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Primary Topics

• Vectors

• Matrices

• Mathematical Properties of Vectors and Matrices

• Special Matrices
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Notation

Variable

type Typographical Convention Example

scalar lower case Greek σ, α, β

vector lower case Roman u, v, x, y, b

matrix upper case Roman A, B, C
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Defining Vectors in Matlab

• Assign any expression that evaluates to a vector

>> v = [1 3 5 7]
>> w = [2; 4; 6; 8]
>> x = linspace(0,10,5);
>> y = 0:30:180
>> z = sin(y*pi/180);

• Distinquish between row and column vectors

>> r = [1 2 3]; % row vector
>> s = [1 2 3]’; % column vector
>> r - s
??? Error using ==> -
Matrix dimensions must agree.

Although r and s have the same elements, they are not the same vector. Furthermore,

operations involving r and s are bound by the rules of linear algebra.
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Vector Operations

• Addition and Subtraction

• Multiplication by a scalar

• Transpose

• Linear Combinations of Vectors

• Inner Product

• Outer Product

• Vector Norms
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Vector Addition and Subtraction

Addition and subtraction are element-by-element operations

c = a + b ⇐⇒ ci = ai + bi i = 1, . . . , n

d = a − b ⇐⇒ di = ai − bi i = 1, . . . , n

Example:

a =

2
41

2

3

3
5 b =

2
43

2

1

3
5

a + b =

2
44

4

4

3
5 a − b =

2
4−2

0

2

3
5
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Multiplication by a Scalar

Multiplication by a scalar involves multiplying each element in the vector by the scalar:

b = σa ⇐⇒ bi = σai i = 1, . . . , n

Example:

a =

2
44

6

8

3
5 b =

a

2
=

2
42

3

4

3
5
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Vector Transpose

The transpose of a row vector is a column vector:

u =
ˆ
1, 2, 3

˜
then u

T
=

2
41

2

3

3
5

Likewise if v is the column vector

v =

2
44

5

6

3
5 then v

T
=
ˆ
4, 5, 6

˜
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Linear Combinations (1)

Combine scalar multiplication with addition

α

2
664

u1

u2
...

um

3
775+ β

2
664

v1

v2
...

vm

3
775 =

2
664

αu1 + βv1

αu2 + βv2
...

αum + βvm

3
775 =

2
664

w1

w2
...

wm

3
775

Example:

r =

2
4−2

1

3

3
5 s =

2
41

0

3

3
5

t = 2r + 3s =

2
4−4

2

6

3
5+

2
43

0

9

3
5 =

2
4−1

2

15

3
5
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Linear Combinations (2)

Any one vector can be created from an infinite combination of other “suitable” vectors.

Example:

w =

»
4

2

–
= 4

»
1

0

–
+ 2

»
0

1

–

w = 6

»
1

0

–
− 2

»
1

−1

–

w =

»
2

4

–
− 2

»−1

1

–

w = 2

»
4

2

–
− 4

»
1

0

–
− 2

»
0

1

–
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Linear Combinations (3)

Graphical interpretation:

• Vector tails can be moved to

convenient locations

• Magnitude and direction of vectors is

preserved

[1,0]

[0,1]

[2,4]
[1,-1]

[4,2]
[-1,1]

[1,1]

0 1 2 3 4 5 6

0

1

2

3

4
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Vector Inner Product (1)

In physics, analytical geometry, and engineering, the dot product has a geometric

interpretation

σ = x · y ⇐⇒ σ =

nX
i=1

xiyi

x · y = ‖x‖2 ‖y‖2 cos θ
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Vector Inner Product (2)

The rules of linear algebra impose compatibility requirements on the inner product.

The inner product of x and y requires that x be a row vector y be a column vector

ˆ
x1 x2 x3 x4

˜
2
664

y1

y2

y3

y4

3
775 = x1y1 + x2y2 + x3y3 + x4y4

NMM: A Review of Linear Algebra page 13

Vector Inner Product (3)

For two n-element column vectors, u and v, the inner product is

σ = u
T
v ⇐⇒ σ =

nX
i=1

uivi

The inner product is commutative so that

(for two column vectors)

u
T
v = v

T
u
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Computing the Inner Product in Matlab

The * operator performs the inner product if two vectors are compatible.

>> u = (0:3)’; % u and v are
>> v = (3:-1:0)’; % column vectors
>> s = u*v
??? Error using ==> *
Inner matrix dimensions must agree.

>> s = u’*v
s =

4

>> t = v’*u
t =

4
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Vector Outer Product

The inner product results in a scalar.

The outer product creates a rank-one

matrix:

A = uv
T ⇐⇒ ai,j = uivj

Example: Outer product of two 4-

element column vectors

uv
T

=

2
664

u1

u2

u3

u4

3
775 ˆv1 v2 v3 v4

˜

=

2
664

u1v1 u1v2 u1v3 u1v4

u2v1 u2v2 u2v3 u2v4

u3v1 u3v2 u3v3 u3v4

u4v1 u4v2 u4v3 u4v4

3
775
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Computing the Outer Product in Matlab

The * operator performs the outer product if two vectors are compatible.

u = (0:4)’;
v = (4:-1:0)’;
A = u*v’
A =

0 0 0 0 0
4 3 2 1 0
8 6 4 2 0

12 9 6 3 0
16 12 8 4 0
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Vector Norms (1)

Compare magnitude of scalars with the absolute value

˛̨
α
˛̨

>
˛̨
β
˛̨

Compare magnitude of vectors with norms

‖x‖ > ‖y‖

There are several ways to compute ||x||. In other words the size of two vectors can be

compared with different norms.
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Vector Norms (2)

Consider two element vectors, which lie in a plane

a = (4,2)

b = (2,4)

a = (4,2)c = (2,1)

Use geometric lengths to represent the magnitudes of the vectors

�a =
p

42 + 22 =
√

20, �b =
p

22 + 42 =
√

20, �c =
p

22 + 12 =
√

5

We conclude that

�a = �b and �a > �c

or

‖a‖ = ‖b‖ and ‖a‖ > ‖c‖
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The L2 Norm

The notion of a geometric length for 2D or 3D vectors can be extended vectors with

arbitrary numbers of elements.

The result is called the Euclidian or L2 norm:

‖x‖2 =
`
x

2
1 + x

2
2 + . . . + x

2
n

´1/2
=

 
nX

i=1

x
2
i

!1/2

The L2 norm can also be expressed in terms of the inner product

‖x‖2 =
√

x · x =
√

xTx
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p-Norms

For any integer p

‖x‖p =
`|x1|p + |x2|p + . . . + |xn|p

´1/p

The L1 norm is sum of absolute values

‖x‖1 = |x1| + |x2| + . . . + |xn| =

nX
i=1

|xi|

The L∞ norm or max norm is

‖x‖∞ = max (|x1|, |x2|, . . . , |xn|) = max
i

(|xi|)

Although p can be any positive number, p = 1, 2,∞ are most commonly used.
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Application of Norms (1)

Are two vectors (nearly) equal?

Floating point comparison of two scalars with absolute value:˛̨
α − β

˛̨
˛̨
α
˛̨ < δ

where δ is a small tolerance.

Comparison of two vectors with norms:

‖y − z‖
‖z‖ < δ
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Application of Norms (2)

Notice that ‖y − z‖
‖z‖ < δ

is not equivalent to
‖y‖ − ‖z‖

‖z‖ < δ.

This comparison is important in convergence tests for sequences of vectors. See

Example 7.3 in the textbook.
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Application of Norms (3)

Creating a Unit Vector

Given u = [u1, u2, . . . , um]T , the unit vector in the direction of u is

û =
u

‖u‖2

Proof:

‖û‖2 =

‚‚‚‚ u

‖u‖2

‚‚‚‚
2

=
1

‖u‖2

‖u‖2 = 1

The following are not unit vectors

u

‖u‖1

u

‖u‖∞
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Orthogonal Vectors

From geometric interpretation of the inner product

u · v = ‖u‖2 ‖v‖2 cos θ

cos θ =
u · v

‖u‖2 ‖v‖2

=
uTv

‖u‖2 ‖v‖2

Two vectors are orthogonal when θ = π/2 or u · v = 0.

In other words

u
T
v = 0

if and only if u and v are orthogonal.
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Orthonormal Vectors

Orthonormal vectors are unit vectors that are orthogonal.

A unit vector has an L2 norm of one.

The unit vector in the direction of u is

û =
u

‖u‖2

Since

‖u‖2 =
√

u · u

it follows that u · u = 1 if u is a unit vector.
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Matrices

• Columns and Rows of a Matrix are Vectors

• Addition and Subtraction

• Multiplication by a scalar

• Transpose

• Linear Combinations of Vectors

• Matrix–Vector Product

• Matrix–Matrix Product

• Matrix Norms
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Notation

The matrix A with m rows and n columns looks like:

A =

2
664

a11 a12 · · · a1n

a21 a22 a2n
... ...

am1 · · · amn

3
775

aij = element in row i, and column j

In Matlab we can define a matrix with

>> A = [ ... ; ... ; ... ]

where semicolons separate lists of row elements.

The a2,3 element of the Matlab matrix A is A(2,3).
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Matrices Consist of Row and Column Vectors

As a collection of column vectors

A =

2
666664a(1)

˛̨̨
˛̨̨
˛̨̨
˛̨
a(2)

˛̨̨
˛̨̨
˛̨̨
˛̨
· · ·

˛̨̨
˛̨̨
˛̨̨
˛̨
a(n)

3
777775

As a collection of row vectors

A =

2
666666666664

a′
(1)

a′
(2)

...

a′
(m)

3
777777777775

A prime is used to designate a row vector

on this and the following pages.
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Preview of the Row and Column View

Matrix and
vector operations

←→ Row and column
operations

←→ Element-by-element
operations
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Matrix Operations

• Addition and subtraction

• Multiplication by a Scalar

• Matrix Transpose

• Matrix–Vector Multiplication

• Vector–Matrix Multiplication

• Matrix–Matrix Multiplication
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Matrix Operations

Addition and subtraction
C = A + B

or

ci,j = ai,j + bi,j i = 1, . . . , m; j = 1, . . . , n

Multiplication by a Scalar
B = σA

or

bi,j = σai,j i = 1, . . . , m; j = 1, . . . , n

Note: Commas in subscripts are necessary when the subscripts are assigned numerical

values. For example, a2,3 is the row 2, column 3 element of matrix A, whereas

a23 is the 23rd element of vector a. When variables appear in indices, such as

aij or ai,j, the comma is optional
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Matrix Transpose

B = A
T

or

bi,j = aj,i i = 1, . . . , m; j = 1, . . . , n

In Matlab

>> A = [0 0 0; 0 0 0; 1 2 3; 0 0 0]
A =
0 0 0
0 0 0
1 2 3
0 0 0

>> B = A’
B =
0 0 1 0
0 0 2 0
0 0 3 0
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Matrix–Vector Product

• The Column View

	 gives mathematical insight

• The Row View

	 easy to do by hand

• The Vector View

	 A square matrice rotates and stretches a vector
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Column View of Matrix–Vector Product (1)

Consider a linear combination of a set of column vectors {a(1), a(2), . . . , a(n)}.

Each a(j) has m elements

Let xi be a set (a vector) of scalar multipliers

x1a(1) + x2a(2) + . . . + xna(n) = b

or
nX

j=1

a(j)xj = b

Expand the (hidden) row index

x1

2
664

a11

a21
...

am1

3
775+ x2

2
664

a12

a22
...

am2

3
775+ · · · + xn

2
664

a1n

a2n
...

amn

3
775 =

2
664

b1

b2
...

bm

3
775
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Column View of Matrix–Vector Product (2)

Form a matrix with the a(j) as columns2
666664a(1)

˛̨̨
˛̨̨
˛̨̨
˛̨
a(2)

˛̨̨
˛̨̨
˛̨̨
˛̨
· · ·

˛̨̨
˛̨̨
˛̨̨
˛̨
a(n)

3
777775

2
664

x1

x2
...

xn

3
775 =

2
666664b

3
777775

Or, writing out the elements2
66666664

a11 a12 · · · a1n

a21 a22 · · · a2n

... ... ...

am1 am2 · · · amn

3
77777775

2
664

x1

x2
...

xn

3
775 =

2
66666664

b1

b2

...

bm

3
77777775
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Column View of Matrix–Vector Product (3)

Thus, the matrix-vector product is2
66666664

a11 a12 · · · a1n

a21 a22 · · · a2n

... ... ...

am1 am2 · · · amn

3
77777775

2
664

x1

x2
...

xn

3
775 =

2
66666664

b1

b2

...

bm

3
77777775

Save space with matrix notation

Ax = b
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Column View of Matrix–Vector Product (4)

The matrix–vector product b = Ax

produces a vector b from a linear
combination of the columns in A.

b = Ax ⇐⇒ bi =

nX
j=1

aijxj

where x and b are column vectors
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Column View of Matrix–Vector Product (5)

Algorithm 7.1

initialize: b = zeros(m, 1)

for j = 1, . . . , n

for i = 1, . . . , m

b(i) = A(i, j)x(j) + b(i)

end

end
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Compatibility Requirement

Inner dimensions must agree

A x = b

[m × n] [n × 1] = [m × 1]
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Row View of Matrix–Vector Product (1)

Consider the following matrix–vector product written out as a linear combination of

matrix columns 2
4 5 0 0 −1

−3 4 −7 1

1 2 3 6

3
5
2
664

4

2

−3

−1

3
775

= 4

2
4 5

−3

1

3
5+ 2

2
4 0

4

2

3
5− 3

2
4 0

−7

3

3
5− 1

2
4−1

1

6

3
5

This is the column view.

NMM: A Review of Linear Algebra page 41

Row View of Matrix–Vector Product (2)

Now, group the multiplication and addition operations by row:

4

2
4 5

−3

1

3
5+ 2

2
4 0

4

2

3
5− 3

2
4 0

−7

3

3
5− 1

2
4−1

1

6

3
5

=

2
4 (5)(4) + (0)(2) + (0)(−3) + (−1)(−1)

(−3)(4) + (4)(2) + (−7)(−3) + (1)(−1)

(1)(4) + (2)(2) + (3)(−3) + (6)(−1)

3
5 =

2
4 21

16

−7

3
5

Final result is identical to that obtained with the column view.
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Row View of Matrix–Vector Product (3)

Product of a 3 × 4 matrix, A, with a 4 × 1 vector, x, looks like2
6666664

a′
(1)

a′
(2)

a′
(3)

3
7777775

2
664

x1

x2

x3

x4

3
775 =

2
64

a′
(1) · x

a′
(2) · x

a′
(3) · x

3
75 =

2
4b1

b2

b3

3
5

where a′
(1), a′

(2), and a′
(3), are the row vectors constituting the A matrix.

The matrix–vector product b = Ax

produces elements in b by forming
inner products of the rows of A with x.
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Row View of Matrix–Vector Product (4)

i

=
i

x yia'(i )
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Vector View of Matrix–Vector Product

If A is square, the product Ax has the effect of stretching and rotating x.

Pure stretching of the column vector

2
42 0 0

0 2 0

0 0 2

3
5
2
41

2

3

3
5 =

2
42

4

6

3
5

Pure rotation of the column vector2
40 −1 0

1 0 0

0 0 1

3
5
2
41

0

0

3
5 =

2
40

1

0

3
5
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Vector–Matrix Product

Matrix–vector product

=

n   1m   n m   1

Vector–Matrix product

=

1    m m    n 1    n
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Vector–Matrix Product

Compatibility Requirement: Inner dimensions must agree

u A = v

[1 × m] [m × n] = [1 × n]
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Matrix–Matrix Product

Computations can be organized in six different ways We’ll focus on just two

• Column View — extension of column view of matrix–vector product

• Row View — inner product algorithm, extension of column view of matrix–vector

product
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Column View of Matrix–Matrix Product

The product AB produces a matrix C. The columns of C are linear combinations of the

columns of A.

AB = C ⇐⇒ c(j) = Ab(j)

c(j) and b(j) are column vectors.

ji
=

A b( j ) c( j )

j

r

The column view of the matrix–matrix product AB = C is helpful because it shows the

relationship between the columns of A and the columns of C.
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Inner Product (Row) View of Matrix–Matrix Product

The product AB produces a matrix C. The cij element is the inner product of row i of

A and column j of B.

AB = C ⇐⇒ cij = a
′
(i)b(j)

a′
(i) is a row vector, b(j) is a column vector.

j
i

=
cij

r

j
i

b( j ) cija'(i )

The inner product view of the matrix–matrix product is easier to use for hand calculations.
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Matrix–Matrix Product Summary (1)

The Matrix–vector product looks like:

2
664
• • •
• • •
• • •
• • •

3
775
2
4••
•

3
5 =

2
664
•
•
•
•

3
775

The vector–Matrix product looks like:

ˆ• • • •˜
2
664
• • •
• • •
• • •
• • •

3
775 =

ˆ• • •˜

NMM: A Review of Linear Algebra page 51



Matrix–Matrix Product Summary (2)

The Matrix–Matrix product looks like:

2
664
• • •
• • •
• • •
• • •

3
775
2
4• • • •
• • • •
• • • •

3
5 =

2
664
• • • •
• • • •
• • • •
• • • •

3
775
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Matrix–Matrix Product Summary (3)

Compatibility Requirement

A B = C

[m × r] [r × n] = [m × n]

Inner dimensions must agree

Also, in general

AB 	= BA
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Matrix Norms

The Frobenius norm treats a matrix like a vector: just add up the sum of squares of the

matrix elements.

‖A‖F =

» mX
i=1

nX
j=1

|aij|2
–1/2

More useful norms account for the affect that the matrix has on a vector.

‖A‖2 = max
‖x‖2=1

‖Ax‖2 L2 or spectral norm

‖A‖1 = max
1≤j≤n

mX
i=1

|aij| column sum norm

‖A‖∞ = max
1≤i≤m

nX
j=1

|aij| row sum norm
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Mathematical Properties of Vectors and Matrices

• Linear Independence

• Vector Spaces

• Subspaces associated with matrices

• Matrix Rank

• Matrix Determinant
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Linear Independence (1)

Two vectors lying along the same line are not independent

u =

2
41

1

1

3
5 and v = −2u =

2
4−2

−2

−2

3
5

Any two independent vectors, for example,

v =

2
4−2

−2

−2

3
5 and w =

2
40

0

1

3
5

define a plane. Any other vector in this plane of v and w can be represented by

x = αv + βw

x is linearly dependent on v and w because it can be formed by a linear combination of

v and w.
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Linear Independence (2)

A set of vectors is linearly independent if it is impossible to use a linear combination of

vectors in the set to create another vector in the set.

Linear independence is easy to see for vectors that are orthogonal, for example,

2
664

4

0

0

0

3
775 ,

2
664

0

−3

0

0

3
775 ,

2
664

0

0

1

0

3
775

are linearly independent.
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Linear Independence (3)

Consider two linearly independent vectors, u and v.

If a third vector, w, cannot be expressed as a linear combination of u and v, then the set

{u, v, w} is linearly independent.

In other words, if {u, v, w} is linearly independent then

αu + βv = δw

can be true only if α = β = δ = 0.

More generally, if the only solution to

α1v(1) + α2v(2) + · · · + αnv(n) = 0 (1)

is α1 = α2 = . . . = αn = 0, then the set {v(1), v(2), . . . , v(n)} is linearly
independent. Conversely, if equation (1) is satisfied by at least one nonzero αi, then the

set of vectors is linearly dependent.
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Linear Independence (4)

Let the set of vectors {v(1), v(2), . . . , v(n)} be organized as the columns of a matrix.

Then the condition of linear independence is2
666664v(1)

˛̨̨
˛̨̨
˛̨̨
˛̨
v(2)

˛̨̨
˛̨̨
˛̨̨
˛̨
· · ·

˛̨̨
˛̨̨
˛̨̨
˛̨
v(n)

3
777775

2
664

α1

α2
...

αn

3
775 =

2
664

0

0
...

0

3
775 (2)

The columns of the m × n matrix,
A, are linearly independent if and only
if x = (0, 0, . . . , 0)T is the only n

element column vector that satisfies
Ax = 0.
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Vector Spaces

• Spaces and Subspaces

• Span of a Subspace

• Basis of a Subspace

• Subspaces associated with Matrices
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Spaces and Subspaces

Group vectors according to number of elements they have. Vectors from these different

groups cannot be mixed.

R1 = Space of all vectors with one element. These

vectors define the points along a line.

R2 = Space of all vectors with two elements.

These vectors define the points in a plane.

Rn = Space of all vectors with n elements.

These vectors define the points in an n-

dimensional space (hyperplane).
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Subspaces

The three vectors

u =

2
4 1

2

0

3
5 , v =

2
4−2

1

3

3
5 , w =

2
4 3

1

−3

3
5 ,

lie in the same plane. The vectors have three

elements each, so they belong to R3, but

they span a subspace of R3.

-4
-2

0
2

4

-4

-2

0

2

4

-5

0

5

x axis

[-2,1,3] T

[1,2,0]T

[3,1,-3] T

y axis
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Span of a Subspace

If w can be created by the linear combination

β1v(1) + β2v(2) + · · · + βnv(n) = w

where βi are scalars, then w is said to be in the subspace that is spanned by

{v(1), v(2), . . . , v(n)}.

If the vi have m elements, then the subspace spanned by the v(i) is a subspace of Rm. If

n ≥ m it is possible, though not guaranteed, that the v(i) could span Rm.
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Basis and Dimension of a Subspace

➣ A basis for a subspace is a set of linearly independent vectors that span the

subspace.

➣ Since a basis set must be linearly independent, it also must have the smallest number

of vectors necessary to span the space. (Each vector makes a unique contribution to

spanning some other direction in the space.)

➣ The number of vectors in a basis set is equal to the dimension of the subspace that

these vectors span.

➣ Mutually orthogonal vectors (an orthogonal set) form convenient basis sets, but basis

sets need not be orthogonal.
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Subspaces Associated with Matrices

The matrix–vector product

y = Ax

creates y from a linear combination of the columns of A

The column vectors of A form a basis for the column space or range of A.
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Matrix Rank

The rank of a matrix, A, is the number of linearly independent columns in A.

rank(A) is the dimension of the column space of A.

Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =

2
4 1

0

0.00001

3
5 v =

2
40

1

0

3
5 w =

2
41

1

0

3
5

Do these vectors span R3?

What if u3 = εm?
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Matrix Rank (2)

We can use Matlab’s built-in rank function for exploratory calculations on (relatively)

small matrices

Example:

>> A = [1 0 0; 0 1 0; 0 0 1e-5] % A(3,3) is small
A =

1.0000 0 0
0 1.0000 0
0 0 0.0000

>> rank(A)
ans =

3
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Matrix Rank (2)

Repeat numerical calculation of rank with smaller diagonal entry

>> A(3,3) = eps/2 % A(3,3) is even smaller
A =

1.0000 0 0
0 1.0000 0
0 0 0.0000

>> rank(A)
ans =

2

Even though A(3,3) is not identically zero, it is small enough that the matrix is

numerically rank-deficient
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Matrix Determinant (1)

• Only square matrices have determinants.

• The determinant of a (square) matrix is a scalar.

• If det(A) = 0, then A is singular, and A−1 does not exist.

• det(I) = 1 for any identity matrix I.

• det(AB) = det(A) det(B).

• det(AT ) = det(A).

• Cramer’s rule uses (many!) determinants to express the the solution to Ax = b.

The matrix determinant has a number of useful properties:
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Matrix Determinant (2)

• det(A) is not useful for numerical computation

	 Computation of det(A) is expensive

	 Computation of det(A) can cause overflow

• For diagonal and triangular matrices, det(A) is the product of diagonal elements

• The built in det computes the determinant of a matrix by first factoring it into

A = LU , and then computing

det(A) = det(L) det(U)

=
`
�11�22 . . . �nn

´`
u11u22 . . . unn

´
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Special Matrices

• Diagonal Matrices

• Tridiagonal Matrices

• The Identity Matrix

• The Matrix Inverse

• Symmetric Matrices

• Positive Definite Matrices

• Orthogonal Matrices

• Permutation Matrices
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Diagonal Matrices (1)

Diagonal matrices have non-zero elements only on the main diagonal.

C = diag (c1, c2, . . . , cn) =

2
664

c1 0 · · · 0

0 c2 0
... . . . ...

0 0 · · · cn

3
775

The diag function is used to either create a diagonal matrix from a vector, or and extract

the diagonal entries of a matrix.

>> x = [1 -5 2 6];
>> A = diag(x)
A =

1 0 0 0
0 -5 0 0
0 0 2 0
0 0 0 6
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Diagonal Matrices (2)

The diag function can also be used to create a matrix with elements only on a specified

super -diagonal or sub-diagonal. Doing so requires using the two-parameter form of diag:

>> diag([1 2 3],1)
ans =

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

>> diag([4 5 6],-1)
ans =

0 0 0 0
4 0 0 0
0 5 0 0
0 0 6 0
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Identity Matrices (1)

An identity matrix is a square matrix with ones on the main diagonal.

Example: The 3 × 3 identity matrix

I =

2
41 0 0

0 1 0

0 0 1

3
5

An identity matrix is special because

AI = A and IA = A

for any compatible matrix A. This is like multiplying by one in scalar arithmetic.
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Identity Matrices (2)

Identity matrices can be created with the built-in eye function.

>> I = eye(4)
I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Sometimes In is used to designate an identity matrix with n rows and n columns. For

example,

I4 =

2
664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775
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Identity Matrices (3)

A non-square, identity-like matrix can be created with the two-parameter form of the eye
function:

>> J = eye(3,5)
J =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

>> K = eye(4,2)
K =

1 0
0 1
0 0
0 0

J and K are not identity matrices!

NMM: A Review of Linear Algebra page 76

Matrix Inverse (1)

Let A be a square (i.e. n × n) with real elements. The inverse of A is designated A−1,

and has the property that

A
−1

A = I and A A
−1

= I

The formal solution to Ax = b is x = A−1b.

Ax = b

A
−1

Ax = A
−1

b

Ix = A
−1

b

x = A
−1

b
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Matrix Inverse (2)

Although the formal solution to Ax = b is x = A−1b, it is considered bad practice to

evaluate x this way. The recommended procedure for solving Ax = b is Gaussian

elimination (or one of its variants) with backward substitution. This procedure is

described in detail in Chapter 8.

Solving Ax = b by computing x = A−1b requires more work (more floating point

operations) than Gaussian elimination. Even if the extra work does not cause a problem

with execution speed, the extra computations increase the roundoff errors in the result. If

A is small (say 50 × 50 or less) and well conditioned, the penalty for computing A−1b

will probably not be significant. Nonetheless, Gaussian elimination is preferred.
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Functions to Create Special Matrices

Matrix Matlab function

Diagonal diag

Tridiagonal tridiags (NMM Toolbox)

Identity eye

Inverse inv
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Symmetric Matrices

If A = AT , then A is called a symmetric matrix.

Example: 2
4 5 −2 −1

−2 6 −1

−1 −1 3

3
5

Note: B = ATA is symmetric for any (real) matrix A.
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Tridiagonal Matrices

Example: 2
664

2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

3
775 .

The diagonal elements need not be equal. The general form of a tridiagonal matrix is

A =

2
6666666664

a1 b1

c2 a2 b2

c3 a3 b3
. . . . . . . . .

cn−1 an−1 bn−1

cn an

3
7777777775
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To Do

Add slides on:

• Tridiagonal Matrices

• Positive Definite Matrices

• Orthogonal Matrices

• Permutation Matrices
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