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Overview (1)

• Digital representation of numbers

⊲ Size limits
⊲ Resolution limits
⊲ The floating point number line

• Floating point arithmetic

⊲ roundoff
⊲ machine precision
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Overview (2)

• Implications for routine computation

⊲ Use “close enough” instead of “equals”
⊲ loss of significance for addition
⊲ catastrophic cancellation for subtraction

• Truncation error

⊲ Demonstrate with Taylor series
⊲ Order Notation
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What’s going on here?

Spontaneous generation of an insignificant digit:

>> format long e % display lots of digits

>> 2.6 + 0.2

ans =

2.800000000000000e+00

>> ans + 0.2

ans =

3.000000000000000e+00

>> ans + 0.2

ans =

3.200000000000001e+00 Why does the least significant digit appear?

>> 2.6 + 0.6

ans =

3.200000000000000e+00 Why does the small error not show up here?
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Bits, Bytes, and Words

base 10 conversion base 2

1 1 = 20 0000 0001

2 2 = 21 0000 0010

4 4 = 22 0000 0100

8 8 = 23 0000 1000

9 8 + 1 = 23 + 20 0000 1001

10 8 + 2 = 23 + 21 0000 1010

27 16 + 8 + 2 + 1 = 24 + 23 + 21 + 20 0001 1011︸ ︷︷ ︸
one byte
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Digital Storage of Integers (1)

As a prelude to discussing the binary storage of floating point values, first
consider the binary storage of integers.

• Integers can be exactly represented by base 2

• Typical size is 16 bits

• 216 = 65536 is largest 16 bit integer

• [−32768, 32767] is range of 16 bit integers in twos complement notation

• 32 bit and larger integers are available
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Digital Storage of Integers (2)

Note: Unless explicitly specified otherwise, all mathematical calculations
in Matlab use double precision floating point numbers.

Expert’s Note: The built-in int8, int16, int32, uint8, uint16, and
uint32 classes are used to reduce memory usage for
very large data sets.
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Digital Storage of Integers (3)

Let b be a binary digit, i.e. 1 or 0

(bbbb)2 ⇐⇒ |23|22|21|20|

The rightmost bit is the least significant bit (LSB)

The leftmost bit is the most significant bit (MSB)

Example:

(1001)2 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

= 8 + 0 + 0 + 1 = 9
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Digital Storage of Integers (4)

Limitations:

• A finite number of bits are used to store each value in computer
memory.

• Limiting the number of bits limits the size of integer that can be
represented

largest 3 bit integer: (111)2 = 4 + 2 + 1 = 7 = 23 − 1
largest 4 bit integer: (1111)2 = 8 + 4 + 2 + 1 = 15 = 24 − 1
largest 5 bit integer: (11111)2 = 16 + 8 + 4 + 2 + 1 = 31 = 25 − 1
largest n bit integer: = 2n − 1
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Digital Storage of Floating Point Numbers (1)

Numeric values with non-zero fractional parts are stored as floating point

numbers.

All floating point values are represented with a normalized scientific
notation1.

Example:

12.2792  =  0.123792 102

Mantissa Exponent

1The IEEE Standard on Floating Point arithmetic defines a normalized binary format. Here we use a

simplified decimal (base ten) format that, while abusing the standard notation, expresses the essential ideas
behind the decimal to binary conversion.
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Digital Storage of Floating Point Numbers (2)

Floating point values have a fixed number of bits allocated for storage of
the mantissa and a fixed number of bits allocated for storage of the
exponent.

Two common precisions are provided in numeric computing languages

Precision
Bits for
mantissa

Bits for
exponent

Single 23 8

Double 53 11
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Digital Storage of Floating Point Numbers (3)

A double precision (64 bit) floating point number can be schematically
represented as

64 bits︷ ︸︸ ︷
b︸︷︷︸

sign

bb . . . . . . bbb︸ ︷︷ ︸
52 bit value

of mantissa

bbbbbbbbbbb︸ ︷︷ ︸
11 bit exponent,

including sign

The finite number of bits in the exponent limits the magnitude or range of
the floating point numbers.

The finite number of bits in the mantissa limits the number of significant
digits or the precision of the floating point numbers.
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Digital Storage of Floating Point Numbers (4)

The floating point mantissa is expressed in powers of
1

2

(
1

2

)0

= 1 is not used

(
1

2

)1

= 0.5

(
1

2

)2

= 0.25

(
1

2

)3

= 0.125 · · ·
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Digital Storage of Floating Point Numbers (5)

Algorithm 5.1 Convert Floating-Point to Binary

r0 = x
for k = 1, 2, . . . , m

if rk−1 ≥ 2−k

bk = 1
rk = rk−1 − 2−k

else
bk = 0
rk = rk−1

end if
end for
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Digital Storage of Floating Point Numbers (6)

Example: Binary mantissa for x = 0.8125 — Apply Algorithm 5.1

k 2−k bk rk = rk−1 − bk2
−k

0 NA NA 0.8125

1 0.5 1 0.3125

2 0.25 1 0.0625

3 0.125 0 0.0625

4 0.0625 1 0.0000

Therefore, the binary mantissa for 0.8125 is (exactly) (1101)2
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Digital Storage of Floating Point Numbers (7)

Example: Binary mantissa for x = 0.1 — Apply Algorithm 5.1

k 2−k bk rk = rk−1 − bk2−k

0 NA NA 0.1

1 0.5 0 0.1

2 0.25 0 0.1

3 0.125 0 0.1

4 0.0625 1 0.1 - 0.0625 = 0.0375

5 0.03125 1 0.0375 - 0.03125 = 0.00625

6 0.015625 0 0.00625

7 0.0078125 0 0.00625

8 0.00390625 1 0.00625 - 0.00390625 = 0.00234375

9 0.001953125 1 0.0234375 - 0.001953125 = 0.000390625

10 0.0009765625 0 0.000390625
...

...
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Digital Storage of Floating Point Numbers (8)

Calculations on the preceding slide show that
the binary mantissa for 0.1 is (00011 0011 . . .)2.

The decimal value of 0.1 cannot be represented by a finite

number of binary digits.
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Consequences of Finite Storage (1)

Limiting the number of bits
allocated for storage of the
exponent

=⇒ Upper and lower limits on
the range (or magnitude) of
floating point numbers

Limiting the number of bits
allocated for storage of the
mantissa

=⇒ Limit on the precision (or
number of significant digits)
for any floating point number.
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Consequences of Finite Storage (2)

Most real numbers cannot be stored exactly (they do not exist on the
floating point number line)

• Integers less than 252 can be stored exactly.

Try this:

>> x = 2^51

>> s = dec2bin(x)

>> x2 = bin2dec(s)

>> x2 - x

• Numbers with 15 (decimal) digit mantissas that are the exact sum of
powers of (1/2) can be stored exactly.
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Floating Point Number Line

Compare floating point numbers to real numbers.

Real numbers Floating point numbers

Range Infinite: arbitrarily large and

arbitrarily small real numbers

exist.

Finite: the number of bits

allocated to the exponent limit

the magnitude of floating point

values.

Precision Infinite: There is an infinite set

of real numbers between any

two real numbers.

Finite: there is a finite number

(perhaps zero) of floating point

values between any two floating

point values.

In other words: The floating point number line is a subset of the real
number line.
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Floating Point Number Line

usable range overflow

10-308 10+3080–10-308–10+308

under-
flow

overflow

under-
flow

realmin realmax–realmax –realmin

zoom-in view

denormal

usable range
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Symbolic versus Numeric Calculation (1)

Commercial software for symbolic computation

• DeriveTM

• MACSYMATM

• MapleTM

• MathematicaTM

Symbolic calculations are exact. No rounding occurs because symbols and
algebraic relationships are manipulated without storing numerical values.
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Symbolic versus Numeric Calculation (2)

Example: Evaluate f(θ) = 1 − sin2 θ − cos2 θ

>> theta = 30*pi/180;

>> f = 1 - sin(theta)^2 - cos(theta)^2

f =

-1.1102e-16

f is close to, but not exactly equal to zero because of roundoff. Also note
that f is a single value, not a formula.
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Symbolic versus Numeric Calculation (3)

Symbolic computation using the Symbolic Math Toolbox in Matlab

>> t = sym(’t’) % declare t as a symbolic variable

t =

t

>> f = 1 - sin(t)^2 - cos(t)^2 % create a symbolic expression

f =

1-sin(t)^2-cos(t)^2

>> simplify(f) % ask Maple engine to make algebraic simplifications

f =

0

In the symbolic computation, f is exactly zero for any value of t. There is
no roundoff error in symbolic computation.
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Numerical Arithmetic

Numerical values have limited range and precision. Values created by
adding, subtracting, multiplying, or dividing floating point values will also
have limited range and precision.

Quite often, the result of an arithmetic operation between two floating
point values cannot be represented as another floating point value.
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Integer Arithmetic

Operation Result

2 + 2 = 4 integer

9 × 7 = 63 integer

12

3
= 4 integer

29

13
= 2 exact result is not an integer

29

1300
= 0 exact result is not an integer
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Floating Point Arithmetic

Operation Floating Point Value is . . .

2.0 + 2.0 = 4 exact

9.0 × 7.0 = 63 exact

12.0

3.0
= 4 exact

29

13
= 2.230769230769231 approximate

29

1300
= 2.230769230769231 × 10−2 approximate
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Floating Point Arithmetic in Matlab (1)

>> format long e

>> u = 29/13

u =

2.230769230769231e+00

>> v = 13*u

v =

29

>> v-29

ans =

0

Two rounding errors are made: (1) during computation and storage of u,
and (2) during computation and storage of v. Fortuitously, the
combination of rounding errors produces the exact result.
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Floating Point Arithmetic in Matlab (2)

>> x = 29/1300

x =

2.230769230769231e-02

>> y = 29 - 1300*x

y =

3.552713678800501e-015

In exact arithmetic, the value of y should be zero.

The roundoff error occurs when x is stored. Since 29/1300 cannot be
expressed with a finite sum of the powers of 1/2, the numerical value
stored in x is a truncated approximation to 29/1300.

When y is computed, the expression 1300*x evaluates to a number slightly
different than 29 because the bits lost in the computation and storage of x
are not recoverable.
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Roundoff in Quadratic Equation (1)

(See Example 5.3 in the text)

The roots of
ax2 + bx + c = 0 (1)

are

x =
−b ±

√
b2 − 4ac

2a
(2)

Consider
x2 + 54.32x + 0.1 = 0 (3)

which has the roots (to eleven digits)

x1 = 54.3218158995, x2 = 0.0018410049576.

Note that b2 ≫ 4ac
b2 = 2950.7 ≫ 4ac = 0.4
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Roundoff in Quadratic Equation (2)

Compute roots with four digit arithmetic

√
b2 − 4ac =

√
(−54.32)

2 − 0.4000

=
√

2951 − 0.4000

=
√

2951

= 54.32

The result of each intermediate mathematical operation is rounded to four
digits.
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Roundoff in Quadratic Equation (3)

Use x1,4 to designate the first root computed with four-digit arithmetic:

x1,4 =
−b +

√
b2 − 4ac

2a

=
+54.32 + 54.32

2.000

=
108.6

2.000

= 54.30

Correct root is x1 = 54.3218158995. Four digit arithmetic leads to 0.4
percent error in this example.
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Roundoff in Quadratic Equation (4)

Using four-digit arithmetic the second root, x2,4, is

x2,4 =
−b −

√
b2 − 4ac

2a

=
+54.32 − 54.32

2.000
(i)

=
0.000

2.000
(ii)

= 0 (iii)

An error of 100 percent!

The poor approximation to x2,4 is caused by roundoff in the calculation of√
b2 − 4ac. This leads to the subtraction of two equal numbers in line (i).
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Roundoff in Quadratic Equation (5)

A solution: rationalize the numerators of the expressions for the two roots:

x1 =
−b +

√
b2 − 4ac

2a

(
−b −

√
b2 − 4ac

−b −
√

b2 − 4ac

)
=

2c

−b −
√

b2 − 4ac
, (4)

x2 =
−b −

√
b2 − 4ac

2a

(
−b +

√
b2 − 4ac

−b +
√

b2 − 4ac

)
=

2c

−b +
√

b2 − 4ac
(5)
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Roundoff in Quadratic Equation (6)

Now use Equation (5) to compute the troublesome second root with four
digit arithmetic

x2,4 =
2c

−b +
√

b2 − 4ac
=

0.2000

+54.32 + 54.32
=

0.2000

108.6
= 0.001842.

The result is in error by only 0.05 percent.
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Roundoff in Quadratic Equation (7)

Compare the formulas for x2

x2,std =
−b −

√
b2 − 4ac

2a

x2,new =
2c

−b +
√

b2 − 4ac

The two formulations for x2 are algebraically equivalent. The difference in
the computed values of x2,4 is due to roundoff alone.
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Roundoff in Quadratic Equation (8)

Repeat the calculation of x1,4 with the new formula

x1,4 =
2c

−b −
√

b2 − 4ac

=
0.2000

+54.32 − 54.32
(i)

=
0.2000

0
(ii)

= ∞.

Limited precision in the calculation of
√

b2 + 4ac leads to a catastrophic

cancellation error in step (i)
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Roundoff in Quadratic Equation (9)

A robust solution uses a formula that takes the sign of b into account in a
way that prevents catastrophic cancellation.

The ultimate quadratic formula:

q ≡ −1

2

[
b + sign(b)

√
b2 − 4ac

]

where

sign(b) =

{
1 if b ≥ 0,

−1 otherwise

Then roots to quadratic equation are

x1 =
q

a
x2 =

c

q
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Roundoff in Quadratic Equation (10)

Summary

• Finite-precision causes roundoff in individual calculations

• Effects of roundoff usually accumulate slowly, but . . .

• Subtracting nearly equal numbers leads to severe loss of precision. A
similar loss of precision occurs when two numbers of very different
magnitude are added.

• Roundoff is inevitable: good algorithms minimize the effect of roundoff.
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Catastrophic Cancellation Errors (1)

The errors in
c = a + b and c = a − b

will be large when a ≫ b or a ≪ b.

Consider c = a + b with

a = x.xxx . . . × 100

b = y.yyy . . . × 10−8

where x and y are decimal digits.
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Catastrophic Cancellation Errors (1)

Evaluate c = a + b with a = x.xxx . . . × 100 and b = y.yyy . . . × 10−8

Assume for convenience of exposition that z = x + y < 10.

available precision︷ ︸︸ ︷
x.xxx xxxx xxxx xxxx

+ 0.000 0000 yyyy yyyy yyyy yyyy
= x.xxx xxxx zzzz zzzz yyyy yyyy

︸ ︷︷ ︸
lost digits

The most significant digits of a are retained, but the least significant digits
of b are lost because of the mismatch in magnitude of a and b.
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Catastrophic Cancellation Errors (2)

For subtraction: The error in

c = a − b

will be large when a ≈ b.

Consider c = a − b with

a = x.xxxxxxxxxxx1ssssss

b = x.xxxxxxxxxxx0tttttt

where x, y, s and t are decimal digits. The digits sss . . . and ttt . . . are
lost when a and b are stored in double-precision, floating point format.
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Catastrophic Cancellation Errors (3)

Evaluate a − b in double precision floating point arithmetic when
a = x.xxx xxxx xxxx 1 and b = x.xxx xxxx xxxx 0

available precision︷ ︸︸ ︷
x.xxx xxxx xxxx 1

− x.xxx xxxx xxxx 0
= 0.000 0000 0000 1 uuuu uuuu uuuu

︸ ︷︷ ︸
unassigned digits

= 1.uuuu uuuu uuuu× 10−12

The result has only one significant digit. Values for the uuuu digits are not
necessarily zero. The absolute error in the result is small compared to
either a or b. The relative error in the result is large because
ssssss − tttttt 6= uuuuuu (except by chance).
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Catastrophic Cancellation Errors (4)

Summary

• Occurs in addition α + β or subtraction α − β when α ≫ β or α ≪ β

• Occurs in subtraction: α − β when α ≈ β

• Error caused by a single operation (hence the term “catastrophic”) not
a slow accumulation of errors.

• Can often be minimized by algebraic rearrangement of the troublesome
formula. (Cf. improved quadratic formula.)
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Machine Precision (1)

The magnitude of roundoff errors is quantified by machine precision εm.

There is a number, εm > 0, such that

1 + δ = 1

whenever |δ| < εm.

In exact arithmetic 1 + δ = 1 only when δ = 0, so in exact arithmetic εm is
identically zero.

Matlab uses double precision (64 bit) arithmetic. The built-in variable
eps stores the value of εm.

eps = 2.2204 × 10−16
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Machine Precision (2)

Matlab code for Computing Machine Precision:

epsilon = 1;

it = 0;

maxit = 100;

while it < maxit

epsilon = epsilon/2;

b = 1 + epsilon;

if b == 1

break;

end

it = it + 1;

end
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Implications for Routine Calculations

• Floating point comparisons should test for “close enough” instead of
exact equality.

• Express “close” in terms of

absolute difference, |x − y|
or

relative difference,
|x − y|
|x|
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Floating Point Comparison

Don’t ask “is x equal to y”.

if x==y % Don’t do this

...

end

Instead ask, “are x and y ‘close enough’ in value”

if abs(x-y) < tol

...

end
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Absolute and Relative Error (1)

“Close enough” can be measured with either absolute difference or relative
difference, or both

Let

α = some exact or reference value

α̂ = some computed value

Absolute error

Eabs(α̂) =
∣∣α̂ − α

∣∣
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Absolute and Relative Error (1)

Relative error

Erel(α̂) =

∣∣α̂ − α
∣∣

∣∣αref

∣∣

Often we choose αref = α so that

Erel(α̂) =

∣∣α̂ − α
∣∣

∣∣α
∣∣
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Absolute and Relative Error (2)

Example: Approximating sin(x) for small x

Since

sin(x) = x − x3

3!
+

x5

5!
− . . .

we can approximate sin(x) with

sin(x) ≈ x

for small enough |x| < 1
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Absolute and Relative Error (3)

The absolute error in approximating sin(x) ≈ x for small x is

Eabs = x − sin(x) =
x3

3!
− x5

5!
+ . . .

And the relative error is

Eabs =
x − sin(x)

sin(x)
=

x

sin(x)
− 1
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Absolute and Relative Error (4)

Plot relative and absolute error in approximating sin(x) with x.

Although the absolute error is
relatively flat around x = 0,
the relative error grows more
quickly.

The relative error grows
quickly because the absolute
value of sin(x) is small near
x = 0.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−5

0

5

10

15

20
x 10

−3

x     (radians)

E
rr

or

Error in approximating sin(x) with x

 

 

Absolute Error
Relative Error
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Iteration termination (1)

An iteration generates a sequence of scalar values xk, k = 1, 2, 3, . . ..
The sequence converges to a limit ξ if

|xk − ξ| < δ, for all k > N,

where δ is a small.

In practice, the test is usually expressed as

|xk+1 − xk| < δ, when k > N.
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Iteration termination (2)

Absolute convergence criterion

Iterate until |x − xold| < ∆a where ∆a is the absolute convergence
tolerance.

In Matlab:

x = ... % initialize

xold = ...

while abs(x-xold) > deltaa

xold = x;

update x

end
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Iteration termination (3)

Relative convergence criterion

Iterate until

∣∣∣∣
x − xold

xold

∣∣∣∣ < δr, where δr is the absolute convergence

tolerance.

In Matlab:

x = ... % initialize

xold = ...

while abs((x-xold)/xold) > deltar

xold = x;

update x

end
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Example: Solve cos(x) = x (1)

Find the value of x that
satisfies cos(x) = x.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x  (radians)

y 
=

 x
   

  a
nd

   
   

y 
=

 c
os

(x
)

NMM: Unavoidable Errors in Computing page 57



Example: Solve cos(x) = x (2)

The fixed point iteration as a method for obtaining a numerical
approximation to the solution of a scalar equation. For now, trust that the
follow algorithm will eventually give the solution.

1. Guess x0

2. Set xold = x0

3. Update guess
xnew = cos(xold)

4. If xnew ≈ xold stop; otherwise set xold = xnew and return to step 3
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Solve cos(x) = x (3)

MATLAB implementation

x0 = ... % initial guess

k = 0;

xnew = x0;

while NOT_CONVERGED & k < maxit

xold = xnew;

xnew = cos(xold);

it = it + 1;

end

Let’s examine someways of defining the logical value NOT_CONVERGED.

NMM: Unavoidable Errors in Computing page 59



Solve cos(x) = x (4)

Bad test # 1

while xnew ~= xold

This test will be true unless xnew and xold are exactly equal. In other
words, xnew and xold are equal only when their bit patterns are identical.
This is bad because

• Test may never be met because of oscillatory bit patterns

• Even if test is eventually met, the iterations will probably do more work
than needed

NMM: Unavoidable Errors in Computing page 60



Solve cos(x) = x (5)

Bad test # 2

while (xnew-xold) > delta

This test evaluates to false whenever (xnew-xold) is negative,
even if |(xnew− xold)| ≫ delta.

Example:

>> xold = 100; xnew = 1; delta = 5e-9;

>> (xnew-xold) > delta

ans =

0

These values of xnew and xold are not close, but the erroneous
convergence criterion would cause the iterations to stop.
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Solve cos(x) = x (6)

Workable test # 1: Absolute tolerance

while abs(xnew-xold) > delta

An absolute tolerance is useful when the iterative sequence converges to a
value with magnitude much less than one.

What value of delta to use?
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Solve cos(x) = x (7)

Workable test # 2: Relative tolerance

while abs( (xnew-xold)/xref ) > delta

The user supplies appropriate value of xref. For this particular iteration
we could use xref = xold.

while abs( (xnew-xold)/xold ) > delta

Note: For the problem of solving cos(x) = x, the solution is O(1) so
the absolute and relative convergence tolerance will terminate
the calculations at roughly the same iteration.
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Solve cos(x) = x (8)

Using the relative convergence tolerance, the code becomes

x0 = ... % initial guess

k = 0;

xnew = x0;

while ( abs( (xnew-xold)/xold ) > delta ) & k < maxit

xold = xnew;

xnew = cos(xold);

it = it + 1;

end

Note: Parentheses around abs( (xnew-xold)/xold ) > delta are
not needed for correct Matlab implementation. The
parenthesis are added to make the meaning of the clear to
humans reading the code.
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Truncation Error

Consider the series for sin(x)

sin(x) = x − x3

3!
+

x5

5!
− · · ·

For small x, only a few terms are needed to get a good approximation to
sin(x). The · · · terms are “truncated”

ftrue = fsum + truncation error

The size of the truncation error depends on x and the number of terms
included in fsum.
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Truncation of series for sin(x) (1)

function ssum = sinser(x,tol,n)

% sinser Evaluate the series representation of the sine function

%

% Input: x = argument of the sine function, i.e., compute sin(x)

% tol = tolerance on accumulated sum. Default: tol = 5e-9

% n = maximum number of terms. Default: n = 15

%

% Output: ssum = value of series sum after nterms or tolerance is met

term = x; ssum = term; % Initialize series

fprintf(’Series approximation to sin(%f)\n\n k term ssum\n’,x);

fprintf(’%3d %11.3e %12.8f\n’,1,term,ssum);

for k=3:2:(2*n-1)

term = -term * x*x/(k*(k-1)); % Next term in the series

ssum = ssum + term;

fprintf(’%3d %11.3e %12.8f\n’,k,term,ssum);

if abs(term/ssum)<tol, break; end % True at convergence

end

fprintf(’\nTruncation error after %d terms is %g\n\n’,(k+1)/2,abs(ssum-sin(x)));
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Truncation of series for sin(x) (2)

For small x, the series for sin(x) converges in a few terms

>> s = sinser(pi/6,5e-9,15);

Series approximation to sin(0.523599)

k term ssum

1 5.236e-001 0.52359878

3 -2.392e-002 0.49967418

5 3.280e-004 0.50000213

7 -2.141e-006 0.49999999

9 8.151e-009 0.50000000

11 -2.032e-011 0.50000000

Truncation error after 6 terms is 3.56382e-014
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Truncation of series for sin(x) (3)

The truncation error in the series is small relative to the true value of
sin(π/6)

>> s = sinser(pi/6,5e-9,15);
...

>> err = (s-sin(pi/6))/sin(pi/6)

err =

-7.1276e-014
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Truncation of series for sin(x) (4)

For larger x, the series for sin(x) converges more slowly

>> s = sinser(15*pi/6,5e-9,15);

Series approximation to sin(7.853982)

k term ssum

1 7.854e+000 7.85398163

3 -8.075e+001 -72.89153055

5 2.490e+002 176.14792646
...

...
...

25 1.537e-003 1.00012542

27 -1.350e-004 0.99999038

29 1.026e-005 1.00000064

Truncation error after 15 terms is 6.42624e-007

Increasing the number of terms will allow the series to converge with the
tolerance of 5 × 10−9. A better solution to the slow convergence of the
series are explored in Exercise 23.
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Taylor Series (1)

For a sufficiently continuous function f(x) defined on the interval
x ∈ [a, b] we define the nth order Taylor Series approximation Pn(x)

Pn(x) = f(x0)+(x−x0)
df

dx

∣∣∣∣
x=x0

+
(x − x0)

2

2

d2f

dx2

∣∣∣∣
x=x0

+· · ·+ (x − x0)
n

n!

dnf

dxn

∣∣∣∣
x=x0

Then there exists ξ with x0 ≤ ξ ≤ x such that

f(x) = Pn(x) + Rn(x)

where

Rn(x) =
(x − x0)

(n+1)

(n + 1)!

d(n+1)f

dx(n+1)

∣∣∣∣
x=ξ
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Taylor Series (2)

Big “O” notation

f(x) = Pn(x) + O
(

(x − x0)
(n+1)

(n + 1)!

)

or, for x − x0 = h we say

f(x) = Pn(x) + O
(
h(n+1)

)
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Taylor Series Example

Consider the function

f(x) =
1

1 − x

The Taylor Series approximations to f(x) of order 1, 2 and 3 are

P1(x) =
1

1 − x0
+

x − x0

(1 − x0)2

P2(x) =
1

1 − x0
+

x − x0

(1 − x0)2
+

(x − x0)
2

(1 − x0)3

P3(x) =
1

1 − x0
+

x − x0

(1 − x0)2
+

(x − x0)
2

(1 − x0)3
+

(x − x0)
3

(1 − x0)4
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Taylor Series: Pi(x) near x = 1.6 (3)
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Roundoff and Truncation Errors (1)

Roundoff and truncation errors occur in numerical computation.

Example:

Finite difference approximation to f ′(x) = df/dx

f ′(x) =
f(x + h) − f(x)

h
− h

2
f ′′(x) + . . .

This approximation is said to be first order because the leading term in the
truncation error is linear in h. Dropping the truncation error terms we
obtain

f ′
fd(x) =

f(x + h) − f(x)

h
or f ′

fd(x) = f ′(x) + O(h)
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Roundoff and Truncation Errors (2)

To study the roles of roundoff and truncation errors, compute the finite
difference2 approximation to f ′(x) when f(x) = ex.

The relative error in the f ′
fd(x) approximation to

d

dx
ex is

Erel =
f ′

fd(x) − f ′(x)

f ′(x)
=

f ′
fd(x) − ex

ex

2The finite difference approximation is used to obtain numerical solutions to ordinary and partial
differentials equations where f(x) and hence f ′(x) is unknown.
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Roundoff and Truncation Errors (3)

Evaluate Erel at x = 1 for a range of h.

Truncation error
dominates at large h.

Roundoff error in
f(x + h) − f(h)
dominates as h → 0.
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