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Overview

Topics covered in this chapter

• Preliminary considerations and bracketing.

• Fixed Point Iteration

• Bisection

• Newton’s Method

• The Secant Method

• Hybrid Methods: the built in fzero function

• Roots of Polynomials
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Example: Picnic Table Leg

Computing the dimensions of a picnic table leg involves a root-finding problem.
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Example: Picnic Table Leg

Dimensions of a the picnic table leg satisfy

w sin θ = h cos θ + b

Given overall dimensions w and h, and the material dimension, b, what is the value of θ?

An analytical solution for θ = f(w, h, b) exists, but is not obvious.

Use a numerical root-finding procedure to find the value of θ that satisfies

f(θ) = w sin θ − h cos θ − b = 0
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Roots of f(x) = 0

Any function of one variable can be put in the form f(x) = 0.

Example:

To find the x that satisfies

cos(x) = x,

find the zero crossing of

f(x) = cos(x)− x = 0
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Solution

y = x         
y = cos(x)    
f = cos(x) - x
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General Considerations

• Is this a special function that will be evaluated often?

• How much precision is needed?

• How fast and robust must the method be?

• Is the function a polynomial?

• Does the function have singularities?

There is no single root-finding method that is best for all situations.
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Root-Finding Procedure

The basic strategy is

1. Plot the function.

➣ The plot provides an initial guess, and

an indication of potential problems.

2. Select an initial guess.

3. Iteratively refine the initial guess

with a root-finding algorithm.
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Bracketing

A root is bracketed on the interval [a, b] if f(a) and f(b) have opposite sign. A sign

change occurs for singularities as well as roots

a b

f(b)

0
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f(b)

0

f(a)

Bracketing is used to make initial guesses at the roots, not to accurately estimate the

values of the roots.
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Bracketing Algorithm (1)

Algorithm 6.1 Bracket Roots

given: f(x), xmin, xmax, n

dx = (xmax − xmin)/n

xleft = xmin

i = 0

while i < n

i← i + 1

xright = xleft + dx

if f(x) changes sign in [xleft, xright]

save [xleft, xright] for further root-finding

end

xleft = xright

end
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Bracketing Algorithm (2)

A simple test for sign change: f(a)× f(b) < 0 ?

or in Matlab

if

fa = ...

fb = ...

if fa*fb < 0

save bracket

end

but this test is susceptible to underflow.

NMM: Finding the Roots of f(x) = 0 page 10

Bracketing Algorithm (3)

A better test uses the built-in sign function

fa = ...

fb = ...

if sign(fa)~=sign(fb)

save bracket

end

See implementation in the brackPlot function
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The brackPlot Function

brackPlot is a NMM toolbox function that

• Looks for brackets of a user-defined f(x)

• Plots the brackets and f(x)

• Returns brackets in a two-column matrix

Syntax:

brackPlot(’myFun’,xmin,xmax)

brackPlot(’myFun’,xmin,xmax,nx)

where

myFun is the name of an m-file that evaluates f(x)

xmin, xmax define range of x axis to search

nx is the number of subintervals on [xmin,xmax] used to
check for sign changes of f(x). Default: nx= 20
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Apply brackPlot Function to sin(x) (1)

>> Xb = brackPlot(’sin’,-4*pi,4*pi)

Xb =

-12.5664 -11.2436

-9.9208 -8.5980

-7.2753 -5.9525

-3.3069 -1.9842

-0.6614 0.6614

1.9842 3.3069

5.9525 7.2753

8.5980 9.9208

11.2436 12.5664
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Apply brackPlot to a user-defined Function (1)

To solve

f(x) = x− x
1/3
− 2 = 0

we need an m-file function to evaluate f(x) for any scalar or vector of x values.

File fx3.m: Note the use of the array operator.

function f = fx3(x)

% fx3 Evaluates f(x) = x - x^(1/3) - 2

f = x - x.^(1/3) - 2;

Run brackPlot with fx3 as the input function

>> brackPlot(’fx3’,0,5)

ans =

3.4000 3.6000
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Apply brackPlot to a user-defined Function (2)

>> Xb = brackPlot(’fx3’,0,5)

Xb =

3.4211 3.6842
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Apply brackPlot to a user-defined Function (3)

Instead of creating a separate m-file, we can use an in-line function object.

>> f = inline(’x - x.^(1/3) - 2’)

f =

Inline function:

f(x) = x - x.^(1/3) - 2

>> brackPlot(f,0,5)

ans =

3.4000 3.6000

Note: When an inline function object is supplied to brackPlot, the name of the

object is not surrounded in quotes:

brackPlot(f,0,5) instead of brackPlot(’fun’,0,5)
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Root-Finding Algorithms

We now proceed to develop the following root-finding algorithms:

• Fixed point iteration

• Bisection

• Newton’s method

• Secant method

These algorithms are applied after initial guesses at the root(s) are identified with

bracketing (or guesswork).
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Fixed Point Iteration

Fixed point iteration is a simple method. It only works when the iteration function is

convergent.

Given f(x) = 0, rewrite as xnew = g(xold)

Algorithm 6.2 Fixed Point Iteration

initialize: x0 = . . .

for k = 1, 2, . . .

xk = g(xk−1)

if converged, stop

end
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Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop

when current guess is close enough to the desired root.

• Convergence checking will avoid searching to unnecessary accuracy.

• Convergence checking can consider whether two successive approximations to the root

are close enough to be considered equal.

• Convergence checking can examine whether f(x) is sufficiently close to zero at the

current guess.

More on this later . . .
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Fixed Point Iteration Example (1)

To solve

x− x
1/3
− 2 = 0

rewrite as

xnew = g1(xold) = x
1/3
old + 2

or

xnew = g2(xold) =
`

xold − 2
´3

or

xnew = g3(xold) =
6 + 2x

1/3
old

3− x
2/3
old

Are these g(x) functions equally effective?
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Fixed Point Iteration Example (2)

g1(x) = x
1/3

+ 2

g2(x) =
`

x− 2
´3

g3(x) =
6 + 2x1/3

3− x2/3

k g1(xk−1) g2(xk−1) g3(xk−1)

0 3 3 3

1 3.4422495703 1 3.5266442931

2 3.5098974493 −1 3.5213801474

3 3.5197243050 −27 3.5213797068

4 3.5211412691 −24389 3.5213797068

5 3.5213453678 −1.451× 1013 3.5213797068

6 3.5213747615 −3.055× 1039 3.5213797068

7 3.5213789946 −2.852× 10118 3.5213797068

8 3.5213796042 ∞ 3.5213797068

9 3.5213796920 ∞ 3.5213797068

Summary: g1(x) converges, g2(x) diverges, g3(x) converges very quickly
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Bisection

Given a bracketed root, halve the interval while continuing to bracket the root

a b

f  (b1)

x1x2

f  (x1)

f  (a1)
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Bisection (2)

For the bracket interval [a, b] the midpoint is

xm =
1

2
(a + b)

A better formula, one that is less susceptible to round-off is

xm = a +
b− a

2
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Bisection Algorithm

Algorithm 6.3 Bisection

initialize: a = . . ., b = . . .

for k = 1, 2, . . .

xm = a + (b− a)/2

if sign (f(xm)) = sign (f(xa))

a = xm

else

b = xm

end

if converged, stop

end

NMM: Finding the Roots of f(x) = 0 page 24

Bisection Example

Solve with bisection:

x− x
1/3
− 2 = 0

k a b xmid f(xmid)

0 3 4

1 3 4 3.5 -0.01829449

2 3.5 4 3.75 0.19638375

3 3.5 3.75 3.625 0.08884159

4 3.5 3.625 3.5625 0.03522131

5 3.5 3.5625 3.53125 0.00845016

6 3.5 3.53125 3.515625 -0.00492550

7 3.51625 3.53125 3.5234375 0.00176150

8 3.51625 3.5234375 3.51953125 -0.00158221

9 3.51953125 3.5234375 3.52148438 0.00008959

10 3.51953125 3.52148438 3.52050781 -0.00074632
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Analysis of Bisection (1)

Let δn be the size of the bracketing interval at the nth stage of bisection. Then

δ0 = b− a = initial bracketing interval

δ1 =
1

2
δ0

δ2 =
1

2
δ1 =

1

4
δ0

...

δn =

„

1

2

«n

δ0

=⇒
δn

δ0

=

„

1

2

«n

= 2
−n

or n = log2

„

δn

δ0

«
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Analysis of Bisection (2)

δn

δ0

=

„

1

2

«n

= 2
−n

or n = log2

„

δn

δ0

«

n
δn

δ0

function

evaluations

5 3.1× 10−2 7

10 9.8× 10−4 12

20 9.5× 10−7 22

30 9.3× 10−10 32

40 9.1× 10−13 42

50 8.9× 10−16 52
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Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop

when current guess is close enough to the desired root.

• Convergence checking will avoid searching to unnecessary accuracy.

• Check whether successive approximations are close enough to be considered the same:

|xk − xk−1| < δx

• Check whether f(x) is close enough zero.

|f(xk)| < δf
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Convergence Criteria on x

f (x)

true root

tolerance
on x

tolerance
on f (x) x

xk = current guess at the root

xk−1 = previous guess at the root

Absolute tolerance:
˛

˛xk − xk−1

˛

˛ < δx

Relative tolerance:

˛

˛

˛

˛

˛

xk − xk−1

b− a

˛

˛

˛

˛

˛

< δ̂x
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Convergence Criteria on f(x)

f (x)

true root

tolerance
on x

tolerance
on f (x) x

Absolute tolerance:
˛

˛f(xk)
˛

˛ < δf

Relative tolerance:

|f(xk)| < δ̂f max
n

|f(a0)|, |f(b0)|
o

where a0 and b0 are the original brackets
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Convergence Criteria on f(x)

If f ′(x) is small near the root, it is easy

to satisfy a tolerance on f(x) for a large

range of ∆x. A tolerance on ∆x is more

conservative.

f (x)

x

If f ′(x) is large near the root, it is

possible to satisfy a tolerance on ∆x

when |f(x)| is still large. A tolerance

on f(x) is more conservative.

f (x)

x
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Newton’s Method (1)

For a current guess xk, use f(xk) and the slope f ′(xk) to predict where f(x) crosses

the x axis.

x1
x2

f(x1)

f(x2)

x3
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Newton’s Method (2)

Expand f(x) in Taylor Series around xk

f(xk + ∆x) = f(xk) + ∆x
df

dx

˛

˛

˛

˛

xk

+
(∆x)2

2

d2f

dx2

˛

˛

˛

˛

˛

xk

+ . . .

Substitute ∆x = xk+1 − xk and neglect second order terms to get

f(xk+1) ≈ f(xk) + (xk+1 − xk) f
′
(xk)

where

f
′
(xk) =

df

dx

˛

˛

˛

˛

xk
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Newton’s Method (3)

Goal is to find x such that f(x) = 0.

Set f(xk+1) = 0 and solve for xk+1

0 = f(xk) + (xk+1 − xk) f
′
(xk)

or, solving for xk+1

xk+1 = xk −
f(xk)

f ′(xk)
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Newton’s Method Algorithm

Algorithm 6.4

initialize: x1 = . . .

for k = 2, 3, . . .

xk = xk−1 − f(xk−1)/f ′(xk−1)

if converged, stop

end
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Newton’s Method Example (1)

Solve:

x− x
1/3
− 2 = 0

First derivative is

f
′
(x) = 1−

1

3
x
−2/3

The iteration formula is

xk+1 = xk −
xk − x

1/3
k − 2

1− 1
3x
−2/3
k
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Newton’s Method Example (2)

xk+1 = xk −
xk − x

1/3
k − 2

1− 1
3x
−2/3
k

k xk f ′(xk) f(x)

0 3 0.83975005 -0.44224957

1 3.52664429 0.85612976 0.00450679

2 3.52138015 0.85598641 3.771× 10−7

3 3.52137971 0.85598640 2.664× 10−15

4 3.52137971 0.85598640 0.0

Conclusion

• Newton’s method converges

much more quickly than

bisection

• Newton’s method requires an

analytical formula for f ′(x)

• The algorithm is simple as long

as f ′(x) is available.

• Iterations are not guaranteed to

stay inside an ordinal bracket.
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Divergence of Newton’s Method

x1

f(x1)

f '(x1) ≈ 0

Since

xk+1 = xk −
f(xk)

f ′(xk)

the new guess, xk+1, will be far from

the old guess whenever f ′(xk) ≈ 0
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Secant Method (1)

Given two guesses xk−1 and xk, the next guess at the root is where the line through

f(xk−1) and f(xk) crosses the x axis.

x1x2

f(x1)

a

f(b)

f(a)

b
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Secant Method (2)

Given

xk = current guess at the root

xk−1 = previous guess at the root

Approximate the first derivative with

f
′
(xk) ≈

f(xk)− f(xk−1)

xk − xk−1

Substitute approximate f ′(xk) into formula for Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)

to get

xk+1 = xk − f(xk)

»

xk − xk−1

f(xk)− f(xk−1)

–
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Secant Method (3)

Two versions of this formula are equivalent in exact math:

xk+1 = xk − f(xk)

»

xk − xk−1

f(xk)− f(xk−1)

–

(⋆)

and

xk+1 =
f(xk)xk−1 − f(xk−1)xk

f(xk)− f(xk−1)
(⋆⋆)

Equation (⋆) is better since it is of the form xk+1 = xk + ∆. Even if ∆ is inaccurate

the change in the estimate of the root will be small at convergence because f(xk) will

also be small.

Equation (⋆⋆) is susceptible to catastrophic cancellation:

• f(xk)→ f(xk−1) as convergence approaches, so cancellation error in

the denominator can be large.

• |f(x)| → 0 as convergence approaches, so underflow is possible
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Secant Algorithm

Algorithm 6.5

initialize: x1 = . . ., x2 = . . .

for k = 2, 3 . . .

xk+1 = xk

−f(xk)(xk − xk−1)/(f(xk)− f(xk−1))

if converged, stop

end
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Secant Method Example

Solve:

x− x
1/3
− 2 = 0

k xk−1 xk f(xk)

0 4 3 −0.44224957

1 3 3.51734262 −0.00345547

2 3.51734262 3.52141665 0.00003163

3 3.52141665 3.52137970 −2.034× 10−9

4 3.52137959 3.52137971 −1.332× 10−15

5 3.52137971 3.52137971 0.0

Conclusions

• Converges almost as quickly as

Newton’s method.

• No need to compute f ′(x).

• The algorithm is simple.

• Two initial guesses are necessary

• Iterations are not guaranteed to

stay inside an ordinal bracket.
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Divergence of Secant Method

x1 x2

f(x3)

x3

f(x2)

f  (x1)

f '(x) ≈ 0

Since

xk+1 = xk−f(xk)

»

xk − xk−1

f(xk)− f(xk−1)

–

the new guess, xk+1, will be far from the

old guess whenever f ′(xk) ≈ f(xk−1)

and |f(x)| is not small.
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Summary of Basic Root-finding Methods

• Plot f(x) before searching for roots

• Bracketing finds coarse interval containing roots and singularities

• Bisection is robust, but converges slowly

• Newton’s Method

⊲ Requires f(x) and f ′(x).

⊲ Iterates are not confined to initial bracket.

⊲ Converges rapidly.

⊲ Diverges if f ′(x) ≈ 0 is encountered.

• Secant Method

⊲ Uses f(x) values to approximate f ′(x).

⊲ Iterates are not confined to initial bracket.

⊲ Converges almost as rapidly as Newton’s method.

⊲ Diverges if f ′(x) ≈ 0 is encountered.
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fzero Function (1)

fzero is a hybrid method that combines bisection, secant and reverse quadratic

interpolation

Syntax:

r = fzero(’fun’,x0)

r = fzero(’fun’,x0,options)

r = fzero(’fun’,x0,options,arg1,arg2,...)

x0 can be a scalar or a two element vector

• If x0 is a scalar, fzero tries to create its own bracket.

• If x0 is a two element vector, fzero uses the vector as a bracket.
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Reverse Quadratic Interpolation

Find the point where the x

axis intersects the sideways

parabola passing through

three pairs of (x, f(x))

values.
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10

15

20
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fzero Function (2)

fzero chooses next root as

• Result of reverse quadratic interpolation (RQI) if that result is inside the current

bracket.

• Result of secant step if RQI fails, and if the result of secant method is in inside the

current bracket.

• Result of bisection step if both RQI and secant method fail to produce guesses inside

the current bracket.
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fzero Function (3)

Optional parameters to control fzero are specified with the optimset function.

Examples:

Tell fzero to display the results of each step:

>> options = optimset(’Display’,’iter’);

>> x = fzero(’myFun’,x0,options)

Tell fzero to use a relative tolerance of 5× 10−9:

>> options = optimset(’TolX’,5e-9);

>> x = fzero(’myFun’,x0,options)

Tell fzero to suppress all printed output, and use a relative tolerance of 5× 10−4:

>> options = optimset(’Display’,’off’,’TolX’,5e-4);

>> x = fzero(’myFun’,x0,options)
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fzero Function (4)

Allowable options (specified via optimset):

Option type Value Effect

’Display’ ’iter’ Show results of each iteration

’final’ Show root and original bracket

’off’ Suppress all print out

’TolX’ tol Iterate until

|∆x| < max [tol, tol ∗ a, tol ∗ b]

where ∆x = (b−a)/2, and [a, b] is the current bracket.

The default values of ’Display’ and ’TolX’ are equivalent to

options = optimset(’Display’,’iter’,’TolX’,eps)
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Roots of Polynomials

Complications arise due to

• Repeated roots

• Complex roots

• Sensitivity of roots to small

perturbations in the

polynomial coefficients

(conditioning).
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Algorithms for Finding Polynomial Roots

• Bairstow’s method

• Müller’s method

• Laguerre’s method

• Jenkin’s–Traub method

• Companion matrix method
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roots Function (1)

The built-in roots function uses the companion matrix method

• No initial guess

• Returns all roots of the polynomial

• Solves eigenvalue problem for companion matrix

Write polynomial in the form

c1x
n

+ c2x
n−1

+ . . . + cnx + cn+1 = 0

Then, for a third order polynomial

>> c = [c1 c2 c3 c4];

>> r = roots(c)
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roots Function (2)

The eigenvalues of

A =

2

6

6

4

−c2/c1 −c3/c1 −c4/c1 −c5/c1

1 0 0 0

0 1 0 0

0 0 1 0

3

7

7

5

are the same as the roots of

c5λ
4
+ c4λ

3
+ c3λ

2
+ c2λ + c1 = 0.
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roots Function (3)

The statements

c = ... % vector of polynomial coefficients

r = roots(c);

are equivalent to

c = ...

n = length(c);

A = diag(ones(1,n-2),-1); % ones on first subdiagonal

A(1,:) = -c(2:n) ./ c(1); % first row is -c(j)/c(1), j=2..n

r = eig(A);
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roots Examples

Roots of

f1(x) = x
2
− 3x + 2

f2(x) = x
2
− 10x + 25

f3(x) = x
2
− 17x + 72.5

are found with

>> roots([1 -3 2])

ans =

2

1

>> roots([1 -10 25])

ans =

5

5

>> roots([1 -17 72.5])

ans =

8.5000 + 0.5000i

8.5000 - 0.5000i
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