case Roman	u, v , x , y , b
matrix	upper case Roman	A, B, C

_

Defining Vectors in MATLAB

Vector Operations

· Assign any expression that evaluates to a vector

>> v = [1 3 5 7] >> w = [2; 4; 6; 8] >> x = linspace(0,10,5); >> y = 0:30:180 >> z = sin(y*pi/180);

• Distinguish between row and column vectors

>> r = [1 2 3]; % row vector >> s = [1 2 3]'; % column vector >> r - s ??? Error using ==> -Matrix dimensions must agree.

Although r and s have the same elements, they are not the same vector. Furthermore, operations involving r and s are bound by the rules of linear algebra.

NMM: A Review of Linear Algebra

page 4

NMM: A Review of Linear Algebra

• Addition and Subtraction

• Multiplication by a scalar

• Linear Combinations of Vectors

• Transpose

• Inner Product

• Outer Product

Vector Norms

page 5

Vector Addition and Subtraction

Addition and subtraction are element-by-element operations

$$c = a + b \iff c_i = a_i + b_i \quad i = 1, \dots, n$$
$$d = a - b \iff d_i = a_i - b_i \quad i = 1, \dots, n$$

Example:

$$a = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \qquad b = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$
$$a + b = \begin{bmatrix} 4\\4\\4 \end{bmatrix} \qquad a - b = \begin{bmatrix} -2\\0\\2 \end{bmatrix}$$

NMM: A Review of Linear Algebra

Multiplication by a Scalar

Multiplication by a scalar involves multiplying each element in the vector by the scalar:

$$b = \sigma a \iff b_i = \sigma a_i \quad i = 1, \dots, n$$

Example:

$$a = \begin{bmatrix} 4\\6\\8 \end{bmatrix} \qquad b = \frac{a}{2} = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$$

Vector Transpose

The *transpose* of a row vector is a column vector:

$$u = \begin{bmatrix} 1, 2, 3 \end{bmatrix}$$
 then $u^T = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Likewise if v is the column vector

$$v = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 then $v^T = \begin{bmatrix} 4, 5, 6 \end{bmatrix}$

Combine scalar multiplication with addition

Linear Combinations (1)

Example:

$$r = \begin{bmatrix} -2\\1\\3 \end{bmatrix} \qquad s = \begin{bmatrix} 1\\0\\3 \end{bmatrix}$$
$$t = 2r + 3s = \begin{bmatrix} -4\\2\\6 \end{bmatrix} + \begin{bmatrix} 3\\0\\9 \end{bmatrix} = \begin{bmatrix} -1\\2\\15 \end{bmatrix}$$

NMM: A Review of Linear Algebra

page 8

page 9

Linear Combinations (2)

Any one vector can be created from an infinite combination of other "suitable" vectors.

Example:

$$w = \begin{bmatrix} 4\\2 \end{bmatrix} = 4 \begin{bmatrix} 1\\0 \end{bmatrix} + 2 \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$w = 6 \begin{bmatrix} 1\\0 \end{bmatrix} - 2 \begin{bmatrix} 1\\-1 \end{bmatrix}$$
$$w = \begin{bmatrix} 2\\4 \end{bmatrix} - 2 \begin{bmatrix} -1\\1 \end{bmatrix}$$
$$w = 2 \begin{bmatrix} 4\\2 \end{bmatrix} - 4 \begin{bmatrix} 1\\0 \end{bmatrix} - 2 \begin{bmatrix} 0\\1 \end{bmatrix}$$

NMM: A Review of Linear Algebra

page 10

Linear Combinations (3)

Graphical interpretation:

- Vector tails can be moved to convenient locations
- Magnitude and direction of vectors is preserved

Vector Inner Product (1)

In physics, analytical geometry, and engineering, the $\ensuremath{\text{dot}}\xspace$ product has a geometric interpretation

$$\sigma = x \cdot y \iff \sigma = \sum_{i=1}^{n} x_i y_i$$
$$x \cdot y = \|x\|_2 \|y\|_2 \cos \theta$$

Vector Inner Product (2)

The rules of linear algebra impose compatibility requirements on the inner product. The inner product of x and y requires that x be a row vector y be a column vector

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4$$

NMM: A Review of Linear Algebra

page 12

NMM: A Review of Linear Algebra

page 13

Vector Inner Product (3)

For two n-element *column* vectors, u and v, the inner product is

 $\sigma = u^T v \quad \Longleftrightarrow \quad \sigma = \sum_{i=1}^n u_i v_i$

The inner product is commutative so that (for two column vectors)

$$u^T v = v^T u$$

Computing the Inner Product in MATLAB

The * operator performs the inner product if two vectors are compatible.

>> u = (0:3)'; % u and v are >> v = (3:-1:0)'; % column vectors >> s = u*v ??? Error using ==> * Inner matrix dimensions must agree. >> s = u'*v s = 4 >> t = v'*u t = 4

Vector Outer Product

Computing the Outer Product in MATLAB

The inner product results in a scalar. The *outer product* creates a rank-one matrix:

$$A = uv^T \quad \Longleftrightarrow \quad a_{i,j} = u_i v_j$$

Example: Outer product of two 4element column vectors $uv^{T} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} & v_{4} \end{bmatrix}$ $= \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} & u_{1}v_{4} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} & u_{2}v_{4} \\ u_{3}v_{1} & u_{3}v_{2} & u_{3}v_{3} & u_{3}v_{4} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} & u_{4}v_{4} \end{bmatrix}$ The * operator performs the outer product if two vectors are compatible.

u = v = A =	(0:4 (4:- u*v')'; 1:0)';			
A =					
	0	0	0	0	0
	4	3	2	1	0
	8	6	4	2	0
	12	9	6	3	0
	16	12	8	4	0

NMM: A Review of Linear Algebra

page 16

NMM: A Review of Linear Algebra

page 17

Vector Norms (1)

Compare magnitude of scalars with the *absolute value*

 $|\alpha| > |\beta|$

Compare magnitude of vectors with norms

$\|x\| > \|y\|$

There are several ways to compute $||\boldsymbol{x}||.$ In other words the size of two vectors can be compared with different norms.

Vector Norms (2)

Consider two element vectors, which lie in a plane

;	b =	(2,4)]					
\Box]					
			a = (4,2)		<i>c</i> =	(2,1	-	a = (•	4,2
Ø	1]		-			

Use geometric lengths to represent the magnitudes of the vectors

$$\ell_a = \sqrt{4^2 + 2^2} = \sqrt{20}, \qquad \ell_b = \sqrt{2^2 + 4^2} = \sqrt{20}, \qquad \ell_c = \sqrt{2^2 + 1^2} = \sqrt{50}$$

We conclude that

or

$$\ell_a = \ell_b$$
 and $\ell_a > \ell_c$

$$||a|| = ||b||$$
 and $||a|| > ||c||$

NMM: A Review of Linear Algebra

page 18

The L_2 Norm

The notion of a geometric length for 2D or 3D vectors can be extended vectors with arbitrary numbers of elements.

The result is called the *Euclidian* or L_2 norm:

$$\|x\|_{2} = (x_{1}^{2} + x_{2}^{2} + \ldots + x_{n}^{2})^{1/2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1/2}$$

The L_2 norm can also be expressed in terms of the inner product

$$\|x\|_2 = \sqrt{x \cdot x} = \sqrt{x^T x}$$

For any integer p

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \ldots + |x_{n}|^{p})^{1/p}$$

p-Norms

The L_1 norm is sum of absolute values

$$||x||_1 = |x_1| + |x_2| + \ldots + |x_n| = \sum_{i=1}^n |x_i|$$

The L_{∞} norm or *max norm* is

$$||x||_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|) = \max_i(|x_i|)$$

Although p can be any positive number, $p=1,2,\infty$ are most commonly used.

NMM: A Review of Linear Algebra

page 21

Application of Norms (1)

Are two vectors (nearly) equal?

NMM: A Review of Linear Algebra

Floating point comparison of two scalars with absolute value:

 $\frac{\left|\alpha-\beta\right|}{\left|\alpha\right|}<\delta$

where δ is a small tolerance.

Comparison of two vectors with norms:

$$\frac{\|y-z\|}{\|z\|} < \delta$$

Application of Norms (2)

Notice that

is not equivalent to

$$\frac{\|y\|-\|z\|}{\|z\|} < \delta.$$

 $\frac{\|y-z\|}{\|z\|} < \delta$

This comparison is important in convergence tests for sequences of vectors. See Example 7.3 in the textbook.

NMM: A Review of Linear Algebra

page 20

Application of Norms (3)

Creating a Unit Vector

Given $u = [u_1, u_2, \dots, u_m]^T$, the unit vector in the direction of u is

 $\hat{u} = \frac{u}{\|u\|_2}$

Proof:

$$\|\hat{u}\|_2 = \left\|\frac{u}{\|u\|_2}\right\|_2 = \frac{1}{\|u\|_2}\|u\|_2 = 1$$

The following are *not* unit vectors

$$\frac{u}{\|u\|_1} \qquad \frac{u}{\|u\|_\infty}$$

NMM: A Review of Linear Algebra

page 24

Orthonormal Vectors

Orthonormal vectors are unit vectors that are orthogonal.

A **unit** vector has an L_2 norm of one.

The unit vector in the direction of u is

$$\hat{u} = \frac{u}{\|u\|_2}$$

Since

$$\|u\|_2 = \sqrt{u \cdot u}$$

it follows that $u \cdot u = 1$ if u is a unit vector.

Orthogonal Vectors

From geometric interpretation of the inner product

$$u \cdot v = \|u\|_2 \|v\|_2 \cos \theta$$
$$\cos \theta = \frac{u \cdot v}{\|u\|_2 \|v\|_2} = \frac{u^T v}{\|u\|_2 \|v\|_2}$$

Two vectors are orthogonal when $\theta = \pi/2$ or $u \cdot v = 0$.

In other words

$$u^T v = 0$$

if and only if u and v are orthogonal.

NMM: A Review of Linear Algebra

page 25

Matrices

- Columns and Rows of a Matrix are Vectors
- Addition and Subtraction
- Multiplication by a scalar
- Transpose
- Linear Combinations of Vectors
- Matrix-Vector Product
- Matrix-Matrix Product
- Matrix Norms

Matrices Consist of Row and Column Vectors

Notation

The matrix A with m rows and n columns looks like:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & & \cdots & a_{mn} \end{bmatrix}$$

 $a_{ij} =$ element in row *i*, and column *j*

In Matlab we can define a matrix with

where semicolons separate lists of row elements.

The $a_{2,3}$ element of the MATLAB matrix A is A(2,3).

NMM: A Review of Linear Algebra

page 28

NMM: A Review of Linear Algebra

page 29

Preview of the Row and Column View

Matrix Operations

- Addition and subtraction
- Multiplication by a Scalar
- Matrix Transpose
- Matrix-Vector Multiplication
- Vector-Matrix Multiplication
- Matrix-Matrix Multiplication

Matrix Operations

Addition and subtraction

C = A + B

or

$$c_{i,j} = a_{i,j} + b_{i,j}$$
 $i = 1, \dots, m; j = 1, \dots, n$

Multiplication by a Scalar

or

$$b_{i,j} = \sigma a_{i,j}$$
 $i = 1, \ldots, m; j = 1, \ldots, n$

 $B = \sigma A$

Note: Commas in subscripts are necessary when the subscripts are assigned numerical values. For example, $a_{2,3}$ is the row 2, column 3 element of matrix A, whereas a_{23} is the 23rd element of vector a. When variables appear in indices, such as a_{ij} or $a_{i,j}$, the comma is optional

NMM: A Review of Linear Algebra

page 32

Matrix Transpose

 $B = A^T$

 $b_{i,j} = a_{j,i}$ $i = 1, \dots, m; j = 1, \dots, n$

 ${\sf In}\,\,{\rm Matlab}$

or

>>	۸	_	ΓO	Δ	۰.	Δ	Δ	۰.	1	2	3.	Δ	Δ	01	
· ·	п	_	LO	0	ο,	0	0	ο,	+	2	υ,	0	0	01	
A =	=														
0			0		0										
0			0		0										
1			2		3										
0			0		0										
>>	В	=	A'												
в =	=														
0			0		1			0							
0			0		2			0							
0			0		3			0							

NMM: A Review of Linear Algebra

page 33

Matrix-Vector Product

The Column View

 $\,\triangleright\,$ gives mathematical insight

- The Row View
 - \triangleright easy to do by hand
- The Vector View
 - ▷ A square matrice rotates and stretches a vector

Column View of Matrix–Vector Product (1)

Consider a linear combination of a set of column vectors $\{a_{(1)}, a_{(2)}, \ldots, a_{(n)}\}$. Each $a_{(j)}$ has m elements

Let x_i be a set (a vector) of scalar multipliers

$$x_1a_{(1)} + x_2a_{(2)} + \ldots + x_na_{(n)} = b$$

or

$$\sum_{j=1}^{n} a_{(j)} x_j = b$$

Expand the (hidden) row index

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

NMM: A Review of Linear Algebra

Column View of Matrix–Vector Product (2)

Form a matrix with the $a_{(j)}$ as columns

 $\begin{bmatrix} a_{(1)} & a_{(2)} & \cdots & a_{(n)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b \\ \end{bmatrix}$

Or, writing out the elements

NMM: A Review of Linear Algebra

page 36

Column View of Matrix–Vector Product (4)

The matrix-vector product b = Axproduces a vector b from a linear combination of the columns in A.

$$b = Ax \iff b_i = \sum_{j=1}^n a_{ij} x_j$$

where \boldsymbol{x} and \boldsymbol{b} are column vectors

Column View of Matrix–Vector Product (3)

Thus, the matrix-vector product is

Save space with matrix notation

Ax = b

NMM: A Review of Linear Algebra

page 37

Column View of Matrix–Vector Product (5)

Algorithm 7.1

initialize: b = zeros(m, 1)for $j = 1, \dots, n$ for $i = 1, \dots, m$ b(i) = A(i, j)x(j) + b(i)end end

Compatibility Requirement

Inner dimensions must agree

$$\begin{array}{cccc} A & x & = & b \\ [m \times n] & [n \times 1] & = & [m \times 1] \end{array}$$

Row View of Matrix–Vector Product (1)

Consider the following matrix-vector product written out as a linear combination of matrix columns

$$\begin{bmatrix} 5 & 0 & 0 & -1 \\ -3 & 4 & -7 & 1 \\ 1 & 2 & 3 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$
$$= 4 \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ -7 \\ 3 \end{bmatrix} - 1 \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix}$$

This is the column view.

NMM: A Review of Linear Algebra

page 40

NMM: A Review of Linear Algebra

page 41

Row View of Matrix–Vector Product (2)

Now, group the multiplication and addition operations by row:

$$4 \begin{bmatrix} 5\\-3\\1 \end{bmatrix} + 2 \begin{bmatrix} 0\\4\\2 \end{bmatrix} - 3 \begin{bmatrix} 0\\-7\\3 \end{bmatrix} - 1 \begin{bmatrix} -1\\1\\6 \end{bmatrix}$$
$$= \begin{bmatrix} (5)(4) + (0)(2) + (0)(-3) + (-1)(-1)\\(-3)(4) + (4)(2) + (-7)(-3) + (1)(-1)\\(1)(4) + (2)(2) + (3)(-3) + (6)(-1) \end{bmatrix} = \begin{bmatrix} 21\\16\\-7 \end{bmatrix}$$

Final result is identical to that obtained with the column view.

Row View of Matrix–Vector Product (3)

Product of a 3×4 matrix, A, with a 4×1 vector, x, looks like

$$\begin{bmatrix} a'_{(1)} \\ \vdots \\ a'_{(2)} \\ \vdots \\ a'_{(3)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} a'_{(1)} \cdot x \\ a'_{(2)} \cdot x \\ a'_{(3)} \cdot x \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

where $a_{\left(1\right)}^{\prime},\,a_{\left(2\right)}^{\prime},$ and $a_{\left(3\right)}^{\prime},$ are the row vectors constituting the A matrix.

The matrix-vector product b = Axproduces elements in b by forming inner products of the rows of A with x.

Row View of Matrix–Vector Product (4)

Vector View of Matrix-Vector Product

If A is square, the product Ax has the effect of stretching and rotating x. Pure stretching of the column vector

[2	0	0	[1]		[2]
0	2	0	2	=	4
0	0	2	[3]		6

Pure rotation of the column vector

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

NMM: A Review of Linear Algebra

page 45

Vector–Matrix Product

Matrix-vector product

NMM: A Review of Linear Algebra

Vector–Matrix product

Vector–Matrix Product

Compatibility Requirement: Inner dimensions must agree

 $\begin{array}{rrrr} u & A & = & v \\ [1 \times m] & [m \times n] & = & [1 \times n] \end{array}$

page 44

Matrix-Matrix Product

Column View of Matrix-Matrix Product

Computations can be organized in six different ways We'll focus on just two

- Column View extension of column view of matrix-vector product
- Row View inner product algorithm, extension of column view of matrix-vector product

The product AB produces a matrix C. The columns of C are linear combinations of the columns of A.

 $AB = C \quad \iff \quad c_{(j)} = Ab_{(j)}$

 $c_{(j)}$ and $b_{(j)}$ are column vectors.

The column view of the matrix–matrix product AB = C is helpful because it shows the relationship between the columns of A and the columns of C.

NMM: A Review of Linear Algebra

page 49

NMM: A Review of Linear Algebra

Inner Product (Row) View of Matrix-Matrix Product

The product AB produces a matrix C. The c_{ij} element is the *inner product* of row i of A and column j of B.

$$AB = C \quad \iff \quad c_{ij} = a'_{(i)}b_{(j)}$$

 $a'_{(i)}$ is a row vector, $b_{(j)}$ is a column vector.

The inner product view of the matrix-matrix product is easier to use for hand calculations.

NMM: A Review of Linear Algebra

page 48

Matrix–Matrix Product Summary (1)

The Matrix-vector product looks like:

The vector-Matrix product looks like:

Matrix–Matrix Product Summary (2)

The Matrix-Matrix product looks like:

Matrix-Matrix Product Summary (3)

Compatibility Requirement

 $\begin{array}{rcl} A & B & = & C \\ [m \times r] & [r \times n] & = & [m \times n] \end{array}$

 $AB \neq BA$

Inner dimensions must agree

Also, in general

NMM: A Review of Linear Algebra

page 52

NMM: A Review of Linear Algebra

page 53

Matrix Norms

The *Frobenius norm* treats a matrix like a vector: just add up the sum of squares of the matrix elements.

$$||A||_F = \left[\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right]^{1/2}$$

More useful norms account for the affect that the matrix has on a vector.

 $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$

$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2$$
 L_2 or spectral norm

$$\|A\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^n |a_{ij}| \qquad \text{row sum norm}$$

Mathematical Properties of Vectors and Matrices

- Linear Independence
- Vector Spaces
- Subspaces associated with matrices
- Matrix Rank
- Matrix Determinant

Linear Independence (1)

Two vectors lying along the same line are not independent

$$u = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad \text{and} \quad v = -2u = \begin{bmatrix} -2\\-2\\-2\\-2 \end{bmatrix}$$

Any two independent vectors, for example,

$$v = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix} \qquad \text{and} \qquad w = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

define a plane. Any other vector in this plane of v and w can be represented by

$$x = \alpha v + \beta w$$

x is **linearly dependent** on v and w because it can be formed by a linear combination of v and w.

NMM: A Review of Linear Algebra

page 56

Linear Independence (2)

A set of vectors is linearly independent if it is impossible to use a linear combination of vectors in the set to create another vector in the set.

Linear independence is easy to see for vectors that are orthogonal, for example,

[4]		[0]		07
0		-3		0
0	,	0	,	1
0				0

are linearly independent.

NMM: A Review of Linear Algebra

page 57

Linear Independence (3)

Consider two linearly independent vectors, u and v.

If a third vector, w, cannot be expressed as a linear combination of u and v, then the set $\{u, v, w\}$ is linearly independent.

In other words, if $\{u, v, w\}$ is linearly independent then

$$\alpha u + \beta v = \delta w$$

can be true only if $\alpha = \beta = \delta = 0$.

More generally, if the only solution to

$$\alpha_1 v_{(1)} + \alpha_2 v_{(2)} + \dots + \alpha_n v_{(n)} = 0 \tag{1}$$

is $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$, then the set $\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\}$ is **linearly independent**. Conversely, if equation (1) is satisfied by at least one nonzero α_i , then the set of vectors is **linearly dependent**. Linear Independence (4)

Let the set of vectors $\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\}$ be organized as the columns of a matrix. Then the condition of linear independence is

$$\begin{bmatrix} v_{(1)} & v_{(2)} & \cdots & v_{(n)} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

(2)

The columns of the $m \times n$ matrix, A, are linearly independent if and only if $x = (0, 0, \dots, 0)^T$ is the only n element column vector that satisfies Ax = 0.

Vector Spaces

- Spaces and Subspaces
- Span of a Subspace
- Basis of a Subspace
- Subspaces associated with Matrices

Spaces and Subspaces

Group vectors according to number of elements they have. Vectors from these different groups cannot be mixed.

- $\label{eq:relation} \mathbf{R}^1 \quad = \quad \mbox{Space of all vectors with one element. These vectors define the points along a line.}$
- ${\bf R}^2 ~=~ {\rm Space}$ of all vectors with two elements. These vectors define the points in a plane.
- \mathbf{R}^n = Space of all vectors with n elements. These vectors define the points in an n-dimensional space (hyperplane).

NMM: A Review of Linear Algebra

page 60

NMM: A Review of Linear Algebra

page 61

Subspaces

$$u = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \quad v = \begin{bmatrix} -2\\1\\3 \end{bmatrix}, \quad w = \begin{bmatrix} 3\\1\\-3 \end{bmatrix}$$

lie in the same plane. The vectors have three elements each, so they belong to \mathbf{R}^3 , but they **span** a **subspace** of \mathbf{R}^3 .

NMM: A Review of Linear Algebra

page 62

NMM: A Review of Linear Algebra

Span of a Subspace

If w can be created by the linear combination

 $\beta_1 v_{(1)} + \beta_2 v_{(2)} + \dots + \beta_n v_{(n)} = w$

where β_i are scalars, then w is said to be in the subspace that is **spanned** by $\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\}.$

If the v_i have m elements, then the subspace spanned by the $v_{(i)}$ is a subspace of \mathbf{R}^m . If $n\geq m$ it is possible, though not guaranteed, that the $v_{(i)}$ could span \mathbf{R}^m .

Basis and Dimension of a Subspace

- A basis for a subspace is a set of linearly independent vectors that span the subspace.
- Since a basis set must be linearly independent, it also must have the smallest number of vectors necessary to span the space. (Each vector makes a unique contribution to spanning some other direction in the space.)
- ➤ The number of vectors in a basis set is equal to the **dimension** of the **subspace** that these vectors span.
- Mutually orthogonal vectors (an orthogonal set) form convenient basis sets, but basis sets need not be orthogonal.

Subspaces Associated with Matrices

The matrix-vector product

y = Ax

creates \boldsymbol{y} from a linear combination of the columns of \boldsymbol{A}

The column vectors of A form a basis for the **column space** or **range** of A.

NMM: A Review of Linear Algebra

page 64

NMM: A Review of Linear Algebra

page 65

Matrix Rank

The **rank** of a matrix, A, is the number of linearly independent columns in A.

 $\operatorname{rank}(A)$ is the dimension of the column space of A.

Numerical computation of rank(A) is tricky due to roundoff.

Consider

$$u = \begin{bmatrix} 1\\0\\0.00001 \end{bmatrix} \qquad v = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad w = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

_ _

_ _

Do these vectors span \mathbf{R}^3 ?

What if $u_3 = \varepsilon_m$?

Matrix Rank (2)

We can use ${\rm MATLAB}{}'s$ built-in ${\bf rank}$ function for exploratory calculations on (relatively) small matrices

Example:

Matrix Rank (2)

Repeat numerical calculation of rank with smaller diagonal entry

Even though A(3,3) is not identically zero, it is small enough that the matrix is numerically rank-deficient

- Only square matrices have determinants.
- The determinant of a (square) matrix is a scalar.
- If det(A) = 0, then A is singular, and A^{-1} does not exist.
- det(I) = 1 for any identity matrix I.
- $\det(AB) = \det(A) \det(B)$.
- $\det(A^T) = \det(A)$.
- Cramer's rule uses (many!) determinants to express the the solution to Ax = b.

Matrix Determinant (1)

The matrix determinant has a number of useful properties:

NMM: A Review of Linear Algebra

page 68

NMM: A Review of Linear Algebra

page 69

Matrix Determinant (2)

- $\det(A)$ is not useful for numerical computation
 - \triangleright Computation of det(A) is expensive
 - $\triangleright~\operatorname{Computation}$ of $\det(A)$ can cause overflow
- For diagonal and triangular matrices, $\det(A)$ is the product of diagonal elements
- The built in det computes the determinant of a matrix by first factoring it into A=LU, and then computing

$$det(A) = det(L) det(U)$$
$$= (\ell_{11}\ell_{22}\dots\ell_{nn}) (u_{11}u_{22}\dots u_{nn})$$

Special Matrices

- Diagonal Matrices
- Tridiagonal Matrices
- The Identity Matrix
- The Matrix Inverse
- Symmetric Matrices
- Positive Definite Matrices
- Orthogonal Matrices
- Permutation Matrices

Diagonal Matrices (1)

Diagonal matrices have non-zero elements only on the main diagonal.

$$C = \operatorname{diag} (c_1, c_2, \dots, c_n) = \begin{bmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & c_n \end{bmatrix}$$

The **diag** function is used to either create a diagonal matrix from a vector, or and extract the diagonal entries of a matrix.

```
>> x = [1 -5 2 6];
>> A = diag(x)
A =
   1 0
             0
                 0
    0 -5
             0
                 0
    0
       0
                 0
             2
    0
        0
             0
                 6
```

NMM: A Review of Linear Algebra

page 72

Diagonal Matrices (2)

The **diag** function can also be used to create a matrix with elements only on a specified *super*-diagonal or *sub*-diagonal. Doing so requires using the two-parameter form of **diag**:

>>	diag([1	2	3],1)	
ans	5 =			
	0	1	0	0
	0	0	2	0
	0	0	0	3
	0	0	0	0
>>	diag([4	5	6],-1)	
>> ans	diag([4 s =	5	6],-1)	
>> ans	diag([4 s = 0	5 0	6],-1) 0	0
>> an:	diag([4 s = 0 4	5 0 0	6],-1) 0 0	0
>> an:	diag([4 s = 0 4 0	5 0 5	6],-1) 0 0 0	0 0 0
>> an:	diag([4 s = 0 4 0 0	5 0 5 0	6],-1) 0 0 0 6	0 0 0

NMM: A Review of Linear Algebra

page 73

Identity Matrices (1)

An identity matrix is a square matrix with ones on the main diagonal.

Example: The 3×3 identity matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

An identity matrix is special because

$$AI = A$$
 and $IA = A$

for any compatible matrix A. This is like multiplying by one in scalar arithmetic.

Identity Matrices (2)

Identity matrices can be created with the built-in eye function.

>> I = eye(4) I = 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

Sometimes ${\cal I}_n$ is used to designate an identity matrix with n rows and n columns. For example,

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

NMM: A Review of Linear Algebra

page 74

Identity Matrices (3)

A non-square, identity-like matrix can be created with the two-parameter form of the eye function:

```
>> J = eye(3,5)
J =
   1
       0
          0
              0
                  0
   0
     1 0 0 0
   0 0 1 0
                 0
>> K = eye(4,2)
K =
   1
       0
   0
      1
   0
      0
   0
      0
```

J and K are not identity matrices!

NMM: A Review of Linear Algebra

page 76

Matrix Inverse (1)

Let A be a square (i.e. $n\times n)$ with real elements. The inverse of A is designated $A^{-1},$ and has the property that

$$A^{-1}A = I \qquad \text{and} \qquad AA^{-1} = I$$

The formal solution to Ax = b is $x = A^{-1}b$.

$$Ax = b$$
$$A^{-1}Ax = A^{-1}b$$
$$Ix = A^{-1}b$$
$$x = A^{-1}b$$

NMM: A Review of Linear Algebra

page 77

Matrix Inverse (2)

Although the formal solution to Ax = b is $x = A^{-1}b$, it is considered *bad practice* to evaluate x this way. The recommended procedure for solving Ax = b is Gaussian elimination (or one of its variants) with backward substitution. This procedure is described in detail in Chapter 8.

Solving Ax = b by computing $x = A^{-1}b$ requires more work (more floating point operations) than Gaussian elimination. Even if the extra work does not cause a problem with execution speed, the extra computations increase the roundoff errors in the result. If A is small (say 50×50 or less) and well conditioned, the penalty for computing $A^{-1}b$ will probably not be significant. Nonetheless, Gaussian elimination is preferred.

Functions to Create Special Matrices

Matrix	Matlab function
Diagonal	diag
Tridiagonal	tridiags (NMM Toolbox)
Identity	eye
Inverse	inv

Symmetric Matrices

If $A = A^T$, then A is called a *symmetric* matrix.

Example:

$$\begin{bmatrix} 5 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Note: $B = A^T A$ is symmetric for any (real) matrix A.

Example:

Tridiagonal Matrices

The diagonal elements need not be equal. The general form of a tridiagonal matrix is

$$A = \begin{bmatrix} a_1 & b_1 & & \\ c_2 & a_2 & b_2 & & \\ & c_3 & a_3 & b_3 & & \\ & & \ddots & \ddots & \ddots & \\ & & & & c_{n-1} & a_{n-1} & b_{n-1} \\ & & & & & c_n & a_n \end{bmatrix}$$

NMM: A Review of Linear Algebra

page 80

NMM: A Review of Linear Algebra

page 81

To Do

Add slides on:

- Tridiagonal Matrices
- Positive Definite Matrices
- Orthogonal Matrices
- Permutation Matrices