
Organizing and Debugging
Matlab Programs

Gerald Recktenwald

Portland State University

Department of Mechanical Engineering

These slides are a supplement to the book Numerical Methods with
Matlab: Implementations and Applications, by Gerald W. Recktenwald,
c© 2000, Prentice-Hall, Upper Saddle River, NJ. These slides are c©

2000 Gerald W. Recktenwald. The PDF version of these slides may
be downloaded or stored or printed only for noncommercial, educational
use. The repackaging or sale of these slides in any form, without written
consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material
for the book, can be found at www.prenhall.com/recktenwald.

Version 0.9 October 10, 2000

Overview

• Rationale

• Programming Style

• Why and How of Modular Code

• Top down program design

• Basic Debugging

NMM: Organizing and Debugging Matlab Programs page 1

Rationale

Organized programs are. . .

• easier to maintain

• easier to debug

• not much harder to write

Debugging. . .

• is inevitable

• can be anticipated with good program design

• can be done interactively with Matlab 5.x

NMM: Organizing and Debugging Matlab Programs page 2

Programming Style (1)

A consistent programming style gives your programs a visual

familiarity that helps the reader quickly comprehend the

intention of the code.

A programming style consists of

• Visual appearance of the code

• Conventions used for variable names

• Documentation with comment statements

NMM: Organizing and Debugging Matlab Programs page 3

Programming Style (2)

Use visual layout to suggest organization

• Indent if...end and for...end blocks

• Blank lines separate major blocks of code

Example: Indent code for conditional structures and loops

if condition 1 is true

Block 1

elseif condition 2 is true

Block 2

end

for i=1:length(x)

Body of loop

end

NMM: Organizing and Debugging Matlab Programs page 4

Programming Style (3)

Use meaningful variable names

d = 5;

t = 0.02;

r = d/2;

r2 = r + t;

d_in = 5;

thick = 0.02;

r_in = d_in/2;

r_out = r_in + thick;

Follow Programming and Mathematical Conventions

Variable
names

Typical usage

i, j, k Array subscripts, loop counters

i, j
√−1 with complex arithmetic

m, n End of a sequence, i = 1, . . . , n,

number of rows (m) and columns (n) in a matrix

A, B generic matrix

x, y, z generic vectors

Note: Consistency is more important than convention.

NMM: Organizing and Debugging Matlab Programs page 5

Programming Style (4)

Note: I prefer to avoid use of lower case “L” as a variable

name. It looks a lot like the number “1”. Which of

the following statements assigns the value “1” to the

lower case version of the variable “L”?

l = 1; (or) 1 = l;

NMM: Organizing and Debugging Matlab Programs page 6

Programming Style (5)

Document code with comment statements

• Write comments as you write code, not after

• Include a prologue that supports “help”

• Assume that the code is going to be used more than once

• Comments should be short notes that augment the meaning

of the program statements: Do not parrot the code.

• Comments alone do not create good code.

� You cannot fix a bug by changing the comments

NMM: Organizing and Debugging Matlab Programs page 7

Programming Style (6)

Example: Comments at beginning of a block

% --- Evaluate curve fit and plot it along with original data

tfit = linspace(min(t),max(t));

pfit = polyval(c,tfit);

plot(t,p,’o’,tfit,pfit,’--’);

xlabel(’Temperature (C)’); ylabel(’Pressure (MPa)’);

legend(’Data’,’Polynomial Curve Fit’);

Example: Short comments at side of statements

cp = 2050; % specific heat of solid and liquid paraffin (J/kg/K)

rho = 810; % density of liquid or solid paraffin (kg/m^3)

k = 0.23; % thermal conductivity, (W/m/C)

L = 251e3; % latent heat (J/kg)

Tm = 65.4; % melting temperature (C)

NMM: Organizing and Debugging Matlab Programs page 8

Supporting On-line Help

• First line of a function is the definition

• Second line must be a comment statement

• All text from the second line up to the first non-comment is

printed in response to

help functionName

NMM: Organizing and Debugging Matlab Programs page 9

Prologue Used in the NMM Toolbox

Summary: One line description of what the function does.

Synopsis: Lists the various ways in which the function can be

called.

Input: Describes each input variable.

Output: Describes each output variable.

NMM: Organizing and Debugging Matlab Programs page 10

F
u
n
ct
io
n
P
ro
lo
g
u
e

f
u
n
c
t
i
o
n

r
h
o

=

H
2
O
d
e
n
s
i
t
y
(
T
,
u
n
i
t
s
)

%

H
2
O
d
e
n
s
i
t
y

D
e
n
s
i
t
y

o
f

s
a
t
u
r
a
t
e
d

l
i
q
u
i
d

w
a
t
e
r

% %

S
y
n
o
p
s
i
s
:

r
h
o

=

H
2
O
d
e
n
s
i
t
y

%

r
h
o

=

H
2
O
d
e
n
s
i
t
y
(
T
)

%

r
h
o

=

H
2
O
d
e
n
s
i
t
y
(
T
,
u
n
i
t
s
)

% %

I
n
p
u
t
:

T

=

(
o
p
t
i
o
n
a
l
)

t
e
m
p
e
r
a
t
u
r
e

a
t

w
h
i
c
h

d
e
n
s
i
t
y

i
s

e
v
a
l
u
a
t
e
d

%

D
e
f
a
u
l
t
:

T

=

2
0
C
.

I
f

u
n
i
t
s
=
'
F
'

t
h
e
n

T

i
s

d
e
g
r
e
e
s

F

%

u
n
i
t
s

=

(
o
p
t
i
o
n
a
l
)

u
n
i
t
s

f
o
r

i
n
p
u
t

t
e
m
p
e
r
a
t
u
r
e
,

D
e
f
a
u
l
t

=

'
C
'

%

u
n
i
t
s

=

'
C
'

f
o
r

C
e
l
s
i
u
s
,

u
n
i
t
s

=

'
F
'

f
o
r

F
a
h
r
e
n
h
e
i
t

% %

O
u
t
p
u
t
:

r
h
o

=

d
e
n
s
i
t
y
,

k
g
/
m
^
3

i
f

u
n
i
t
s

=

'
C
'
,

o
r

l
b
m
/
f
t
^
3

i
f

u
n
i
t
s

=

'
F
'

%

N
o
t
e
s
:

U
s
e

4
t
h

o
r
d
e
r

p
o
l
y
n
o
m
i
a
l

c
u
r
v
e

f
i
t

o
f

d
a
t
a

i
n

T
a
b
l
e

B
.
2

%

(
A
p
p
e
n
d
i
x

B
)

o
f

"
F
u
n
d
a
m
e
n
t
a
l
s

o
f

F
l
u
i
d

M
e
c
h
a
n
i
c
s
"
,

%

B
.
R
.

M
u
n
s
o
n
,

e
t

a
l
.
,

2
n
d

e
d
i
t
i
o
n
,

1
9
9
4
,

W
i
l
e
y

a
n
d

S
o
n
s
,

N
Y

Fi
rs

t l
in

e
of

 th
e

pr
ol

og
ue

is
 a

 te
rs

e
bu

t c
om

pl
et

e
de

sc
ri

pt
io

n
of

 th
e

fu
nc

tio
n.

N
o

bl
an

k
lin

es
 b

et
w

ee
n

fu
nc

tio
n

de
fi

ni
tio

n
an

d
fi

rs
t c

om
m

en
t

st
at

em
en

t i
n

th
e

pr
ol

og
ue

T
 a

nd
 u
n
i
t
s

 a
re

 o
pt

io
na

l
in

pu
t v

ar
ia

bl
es

 a
s

in
di

ca
te

d
by

 th
e

sy
no

ps
is

.

T
hi

s
co

m
m

en
t w

ill
 n

ot
 b

e
pr

in
te

d
w

he
n

th
e

us
er

 ty
pe

s
“h
e
l
p

H
2
O
d
e
n
s
i
t
y

”
be

ca
us

e
it

is
 s

ep
ar

at
ed

 f
ro

m
 th

e
pr

ol
og

ue
by

 a
 b

la
nk

 li
ne

.

Fi
rs

t l
in

e
of

 th
e

fi
le

 m
us

t
be

 th
e

fu
nc

tio
n

de
fi

ni
tio

n.

N
M

M
:

O
rg

an
iz

in
g

an
d

D
eb

u
gg

in
g

M
a
t
l
a
b

P
ro

gr
am

s
p
ag

e
11

Modular Code (1)

A module should be dedicated to one task

• Flexibility is provided by input/output parameters

General purpose modules need. . .

• Description of input/output parameters

• Meaningful error messages so that user understands the

problem

NMM: Organizing and Debugging Matlab Programs page 12

Modular Code (2)

Reuse modules

• Debug once, use again

• Minimize duplication of code

• Any improvements are available to all programs using that

module

• Error messages must be meaningful so that user of general

purpose routine understands the problem

Organization takes experience

• Goal is not to maximize the number of m-files

• Organization will evolve on complex projects

NMM: Organizing and Debugging Matlab Programs page 13

Example: Built-in Bessel functions (1)

The Bessel functions are solutions to

z
2d2y

dz2
+ z

dy

dz
− (z

2
+ ν

2
)y = 0

The Bessel function of the first kind is

Jν(z) =
(z

2

)ν
∞∑

k=0

(z2

4

)k

k! Γ(ν + k + 1)

where ν is a real number, z is complex, i =
√−1 and

Γ(z) =

∫ ∞

0

e
−t

t
z−1

dt

Other Bessel functions (which are also solutions to the ODE) are

defined in terms of Jν(z).

NMM: Organizing and Debugging Matlab Programs page 14

Example: Built-in Bessel functions (2)

Rather than repeat the code that computes Jν(z) and Γ(z),

these fundamental functions are part of a core routine that gets

evaluated via an interface function.

>> lookfor bessel

BESSCHK Check arguments to bessel functions.

BESSEL Bessel functions of various kinds.

BESSELA Obsolete Bessel function.

BESSELH Bessel function of the third kind (Hankel function).

BESSELI Modified Bessel function of the first kind.

BESSELJ Bessel function of the first kind.

BESSELK Modified Bessel function of the second kind.

BESSELY Bessel function of the second kind.

BESSLDEM Driver function for Bessel zero finding.

BESSLODE Bessel’s equation of order 0 used by BESSLDEM.

NMM: Organizing and Debugging Matlab Programs page 15

Example: Built-in Bessel functions (3)

besselk.m
function [w,ierr] = besselk(nu,z,scale)

 ... statements omitted

[msg,nu,z,siz] = besschk(nu,z); error(msg);
[w,ierr] = besselmx(real('K'),nu,z,scale);

command window

>> y = besselk(2,5)

bessel.m
function [w,ierr] = bessel(nu,z)

 ... statements omitted

[w,ierr] = besselj(nu,z)

besselj.m
function [w,ierr] = besselj(nu,z,scale)

 ... statements omitted

[msg,nu,z,siz] = besschk(nu,z); error(msg);
[w,ierr] = besselmx(real('J'),nu,z,scale);

command window

>> y = bessel(1,3.2)

besschk.m

besselmx.mex

NMM: Organizing and Debugging Matlab Programs page 16

Defensive Programming

• Do not assume the input is correct. Check it.

• Provide a “catch” or default condition for a

if...elseif...else... construct

• Include optional (verbose) print statements that can be

switched on when trouble occurs

• Provide diagnostic error messages.

NMM: Organizing and Debugging Matlab Programs page 17

Example: H2Odensity.m

1 function rho = H2Odensity(T,units)

2 % H2Odensity Density of saturated liquid water

3 %

4 % Synopsis: rho = H2Odensity

5 % rho = H2Odensity(T)

6 % rho = H2Odensity(T,units)

7 %

8 % Input: T = (optional) temperature at which density is evaluated

9 % Default: T = 20C. If units=’F’, then T is degrees F

10 % units = (optional) units for input temperature, Default = ’C’

11 % units = ’C’ for Celsius, units = ’F’ for Fahrenheit

12 %

13 % Output: rho = density, kg/m^3 if units = ’C’, or lbm/ft^3 if units = ’F’

14

15 % Notes: Use 4th order polynomial curve fit of data in Table B.2

16 % (Appendix B) of "Fundamentals of Fluid Mechanics",

17 % B. R. Munson, et al., 2nd edition, 1994, Wiley and Sons, NY

18

19 if nargin<1

20 rho = 998.2; return; % Density at 20 C w/out evaluating curve fit

21 elseif nargin==1

22 units=’C’; % Default units are C

23 end

24

25 % --- Convert to degrees C if necessary

26 if upper(units)==’F’

27 Tin = (T-32)*5/9; % Convert F to C; don’t change input variable

28 elseif upper(units) == ’C’

29 Tin = T;

30 else

31 error(sprintf(’units = ’’%s’’ not allowed in H20density’,units));

32 end

33

34 % --- Make sure temperature is within range of curve fit

NMM: Organizing and Debugging Matlab Programs page 18

35 if Tin<0 | Tin>100

36 error(sprintf(’T = %f (C) is out of range for density curve fits’,Tin));

37 end

38

39 % --- Curve fit coefficients

40 c = [1.543908249780381441e-05 -5.878005395030049852e-03 ...

41 1.788447211945859774e-02 1.000009926781338436e+03];

42

43 rho = polyval(c,Tin); % Evaluate polynomial curve fit

44 if upper(units)==’F’

45 rho = rho*6.243e-2; % Convert kg/m^3 to lbm/ft^3

46 end

NMM: Organizing and Debugging Matlab Programs page 19

Preemptive Debugging

• Use defensive programming

• Break large programming projects into modules

� Develop reusable tests for key modules

� Good test problems have known answers

� Run the tests after changes are made to the module

• Include diagnostic calculations in a module

� Enclose diagnostics inside if...end blocks so that they

can be turned off.

� Provide extra print statements that can also be turned on

and off

NMM: Organizing and Debugging Matlab Programs page 20

Debugging Tools

• Matlab version 5 (and later) has an interactive debugger

• The type and dbtype commands are used to list contents of

an m-file.

• The error function prints a message to the screen, and

stops execution. This provides for graceful failure, and the

opportunity to inform the reader of potential causes for the

error.

• The warning function prints a message to the screen, but

does not stop execution.

• pause or keyboard commands can be used to temporarily

halt execution.

NMM: Organizing and Debugging Matlab Programs page 21

Use of keyboard command

function r = quadroot(a,b,c)

% quadroot Roots of quadratic equation and demo of keyboard command

%

% Synopsis: r = quadroot(a,b,c)

%

% Input: a,b,c = coefficients of a*x^2 + b*x + c = 0

%

% Output: r = column vector containing the real or complex roots

% See Chapter 4, Unavoidable Errors in Computing, for a discussion

% of the formula for r(1) and r(2)

d = b^2 - 4*a*c;

if d<0

fprintf(’Warning in function QUADROOT:\n’);

fprintf(’\tNegative discriminant\n\tType "return" to continue\n’);

keyboard;

end

q = -0.5*(b + sign(b)*sqrt(b^2 - 4*a*c));

r = [q/a; c/q]; % store roots in a column vector

NMM: Organizing and Debugging Matlab Programs page 22

