Unavoidable Errors in Computing

Gerald W. Recktenwald

Department of Mechanical Engineering
Portland State University
gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with MATLAB Upper Saddle River, NJ. These slides are copyright © 2000-2006 Gerald W. Recktenwald he PDF version of these slides may be down these slides in printed for noncommercia consent of the author, is prohibited.
 The latest version of this PDF file, along with other supplemental material for the book,
 an be found at www. prenhall. com/recktenvald or web. cecss. pdx. edu/ ferrry/nmm

Version 1.0 August 19, 2006

Overview (1)

- Digital representation of numbers
\triangleright Size limits
\triangleright Resolution limits
\triangleright The floating point number line
- Floating point arithmetic
\triangleright roundoff
\triangleright machine precision

Overview (2)

- Implications for routine computation
\triangleright Use "close enough" instead of "equals"
\triangleright loss of significance for addition
\triangleright catastrophic cancellation for subtraction
- Truncation error

Demonstrate with Taylor series
Order Notation

What's going on here?

Spontaneous generation of an insignificant digit:

```
> format long e % display lots of digits
>> 2.6 + 0.2
ans =
    2.800000000000000e+00
>> ans + 0.2
ans = 3.000000000000000e+00
>> ans + 0.2
ans = 3.200000000001e+00
>> 2.6 + 0.6
ans = 3.200000000000000e+00 Why does the small error not show up here?
```


Digital Storage of Integers (1)

As a prelude to discussing the binary storage of floating point values, first consider the binary storage of integers.

- Integers can be exactly represented by base 2
- Typical size is 16 bits
- $2^{16}=65536$ is largest 16 bit integer
- $[-32768,32767]$ is range of 16 bit integers in twos complement notation
- 32 bit and larger integers are available

Bits, Bytes, and Words

base 10	conversion	base 2
1	$1=2^{0}$	00000001
2	$2=2^{1}$	00000010
4	$4=2^{2}$	00000100
8	$8=2^{3}$	00001000
9	$8+1=2^{3}+2^{0}$	00001001
10	$8+2=2^{3}+2^{1}$	00001010
27	$16+8+2+1=2^{4}+2^{3}+2^{1}+2^{0}$	$\underbrace{00011011}_{\text {one byte }}$

Digital Storage of Integers (2)

Note: Unless explicitly specified otherwise, all mathematical calculations in Matlab use double precision floating point numbers.

Expert's Note: The built-in int8, int16, int32, uint8, uint16, and uint32 classes are used to reduce memory usage for very large data sets.

Digital Storage of Integers (3)

Let b be a binary digit, i.e. 1 or 0

$$
(b b b b)_{2} \Longleftrightarrow\left|2^{3}\right| 2^{2}\left|2^{1}\right| 2^{0} \mid
$$

The rightmost bit is the least significant bit (LSB)
The leftmost bit is the most significant bit (MSB)

Example:

$$
\begin{aligned}
(1001)_{2} & =1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =8+0+0+1=9
\end{aligned}
$$

Digital Storage of Floating Point Numbers (1)

Numeric values with non-zero fractional parts are stored as floating point numbers.

All floating point values are represented with a normalized scientific notation ${ }^{1}$.

Example:

$$
12.2792=\underbrace{0.123792}_{\text {Mantissa }} \times 10^{2}\rangle_{\text {Exponent }}
$$

[^0]
Digital Storage of Integers (4)

Limitations:

- A finite number of bits are used to store each value in computer memory.
- Limiting the number of bits limits the size of integer that can be represented
largest 3 bit integer: $\quad(111)_{2}=4+2+1=7=2^{3}-1$
largest 4 bit integer: $(1111)_{2}=8+4+2+1=15=2^{4}-1$
largest 5 bit integer: $\quad(11111)_{2}=16+8+4+2+1=31=2^{5}-1$
largest n bit integer: $=2^{n}-1$

NMM: Unavoidable Errors in Computing
page 9

Digital Storage of Floating Point Numbers (2)

Floating point values have a fixed number of bits allocated for storage of the mantissa and a fixed number of bits allocated for storage of the exponent

Two common precisions are provided in numeric computing languages

Precision	Bits for mantissa	Bits for exponent
Single	23	8
Double	53	11

Digital Storage of Floating Point Numbers (3)

A double precision (64 bit) floating point number can be schematically represented as

$$
\overbrace{\text { sign }}^{b} \underbrace{b b \ldots \ldots b b b}_{\begin{array}{c}
52 \text { bit value } \\
\text { of mantissa }
\end{array}} \underbrace{6 b b b b b b b b b b}_{\begin{array}{c}
\text { 11 bit exponent, } \\
\text { including sign }
\end{array}}
$$

The finite number of bits in the exponent limits the magnitude or range of the floating point numbers

The finite number of bits in the mantissa limits the number of significant digits or the precision of the floating point numbers.

Digital Storage of Floating Point Numbers (5)

Algorithm 5.1 Convert Floating-Point to Binary

$$
\begin{aligned}
& r_{0}=\mathrm{x} \\
& \text { for } k=1,2, \ldots, m \\
& \quad \text { if } r_{k-1} \geq 2^{-k} \\
& \quad b_{k}=1 \\
& \quad r_{k}=r_{k-1}-2^{-k} \\
& \text { else } \\
& \quad b_{k}=0 \\
& \quad r_{k}=r_{k-1} \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

Digital Storage of Floating Point Numbers (4)
The floating point mantissa is expressed in powers of $\frac{1}{2}$
$\left(\frac{1}{2}\right)^{0}=1 \quad$ is not used
$\left(\frac{1}{2}\right)^{1}=0.5 \quad\left(\frac{1}{2}\right)^{2}=0.25 \quad\left(\frac{1}{2}\right)^{3}=0.125$

NMM: Unavoidable Errors in Computing
page 13

Digital Storage of Floating Point Numbers (6)

Example: Binary mantissa for $x=0.8125$ - Apply Algorithm 5.1

k	2^{-k}	b_{k}	$r_{k}=r_{k-1}-b_{k} 2^{-k}$
0	NA	NA	0.8125
1	0.5	1	0.3125
2	0.25	1	0.0625
3	0.125	0	0.0625
4	0.0625	1	0.0000

Therefore, the binary mantissa for 0.8125 is (exactly) $(1101)_{2}$

Digital Storage of Floating Point Numbers (7)

Example: Binary mantissa for $x=0.1$ - Apply Algorithm 5.1

k	2^{-k}	b_{k}	$r_{k}=r_{k-1}-b_{k} 2^{-k}$
0	NA	NA	0.1
1	0.5	0	0.1
2	0.25	0	0.1
3	0.125	0	0.1
4	0.0625	1	$0.1-0.0625=0.0375$
5	0.03125	1	$0.0375-0.03125=0.00625$
6	0.015625	0	0.00625
7	0.0078125	0	0.00625
8	0.00390625	1	$0.00625-0.00390625=0.00234375$
9	0.001953125	1	$0.0234375-0.001953125=0.000390625$
10	0.0009765625	0	0.000390625
\vdots	\vdots		

Consequences of Finite Storage (1)

Limiting the number of bits \Longrightarrow
allocated for storage of the
exponent

Upper and lower limits on
the range (or magnitude) of
floating point numbers

Limiting the number of bits
allocated for storage of the
mantissa

Limit on the precision (or
number of significant digits)
for any floating point number.

Digital Storage of Floating Point Numbers (8)

Calculations on the preceding slide show that the binary mantissa for 0.1 is $(000110011 \ldots)_{2}$.

The decimal value of 0.1 cannot be represented by a finite number of binary digits.
$\overline{\text { NMM: Unavoidable Errors in Computing }}$
page 17

Consequences of Finite Storage (2)

Most real numbers cannot be stored exactly (they do not exist on the floating point number line)

- Integers less than 2^{52} can be stored exactly. Try this:

$$
\begin{aligned}
& \gg \mathrm{x}=2^{\wedge} 51 \\
& \gg \mathrm{~s}=\operatorname{dec} 2 \operatorname{bin}(\mathrm{x}) \\
& \gg \mathrm{x} 2=\operatorname{bin} 2 \operatorname{dec}(\mathrm{~s})
\end{aligned}
$$

$$
\text { >> } x 2-x
$$

- Numbers with 15 (decimal) digit mantissas that are the exact sum of powers of $(1 / 2)$ can be stored exactly.

Floating Point Number Line

Compare floating point numbers to real numbers.

	Real numbers	Floating point numbers
Range	Infinite: arbitrarily large and arbitrarily small real numbers exist.	Finite: the number of bits allocated to the exponent limit the magnitude of floating point values.
Precision	Infinite: There is an infinite set of real numbers between any two real numbers.	Finite: there is a finite number (perhaps zero) of floating point values between any two floating point values.

In other words: The floating point number line is a subset of the real number line.

Symbolic versus Numeric Calculation (1)

Commercial software for symbolic computation

- Derive ${ }^{\mathrm{TM}}$
- MACSYMA ${ }^{\text {TM }}$
- Maple ${ }^{\text {TM }}$
- Mathematica ${ }^{\mathrm{TM}}$

Symbolic calculations are exact. No rounding occurs because symbols and algebraic relationships are manipulated without storing numerical values.

Floating Point Number Line

Symbolic versus Numeric Calculation (2)

```
Example: Evaluate \(f(\theta)=1-\sin ^{2} \theta-\cos ^{2} \theta\)
>> theta \(=30 * \mathrm{pi} / 180\);
>> f = 1 - \(\sin \left(\right.\) theta) \({ }^{\wedge} 2-\cos \left(\right.\) theta) \({ }^{2} 2\)
\(\mathrm{f}=\)
    \(-1.1102 e-16\)
```

f is close to, but not exactly equal to zero because of roundoff. Also note that f is a single value, not a formula.

Symbolic versus Numeric Calculation (3)

Symbolic computation using the Symbolic Math Toolbox in Matlab

```
>> t = sym('t') % declare t as a symbolic variable
t =
>> f=1-\operatorname{sin}(t)^2-\operatorname{cos}(t)^2 % create a symbolic expression
f =
1-\operatorname{sin}(t)^2-\operatorname{cos}(t)^2
>> simplify(f) % ask Maple engine to make algebraic simplifications
f=
```

In the symbolic computation, f is exactly zero for any value of t. There is no roundoff error in symbolic computation.

Integer Arithmetic

Operation	Result
$2+2=4$	integer
$9 \times 7=63$	integer
$\frac{12}{3}=4$	integer
$\frac{29}{13}=2$	exact result is not an integer
$\frac{29}{1300}=0$	exact result is not an integer

Numerical Arithmetic

Numerical values have limited range and precision. Values created by adding, subtracting, multiplying, or dividing floating point values will also have limited range and precision.

Quite often, the result of an arithmetic operation between two floating point values cannot be represented as another floating point value.

Floating Point Arithmetic

Operation	Floating Point Value is . .
$2.0+2.0=4$	exact
$9.0 \times 7.0=63$	exact
$\frac{12.0}{3.0}=4$	exact
$\frac{29}{13}=2.230769230769231$	approximate
$\frac{29}{1300}=2.230769230769231 \times 10^{-2}$	approximate

Floating Point Arithmetic in Matlab (1)

```
> format long e
>> u = 29/13
L= 2.230769230769231e+00
>> v = 13*u
    29
>> v-29
ans =
```

Two rounding errors are made: (1) during computation and storage of u, and (2) during computation and storage of v. Fortuitously, the combination of rounding errors produces the exact result.

NMM: Unavoidable Errors in Computing
page 28

Roundoff in Quadratic Equation (1)

(See Example 5.3 in the text)
The roots of

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{equation*}
x^{2}+54.32 x+0.1=0 \tag{3}
\end{equation*}
$$

which has the roots (to eleven digits)

$$
x_{1}=54.3218158995, \quad x_{2}=0.0018410049576
$$

Note that $b^{2} \gg 4 a c$

$$
b^{2}=2950.7 \gg 4 a c=0.4
$$

Floating Point Arithmetic in Matlab (2)

```
>> x = 29/1300
x = 2.230769230769231e-02
>> y = 29-1300*x
y =
```

$3.552713678800501 \mathrm{e}-015$

In exact arithmetic, the value of y should be zero.
The roundoff error occurs when x is stored. Since $29 / 1300$ cannot be expressed with a finite sum of the powers of $1 / 2$, the numerical value stored in x is a truncated approximation to $29 / 1300$.

When y is computed, the expression $1300 * \mathrm{x}$ evaluates to a number slightly different than 29 because the bits lost in the computation and storage of x are not recoverable.
$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Roundoff in Quadratic Equation (2)

Compute roots with four digit arithmetic

$$
\begin{aligned}
\sqrt{b^{2}-4 a c} & =\sqrt{(-54.32)^{2}-0.4000} \\
& =\sqrt{2951-0.4000} \\
& =\sqrt{2951} \\
& =54.32
\end{aligned}
$$

The result of each intermediate mathematical operation is rounded to four digits.

Roundoff in Quadratic Equation (3)

Use $x_{1,4}$ to designate the first root computed with four-digit arithmetic:

$$
\begin{aligned}
x_{1,4} & =\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{+54.32+54.32}{2.000} \\
& =\frac{108.6}{2.000} \\
& =54.30
\end{aligned}
$$

Correct root is $x_{1}=54.3218158995$. Four digit arithmetic leads to 0.4 percent error in this example.

Roundoff in Quadratic Equation (5)

A solution: rationalize the numerators of the expressions for the two roots:

$$
\begin{align*}
& x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\left(\frac{-b-\sqrt{b^{2}-4 a c}}{-b-\sqrt{b^{2}-4 a c}}\right)=\frac{2 c}{-b-\sqrt{b^{2}-4 a c}} \tag{4}\\
& x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\left(\frac{-b+\sqrt{b^{2}-4 a c}}{-b+\sqrt{b^{2}-4 a c}}\right)=\frac{2 c}{-b+\sqrt{b^{2}-4 a c}} \tag{5}
\end{align*}
$$

Roundoff in Quadratic Equation (4)

Using four-digit arithmetic the second root, $x_{2,4}$, is

$$
\begin{align*}
x_{2,4} & =\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{+54.32-54.32}{2.000} \tag{i}\\
& =\frac{0.000}{2.000} \tag{ii}\\
& =0 \tag{iii}
\end{align*}
$$

An error of 100 percent!
The poor approximation to $x_{2,4}$ is caused by roundoff in the calculation of $\sqrt{b^{2}-4 a c}$. This leads to the subtraction of two equal numbers in line (i).
$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Roundoff in Quadratic Equation (6)

Now use Equation (5) to compute the troublesome second root with four digit arithmetic

$$
x_{2,4}=\frac{2 c}{-b+\sqrt{b^{2}-4 a c}}=\frac{0.2000}{+54.32+54.32}=\frac{0.2000}{108.6}=0.001842 .
$$

The result is in error by only 0.05 percent.

Roundoff in Quadratic Equation (7)

Compare the formulas for x_{2}

$$
\begin{aligned}
x_{2, \mathrm{std}} & =\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
x_{2, \text { new }} & =\frac{2 c}{-b+\sqrt{b^{2}-4 a c}}
\end{aligned}
$$

The two formulations for x_{2} are algebraically equivalent. The difference in the computed values of $x_{2,4}$ is due to roundoff alone.

Roundoff in Quadratic Equation (9)

A robust solution uses a formula that takes the sign of b into account in a way that prevents catastrophic cancellation.

The ultimate quadratic formula:

$$
q \equiv-\frac{1}{2}\left[b+\operatorname{sign}(b) \sqrt{b^{2}-4 a c}\right]
$$

where

$$
\operatorname{sign}(b)= \begin{cases}1 & \text { if } b \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

Then roots to quadratic equation are

$$
x_{1}=\frac{q}{a} \quad x_{2}=\frac{c}{q}
$$

Roundoff in Quadratic Equation (8)

Repeat the calculation of $x_{1,4}$ with the new formula

$$
\begin{align*}
x_{1,4} & =\frac{2 c}{-b-\sqrt{b^{2}-4 a c}} \\
& =\frac{0.2000}{+54.32-54.32} \tag{i}\\
& =\frac{0.2000}{0} \tag{ii}\\
& =\infty
\end{align*}
$$

Limited precision in the calculation of $\sqrt{b^{2}+4 a c}$ leads to a catastrophic cancellation error in step (i)

NMM: Unavoidable Errors in Computing

Roundoff in Quadratic Equation (10)

Summary

- Finite-precision causes roundoff in individual calculations
- Effects of roundoff usually accumulate slowly, but . . .
- Subtracting nearly equal numbers leads to severe loss of precision. A similar loss of precision occurs when two numbers of very different magnitude are added.
- Roundoff is inevitable: good algorithms minimize the effect of roundoff.

Catastrophic Cancellation Errors (1)

The errors in

$$
c=a+b \quad \text { and } \quad c=a-b
$$

will be large when $a \gg b$ or $a \ll b$.
Consider $c=a+b$ with

$$
\begin{aligned}
& a=x . x x x \ldots \times 10^{0} \\
& b=y . y y y \ldots \times 10^{-8}
\end{aligned}
$$

where x and y are decimal digits.
$\overline{\text { NMM: Unavoidable Errors in Computing }}$
page 40

Catastrophic Cancellation Errors (2)

For subtraction: The error in

$$
c=a-b
$$

will be large when $a \approx b$
Consider $c=a-b$ with

$$
\begin{aligned}
& a=x . x x x x x x x x x x x 1 \text { ssssss } \\
& b=x . x x x x x x x x x x x 0 t t t t t t
\end{aligned}
$$

where x, y, s and t are decimal digits. The digits $s s s \ldots$ and $t t t \ldots$ are lost when a and b are stored in double-precision, floating point format.

Catastrophic Cancellation Errors (1)

Evaluate $c=a+b$ with $a=x . x x x \ldots \times 10^{0}$ and $b=y . y y y \ldots \times 10^{-8}$
Assume for convenience of exposition that $z=x+y<10$

$$
\begin{aligned}
& \overbrace{\mathrm{x} . \mathrm{xxx} \text { xxxx xxxx xxxx }}^{\text {available precision }} \\
+\quad & 0.000 \text { 0000 yyyy yyyy yyyy yyyy } \\
= & \mathrm{x.xxx} \text { xxxx zzzz zzzz } \underbrace{\text { yyyy yyyy }}_{\text {lost digits }}
\end{aligned}
$$

The most significant digits of a are retained, but the least significant digits of b are lost because of the mismatch in magnitude of a and b
$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Catastrophic Cancellation Errors (3)

Evaluate $a-b$ in double precision floating point arithmetic when $a=x . x x x$ xxxx $x x x x 1$ and $b=x . x x x$ xxxx $x x x x 0$

	available precision	
	$\overbrace{\text { x. }}^{\text {xxx }}$ xxxx $\operatorname{xxxx} 1$	
-	x.xxx xxxx xxxx 0	
$=$	0.000000000001	uuuu uuun uuuu
		unassigned digits
$=$	1. unuu unuu uuuu	$\times 10^{-12}$

The result has only one significant digit. Values for the uuuu digits are not necessarily zero. The absolute error in the result is small compared to either a or b. The relative error in the result is large because ssssss $-t t t t t t \neq$ uиuuuu (except by chance)

Catastrophic Cancellation Errors (4)

Summary

- Occurs in addition $\alpha+\beta$ or subtraction $\alpha-\beta$ when $\alpha \gg \beta$ or $\alpha \ll \beta$
- Occurs in subtraction: $\alpha-\beta$ when $\alpha \approx \beta$
- Error caused by a single operation (hence the term "catastrophic") not a slow accumulation of errors
- Can often be minimized by algebraic rearrangement of the troublesome formula. (Cf. improved quadratic formula.)

Machine Precision (2)

Matlab code for Computing Machine Precision:

```
epsilon = 1;
it = 0;
maxit = 100
while it < maxit
    epsilon = epsilon/2;
    b = 1 + epsilon;
    if b == 1
        break;
    end
    it = it + 1;
end
```


Machine Precision (1)

The magnitude of roundoff errors is quantified by machine precision ε_{m}.
There is a number, $\varepsilon_{m}>0$, such that

$$
1+\delta=1
$$

whenever $|\delta|<\varepsilon_{m}$.
In exact arithmetic $1+\delta=1$ only when $\delta=0$, so in exact arithmetic ε_{m} is identically zero.

Matlab uses double precision (64 bit) arithmetic. The built-in variable eps stores the value of ε_{m}

$$
\mathrm{eps}=2.2204 \times 10^{-16}
$$

$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Implications for Routine Calculations

- Floating point comparisons should test for "close enough" instead of exact equality.
- Express "close" in terms of
absolute difference, $|x-y|$
or
relative difference, $\frac{|x-y|}{|x|}$

Floating Point Comparison

```
Don't ask "is }x\mathrm{ equal to }y\mathrm{ ".
    if x==y % Don't do this
    end
```

Instead ask, "are x and y 'close enough' in value"
if abs $(x-y)$ < tol
end

Absolute and Relative Error (1)

Relative error

$$
E_{\mathrm{rel}}(\widehat{\alpha})=\frac{|\widehat{\alpha}-\alpha|}{\left|\alpha_{\mathrm{ref}}\right|}
$$

Often we choose $\alpha_{\text {ref }}=\alpha$ so that

$$
E_{\mathrm{rel}}(\widehat{\alpha})=\frac{|\widehat{\alpha}-\alpha|}{|\alpha|}
$$

Absolute and Relative Error (1)

"Close enough" can be measured with either absolute difference or relative difference, or both

Let
$\alpha=$ some exact or reference value
$\widehat{\alpha}=$ some computed value

Absolute error

$$
E_{\mathrm{abs}}(\widehat{\alpha})=|\widehat{\alpha}-\alpha|
$$

$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Absolute and Relative Error (2)

Example: Approximating $\sin (x)$ for small x
Since

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

we can approximate $\sin (x)$ with

$$
\sin (x) \approx x
$$

for small enough $|x|<1$

Absolute and Relative Error (3)

The absolute error in approximating $\sin (x) \approx x$ for small x is

$$
E_{\mathrm{abs}}=x-\sin (x)=\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\ldots
$$

And the relative error is

$$
E_{\mathrm{abs}}=\frac{x-\sin (x)}{\sin (x)}=\frac{x}{\sin (x)}-1
$$

NMM: Unavoidable Errors in Computing

Iteration termination (1)

An iteration generates a sequence of scalar values $x_{k}, k=1,2,3, \ldots$. The sequence converges to a limit ξ if

$$
\left|x_{k}-\xi\right|<\delta, \quad \text { for all } k>N,
$$

where δ is a small
In practice, the test is usually expressed as

$$
\left|x_{k+1}-x_{k}\right|<\delta, \quad \text { when } k>N .
$$

Absolute and Relative Error (4)

Plot relative and absolute error in approximating $\sin (x)$ with x.

Although the absolute error is relatively flat around $x=0$, the relative error grows more quickly.
The relative error grows quickly because the absolute value of $\sin (x)$ is small near $x=0$.

NMM: Unavoidable Errors in Computing
page 53

Iteration termination (2)

Absolute convergence criterion

Iterate until $\left|x-x_{\text {old }}\right|<\Delta_{a}$ where Δ_{a} is the absolute convergence tolerance.

In Matlab:

$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Iteration termination (3)

Relative convergence criterion
Iterate until $\left|\frac{x-x_{\text {old }}}{x_{\text {old }}}\right|<\delta_{r}$, where δ_{r} is the absolute convergence tolerance.

In Matlab:

```
x = ... % initialize
xold = ...
while abs((x-xold)/xold) > deltar
    xold = x;
    update x
end
```

Example: Solve $\cos (x)=x$
The fixed point iteration as a method for obtaining a numerical approximation to the solution of a scalar equation. For now, trust that the follow algorithm will eventually give the solution

1. Guess x_{0}
2. Set $x_{o l d}=x_{0}$
3. Update guess

$$
x_{\text {new }}=\cos \left(x_{\text {old }}\right)
$$

4. If $x_{\text {new }} \approx x_{\text {old }}$ stop; otherwise set $x_{\text {old }}=x_{\text {new }}$ and return to step 3

Example: Solve $\cos (x)=x$

Find the value of x that satisfies $\cos (x)=x$.

NMM: Unavoidable Errors in Computing
page 57

$$
\begin{equation*}
\text { Solve } \cos (x)=x \tag{3}
\end{equation*}
$$

MATLAB implementation

```
x0 = ... % initial guess
k = 0;
xnew = x0;
while NOT_CONVERGED & k < maxit
        xold = xnew;
        xnew = cos(xold);
        it = it + 1;
end
```

Let's examine someways of defining the logical value NOT_CONVERGED.

$$
\begin{equation*}
\text { Solve } \cos (x)=x \tag{4}
\end{equation*}
$$

Bad test \# 1
while xnew ${ }^{\sim}=$ xold
This test will be true unless xnew and xold are exactly equal. In other words, xnew and xold are equal only when their bit patterns are identical. This is bad because

- Test may never be met because of oscillatory bit patterns
- Even if test is eventually met, the iterations will probably do more work than needed

$$
\begin{equation*}
\text { Solve } \cos (x)=x \tag{6}
\end{equation*}
$$

Workable test \# 1: Absolute tolerance

while abs(xnew-xold) > delta
An absolute tolerance is useful when the iterative sequence converges to a value with magnitude much less than one.

What value of delta to use?

Solve $\cos (x)=x$
Bad test \# 2
while (xnew-xold) > delta
This test evaluates to false whenever (xnew-xold) is negative, even if $\mid($ xnew - xold $) \mid \gg$ delta.

Example:

>> xold $=100$; xnew $=1$; delta $=5 e-9$;
>> (xnew-xold) > delta
ans =
0
These values of xnew and xold are not close, but the erroneous convergence criterion would cause the iterations to stop.
$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Workable test \# 2: Relative tolerance

while abs((xnew-xold)/xref) > delta
The user supplies appropriate value of xref. For this particular iteration we could use xref = xold.
while abs((xnew-xold)/xold) > delta

Note: For the problem of solving $\cos (x)=x$, the solution is $\mathcal{O}(1)$ so the absolute and relative convergence tolerance will terminate the calculations at roughly the same iteration.

Solve $\cos (x)=x$
Using the relative convergence tolerance, the code becomes

```
x0 = ... % initial guess
k = 0;
xnew = x0;
while ( abs( (xnew-xold)/xold ) > delta ) & k < maxit
    xold = xnew;
    xnew = cos(xold);
    it = it + 1;
end
```

Note: Parentheses around abs((xnew-xold)/xold) > delta are not needed for correct Matlab implementation. The parenthesis are added to make the meaning of the clear to humans reading the code.

Truncation of series for $\sin (x)$ (1)

```
function ssum = sinser(x,tol,n)
% sinser Evaluate the series representation of the sine function
%
% Input: }x=\mathrm{ argument of the sine function, i.e., compute sin(x)
% tol = tolerance on accumulated sum. Default: tol = 5e-9
% n = maximum number of terms. Default: n = 15
% Output: ssum = value of series sum after nterms or tolerance is met
term = x; ssum = term; % Initialize series
fprintf('Series approximation to sin(%f)\n\n k
fprintf('%3d %11.3e %12.8f\n',1,term,ssum)
for k=3:2:(2*n-1)
    term = -term * x*x/ (k*(k-1)); % Next term in the series
    fprintf(`%3d %11.3e %12.8f\n',k,term,ssum);
    if abs(term/ssum)<tol, break; end
fprintf('\nTruncation error after %d terms is %g\n\n',(k+1)/2,abs(ssum-sin(x)));
```


Truncation Error

Consider the series for $\sin (x)$

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

For small x, only a few terms are needed to get a good approximation to $\sin (x)$. The \cdots terms are "truncated"

$$
f_{\text {true }}=f_{\text {sum }}+\text { truncation error }
$$

The size of the truncation error depends on x and the number of terms included in $f_{\text {sum }}$.
$\overline{\text { NMM: Unavoidable Errors in Computing }}$

Truncation of series for $\sin (x)(2)$

For small x, the series for $\sin (x)$ converges in a few terms

>> s = sinser(pi/6,5e-9,15);
Series approximation to $\sin (0.523599)$

Truncation error after 6 terms is $3.56382 \mathrm{e}-014$

Truncation of series for $\sin (x)$ (3)

The truncation error in the series is small relative to the true value of $\sin (\pi / 6)$

```
>> s = sinser(pi/6,5e-9,15);
    :
>> err = (s-sin(pi/6))/sin(pi/6)
err =
    -7.1276e-014
```


Taylor Series ${ }_{(1)}$

For a sufficiently continuous function $f(x)$ defined on the interval $x \in[a, b]$ we define the $n^{t h}$ order Taylor Series approximation $P_{n}(x)$

$$
P_{n}(x)=f\left(x_{0}\right)+\left.\left(x-x_{0}\right) \frac{d f}{d x}\right|_{x=x_{0}}+\left.\frac{\left(x-x_{0}\right)^{2}}{2} \frac{d^{2} f}{d x^{2}}\right|_{x=x_{0}}+\cdots+\left.\frac{\left(x-x_{0}\right)^{n}}{n!} \frac{d^{n} f}{d x^{n}}\right|_{x=x_{0}}
$$

Then there exists ξ with $x_{0} \leq \xi \leq x$ such that

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

where

$$
R_{n}(x)=\left.\frac{\left(x-x_{0}\right)^{(n+1)}}{(n+1)!} \frac{d^{(n+1)} f}{d x^{(n+1)}}\right|_{x=\xi}
$$

Truncation of series for $\sin (x)$ (4)

For larger x, the series for $\sin (x)$ converges more slowly
$>\mathrm{s}=\operatorname{sinser}(15 * \mathrm{pi} / 6,5 \mathrm{e}-9,15)$;
Series approximation to $\sin (7.853982)$

k	term	Ssum	
1	$7.854 \mathrm{e}+000$	7.85398163	
3	$-8.075 \mathrm{e}+001$	-72.89153055	
5	$2.490 \mathrm{e}+002$	176.14792646	
\vdots	\vdots	\vdots	
25	$1.537 \mathrm{e}-003$	1.00012542	
27	$-1.350 \mathrm{e}-004$	0.99999038	
29	$1.026 \mathrm{e}-005$	1.00000064	
Truncation error after 15 terms is $6.42624 \mathrm{e}-007$			

Truncation error after 15 terms is $6.42624 \mathrm{e}-007$
Increasing the number of terms will allow the series to converge with the tolerance of 5×10^{-9}. A better solution to the slow convergence of the series are explored in Exercise 23
$\overline{\text { NMM: Unavoidable Errors in Computing }}$
page 69

Taylor Series (2)

Big "O" notation

$$
f(x)=P_{n}(x)+\mathcal{O}\left(\frac{\left(x-x_{0}\right)^{(n+1)}}{(n+1)!}\right)
$$

or, for $x-x_{0}=h$ we say

$$
f(x)=P_{n}(x)+\mathcal{O}\left(h^{(n+1)}\right)
$$

Taylor Series Example

Consider the function

$$
f(x)=\frac{1}{1-x}
$$

The Taylor Series approximations to $f(x)$ of order 1,2 and 3 are

$$
\begin{aligned}
& P_{1}(x)=\frac{1}{1-x_{0}}+\frac{x-x_{0}}{\left(1-x_{0}\right)^{2}} \\
& P_{2}(x)=\frac{1}{1-x_{0}}+\frac{x-x_{0}}{\left(1-x_{0}\right)^{2}}+\frac{\left(x-x_{0}\right)^{2}}{\left(1-x_{0}\right)^{3}} \\
& P_{3}(x)=\frac{1}{1-x_{0}}+\frac{x-x_{0}}{\left(1-x_{0}\right)^{2}}+\frac{\left(x-x_{0}\right)^{2}}{\left(1-x_{0}\right)^{3}}+\frac{\left(x-x_{0}\right)^{3}}{\left(1-x_{0}\right)^{4}}
\end{aligned}
$$

Roundoff and Truncation Errors (1)

Roundoff and truncation errors occur in numerical computation.

Example:

Finite difference approximation to $f^{\prime}(x)=d f / d x$

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2} f^{\prime \prime}(x)+\ldots
$$

This approximation is said to be first order because the leading term in the truncation error is linear in h. Dropping the truncation error terms we obtain

$$
f_{f d}^{\prime}(x)=\frac{f(x+h)-f(x)}{h} \quad \text { or } \quad f_{f d}^{\prime}(x)=f^{\prime}(x)+\mathcal{O}(h)
$$

Roundoff and Truncation Errors (2)

To study the roles of roundoff and truncation errors, compute the finite difference ${ }^{2}$ approximation to $f^{\prime}(x)$ when $f(x)=e^{x}$.
The relative error in the $f_{f d}^{\prime}(x)$ approximation to $\frac{d}{d x} e^{x}$ is

$$
E_{\mathrm{rel}}=\frac{f_{f d}^{\prime}(x)-f^{\prime}(x)}{f^{\prime}(x)}=\frac{f_{f d}^{\prime}(x)-e^{x}}{e^{x}}
$$

[^1]
Roundoff and Truncation Errors

Evaluate $E_{\text {rel }}$ at $x=1$ for a range of h.
Truncation error
dominates at large h.
Roundoff error in
$f(x+h)-f(h)$
dominates as $h \rightarrow 0$

[^0]: The IEEE Standard on Floating Point arithmetic defines a normalized binary format. Here we use a simplified decimal (base ten) format that, while abusing the standard notation, expresses the essential ideas behind the decimal to binary conversion.

[^1]: ${ }^{2}$ The finite difference approximation is used to obtain numerical solutions to ordinary and partial differentials equations where $f(x)$ and hence $f^{\prime}(x)$ is unknown.

