
Transient, One-Dimensional Heat Conduction

in a Convectively Cooled Sphere

Gerald Recktenwald∗

March 16, 2006†

1 Overview

This article documents the numerical evaluation of a well-known analytical
model for transient, one-dimensional heat conduction. The physical situation
is depicted in Figure 1. A sphere of uniform material is initially at a uniform
temperature Ti. At time t = 0 the sphere is immersed in a stream of moving
fluid at some different temperature T∞. The external surface of the sphere ex-
changes heat by convection. The local heat flux from the sphere to the fluid
is

q = h(Ts − T∞) (1)

where h is the heat transfer coefficient, and Ts is the local surface temperature.
The problem is greatly simplified by assuming that the heat flux on the

surface is uniform. Under this condition, Ts = T (r0) is also uniform and the
temperature inside the sphere depends only on the radius, r, and time t, i.e.,

∗Mechanical and Materials Engineering Department, Portland State University, Portland,
OR, 97201, gerry@me.pdx.edu
†Corrections made 10 September 2011 and 18 July 2013

T

ro

h

Figure 1: A sphere immersed in and exchanging heat with stream of fluid.

1

2

T = T (r, t). The temperature field is governed by the heat equation in spherical
coordinates

∂T

∂t
=

α

r2
∂

∂r

(
r2
∂T

∂r

)
(2)

where α = k/(ρc) is the thermal diffusivity of the sphere material, k is the
thermal conductivity, ρ is the density, and c is the specific heat. The boundary
condition on the surface is

k
∂T

∂r

∣∣∣∣
r=r0

= h(T∞ − Ts). (3)

The initial condition is
T (r, 0) = Ti. (4)

The remaining condition is that the temperature at all points in the sphere is
bounded. These three conditions are sufficient to obtain a solution to Equa-
tion (2).

2 Analytical Solution

The analytical solution for Equation (2), subject to Equation (3), Equation (4),
and the condition of bounded T (r, t) is given in several heat transfer textbooks,
e.g. [1, 2]. A universal solution is obtained in terms of the dimensionless variables

θ∗ =
T − T∞
Ti − T∞

, r∗ =
r

ro
, Fo =

αt

r2o
. (5)

The dimensionless form of the boundary condition in Equation (3) is

∂θ∗

∂r∗

∣∣∣∣
r∗=1

= Bi θ∗s (6)

where the Biot number is

Bi =
hro
k

(7)

and θ∗s = (Ts − T∞)/(Ti − T∞). If Bi� 1 the internal temperature gradient is
small compared to the scaled difference between the surface temperature and
the fluid. In that case the temperature in the sphere is spatially uniform.

The analytical solution is the infinite series

θ∗ =

∞∑
n=1

Cn exp(−ζ2nFo)
1

ζnr∗
sin(ζnr

∗) (8)

where

Cn =
4 [sin(ζn)− ζn cos(ζn)]

2ζn − sin(2ζn)
. (9)

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

3

0 5 10 15

−20

0

20

f(ζ)

0 10 20 30 40 50

−20

0

20

ζ

f(ζ)

Figure 2: Plots of f(ζ) = 1 − ζ cot(ζ) − Bi for Bi = 5 showing roots (*) and
singularities (o) of Equation (10). Upper plot shows the range 0 ≤ ζ ≤ 15.
Lower plot shows the range 0 ≤ ζ ≤ 50.

The ζn are the positive roots of

1− ζn cot(ζn) = Bi. (10)

Equations (8) through (10) provide a compact representation of the solution.
Obtaining numerical values from these formulas is a nontrivial effort except in
the case where Fo� 1 when a one term approximation is sufficient. In general,
at least the first few terms terms in the series are needed.

3 Evaluating the Solution in Matlab

In this section, a procedure for evaluating Equation (8) is presented. The Mat-
lab programs, or (for long programs) the function prologues, are listed in the
appendix.

3.1 Finding the Roots of Equation (10)

The first task is to find the roots, ζn, of Equation (10) for a given Bi. This is a
standard root-finding problem, with two important complications. First, there
are an infinite number of ζn on the positive real line. To evaluate Equation (8)
a large number of roots must be available and sorted in order of increasing
ζn. A missing root will cause erroneous evaluation of the series. The second
complication is that Equation (10) has a singularity between successive roots.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

3.1 Finding the Roots of Equation (10) 4

Figure 2 shows the function f(ζ) = 1− ζ cot(ζ)−Bi for Bi = 5 in the range
0 ≤ ζ ≤ 50. Note that f(ζ) = 0 when ζ is a root of Equation (10). The top
half of Figure 2 shows f(ζ) (for Bi = 5) in the range 0 ≤ ζ ≤ 15. The roots
are identified with the * symbol, and the singularities are identified by vertical
dashed lines and the o symbol. The bottom half of Figure 2 shows f(ζ) over the
larger range 0 < ζ ≤ 50. As ζ increases the spacing between roots approaches a
constant, and the roots are located midway between the singularities. At small
ζ the spacing between the roots is not equal.

The zRoots function in Listing 1 uses the zfun function (Listing 2), the
bracket function (Listing 3), and the built-in fzero function to find the roots
of Equation (10). fzero is a very efficient root-finding routine, but it converges
equally well to roots and singularities. The strategy used in zRoots is to first
use fzero find all the roots and singularities in order of increasing ζ, and then
discard the singularities. A singularity ζ̂ is easily identified because f(ζ̂) is large.

The zRoots function can be called with two optional input arguments. The
first input, Bi, is required. The first optional input, zmax, specifies the upper
limit of the range of ζ to search for roots. The second optional input, verbose,
specifies whether the roots and singularities are printed, and whether a plot of
f(ζ) is created. For example, the top plot in Figure 2 is obtained with

>> z = zRoots(5,15,true);

5 good zeta values found in zRoots()

4 potential zeros are suspected to be singularities

All roots found by fzero

k zleft z zright f(z)

1 2.5301 2.5704 2.5904 3.128e-08

2 3.1325 3.1416 3.1928 6.740e+07

3 5.3012 5.3540 5.3614 2.485e-11

4 6.2651 6.2832 6.3253 -1.015e+08

5 8.2530 8.3029 8.3133 3.864e-12

6 9.3976 9.4248 9.4578 9.273e+07

7 11.3253 11.3348 11.3855 -1.298e-07

8 12.5301 12.5664 12.5904 -1.450e+08

9 14.3976 14.4080 14.4578 -2.699e-07

Good roots retained by zRoots

n z f(z)

1 2.5704 3.128e-08

3 5.3540 2.485e-11

5 8.3029 3.864e-12

7 11.3348 -1.298e-07

9 14.4080 -2.699e-07

Singularities eliminated from list of roots

n zbad f(zbad)

2 3.1416 6.740e+07

4 6.2832 -1.015e+08

6 9.4248 9.273e+07

8 12.5664 -1.450e+08

Note that the roots and singularities are interleaved, and that zRoots correctly
identifies the roots.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

3.2 Evaluating θ∗(Bi, Fo) 5

In practice, a plot of the roots is not always necessary or desirable. To obtain
only the ζn for Bi = 5 in the range 0 ≤ ζ ≤ 50 use

>> z = zRoots(5,50);

16 good zeta values found in zRoots()

15 potential zeros are suspected to be singularities

To facilitate manual calculation, Incropera and DeWitt [2] provide a list
of the first roots of Equation (10) for a range of Bi values1. The zRootFirst

function produces a similar list of ζ1 values. There are some discrepancies in the
ζ1 values created by zRootFirst and the list given by Incropera and DeWitt.
The first few rows of output from zRootFirst are

>> zRootFirst

Bi z1 f(z1)

0.01 0.1730 -2.064e-14

0.02 0.2445 -9.368e-17

0.03 0.2991 -7.494e-16 (0.2989)

0.04 0.3450 -4.517e-15

0.05 0.3854 -2.179e-15 (0.3852)

0.06 0.4217 4.857e-17

0.07 0.4551 -1.665e-16 (0.4550)

0.08 0.4860 -8.042e-14
.
.
.

.

.

.
.
.
.

The third column gives f(z1) = 1 − ζn cot(ζn) − Bi as a check on whether z1
satisfies Equation (10). The numbers in parenthesis to the right of the third
column are ζ1 values from Incropera and DeWitt that differ from those created
by zRootFirst. (Those values are not printed by the Matlab function.) The
discrepancies are small (all less than 0.07 percent) and are likely due to rounding
errors in the calculations used to produce the table in the textbook by Incropera
and DeWitt. The Matlab calculations with zRootFirst are all in double
precision2. The z1 values produced by zRootFirst all give very small residuals,
and therefore are accurate.

3.2 Evaluating θ∗(Bi, Fo)

Once the ζn are known for a given Bi, the dimensionless temperature is com-
puted from Equation (8). The Tsphere function in Listing 5 calls zRoots to
find the required ζn, and then evaluates Equation (8). In other words, the user
only needs to call Tsphere to obtain numerical values of θ∗.

Tsphere has a number of optional input and output arguments so that it
can be called in the following ways.

T = Tsphere(Bi,Fo)

T = Tsphere(Bi,Fo,nr)

T = Tsphere(Bi,Fo,nr,verbose)

[T,r] = Tsphere(...)

1For large t a one-term approximation to Equation (8) is sufficient.
2Roughly fifteen decimal digits of accuracy.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

3.3 Evaluating T (r, t) 6

The required inputs are Bi, the Biot number, and Fo, the Fourier number. The
Fo input can be a scalar or vector. The third input nr is optional and specifies
the number of radial positions at which θ∗ is to be evaluated. If nr= 1 then only
θ∗ at r∗ = 0 is evaluated. If nr> 1 then θ∗ is evaluated at nr equally spaced
values on the interval 0 ≤ r∗ ≤ 1.

The default output T is a matrix of θ∗ values. If Fo is a vector, each column
of T corresponds to an element in Fo. If nr> 1 the rows of T correspond to the
nr equally spaced r∗ values.

For example, to evaluate θ∗(r∗,Fo) at 11 uniformly spaced radial locations
for Fo = [0.1, 0.15, 0.2] and Bi = 5, use

>> [T,r] = Tsphere(5,[0.1 0.15 0.2],11,true);

16 good zeta values found in zRoots()

15 potential zeros are suspected to be singularities

Dimensionless Temperature Profile

dTmax = 9.65003e-105

| Fo =

r* | 0.1000 0.1500 0.2000

0.0000 | 0.8459 0.6447 0.4722

0.1000 | 0.8393 0.6383 0.4672

0.2000 | 0.8194 0.6192 0.4523

0.3000 | 0.7858 0.5879 0.4281

0.4000 | 0.7380 0.5451 0.3953

0.5000 | 0.6758 0.4921 0.3551

0.6000 | 0.5997 0.4303 0.3091

0.7000 | 0.5114 0.3619 0.2587

0.8000 | 0.4136 0.2892 0.2060

0.9000 | 0.3102 0.2151 0.1527

1.0000 | 0.2059 0.1423 0.1009

3.3 Evaluating T (r, t)

The Matlab programs presented in this article produce dimensionless results.
To solve a problem in dimensional units follow these steps

1. Convert the dimensional inputs to Bi and Fo.

2. Obtain the dimensionless solution θ∗(Bi,Fo).

3. Compute the temperature from the definition of θ∗, viz., T (r, t) = T∞ +
θ∗(Ti − T∞).

3.3.1 Example

(From Incropera and DeWitt) A 5 mm radius metal sphere initially at 400 ◦C
is plunged into a water bath at 50 ◦C. Assume that the heat transfer coefficient
is 6000 W/(m2 ◦C), the thermal conductivity of the metal is k = 20 W/m ·K,
and the thermal diffusivity of the metal is α = 6.66 × 10−6 m2/s. Plot the
variation of the centerline temperature with time for the first five seconds after

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

REFERENCES 7

0 1 2 3 4 5

50

100

150

200

250

300

350

400

Time (sec)

T
 (
� C

)

Center
Surface
Oil bath

Figure 3: Center and surface temperatures versus time for Example 3.3.1

the sphere is plunged into the water bath. Plot the radial temperature variation
at t = 0.5, 1, and 5 seconds.

The solution is implemented in the sphereExample function in Listing 6.
Figure 3 shows the variation of the center temperature with time. Figure 4
shows the radial temperature variation at t = 0.5, 1, and 5 seconds.

References

[1] E. Eckert and J. Drake, Robert M. Analysis of Heat and Mass Transfer.
McGraw-Hill, New York, 1972.

[2] F. P. Incropera and D. P. DeWitt. Introduction to Heat Transfer. Wiley,
New York, fifth edition, 2002.

Appendix: Listings of Matlab Codes

The Matlab source code for the mfiles described in the article are listed on
the following pages. Two of the mfiles (zRoots and Tsphere) are too long to
fit on a single page. For these functions the last lines of code are omitted. The
reader is encouraged to download the complete code from http://web.cecs.

pdx.edu/~gerry/epub/. The code omitted from zRoots and Tsphere deals
with optional printing of results, so the listings provided here allow the reader
to study the essential parts of the calculations.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

REFERENCES 8

0 1 2 3 4 5

50

100

150

200

250

300

350

400

r (mm)

T
 (
� C

)

t = 0.5 sec
t = 1 sec
t = 5 sec
Oil bath

Figure 4: Radial temperature variation at three times for Example 3.3.1

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

REFERENCES 9

function z = zRoots(Bi,zmax,verbose)

% zRoots Find all roots to 1 - z*cot(z) - Bi over a range of z

%

% Synopsis: z = zRoots

% z = zRoots(Bi)

% z = zRoots(Bi,zmax)

% z = zRoots(Bi,zmax,verbose)

%

% Input: Bi = Biot number. Default: Bi = 10

% zmax = upper limit of a range. Roots are sought in the

% range 0 < zeta <= zmax. Default: zmax=50

% verbose = flag to control print out

% Default: verbose = 0 (no extra print out)

%

% Output: z = Vector of roots in the interval 0 < z <= zmax

if nargin<1 isempty(Bi), Bi = 10; end

if nargin<2 isempty(zmax), zmax = 50; end

if nargin<3 isempty(verbose), verbose = 0; end

% --- Find brackets for zeros of 1 - z*cot(z) - Bi

zb = bracket(@zfun,10*eps,zmax,250,Bi); % zb is a 2 column matrix

% --- Find the zero (or singularity) contained in each bracket pair

mb,nb = size(zb); zall = zeros(mb,1); % Preallocate array for roots

% Call optimset to create the data structure that controls fzero

% Use no messages (’Display’,’Off’) and tight tolerance (’TolX’,5e-9)

fzopts = optimset(’Display’,’Off’,’TolX’,5e-9);

for k=1:mb

zall(k) = fzero(@zfun,zb(k,:),fzopts,Bi);

end

% --- Sort out roots and singularities. Singularites are "roots"

% returned from fzero that have f(z) greater than a tolerance.

fall = zfun(zall,Bi); % evaluate f(z) at all potential roots

igood = find(abs(fall)<5e-4); % vector of indices of good roots

ngood = length(igood);

z = zall(igood); f = fall(igood);

zbad = zall(:); ibad = (1:length(zbad))’; % First copy all data

zbad(igood) = ; ibad(igood) = ; % then throw away good parts

nbad = length(ibad);

fprintf(’%d good zeta values found in zSphereRoots()\n’,ngood);

if nbad>0

fprintf(’%d potential zeros are suspected to be singularities\n’,nbad);

end

.

.

.

% Omitted code for printing and plotting of roots

Listing 1: Partial listing of the zRoots function.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

REFERENCES 10

function f = zfun(z,Bi)

% ztest Evaluate f = 1 - z*cot(z) - Bi for root-finding algorithm

f = 1 - z.*cot(z) - Bi;

Listing 2: The zfun function evaluates f(z) = 1− z cot(z)−Bi. This formula is
used with the built-in fzero function to find the roots (zeros) of Equation (10).

function xb = bracket(fun,xmin,xmax,nx,varargin)

% brackPlot Find brackets for roots of a function.

%

% Synopsis: xb = bracket(fun,xmin,xmax)

% xb = bracket(fun,xmin,xmax,nx)

%

% Input: fun = (string) name of function for which roots are sought

% xmin,xmax = endpoints of interval to subdivide into brackets.

% nx = (optional) number of subintervals. Default: nx = 20.

%

% Output: xb = 2-column matrix of bracket limits. xb(k,1) is the left

% bracket and xb(k,2) is the right bracket for the kth

% potential root. If no brackets are found, xb = [].

if nargin<4, nx=20; end

x = linspace(xmin,xmax,nx); % Test f(x) at these x values

f = feval(fun,x,varargin{:});

nb = 0;

xbtemp = zeros(nx,2); % Temporary storage for brackets as they are found

for k = 1:length(f)-1

if sign(f(k))~=sign(f(k+1)) % True if f(x) changes sign in interval

nb = nb + 1;

xbtemp(nb,:) = x(k:k+1);

end

end

% -- Return nb-by-2 matrix of brackets.

if nb == 0

warning(’bracket:NoSignChange’,’No brackets found. Change [xmin,xmax] or nx’);

xb = [];

else

xb = xbtemp(1:nb,:);

end

Listing 3: The bracket function returns a list of intervals in which a function
changes sign. This utility function is used to obtain initial guesses for root-
finding algorithms.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

REFERENCES 11

function [zout,Biout] = zRootFirst

% zRootFirst List smallest roots of 1 - z*cot(z) = Bi for a range of Bi.

% Compare to Table 5.1 in _Introduction to Heat Transfer_,

% 2nd ed., F.P. Incropera & D.P. De Witt, 1990, Wiley

%

% Synopsis: zRootFirst

% z1 = zRootFirst

% [z1,Bi] = zRootFirst

%

% Input: none

%

% Output: z1 = vector of first roots, i.e. roots closest to z=0,

% of 1 - z*cot(z) = Bi for a range of Bi

% Bi = vector of Bi values corresponding to z1 values

% --- Use Bi values from Table 5.1 by Incropera and Dewitt

Bi = [0.01:0.01:0.1, 0.15:0.05:0.30, 0.4:0.1:1, 2:1:10, 20:10:50, 100]’;

z = zeros(size(Bi));

% Call optimset to create the data structure that controls fzero

% Use no messages (’Display’,’Off’) and tight tolerance (’TolX’,5e-9)

fzopts = optimset(’Display’,’Off’,’TolX’,5e-12);

zmax = 4;

fprintf(’ Bi z1 f(z1)\n’);

for i=1:length(Bi)

zb = bracket(@zfun,10*eps,zmax,100,Bi(i)); % 2 column matrix

z(i) = fzero(@zfun,zb(1,:),fzopts,Bi(i)); % Find root in 1st bracket

fprintf(’ %8.2f %8.4f %11.3e\n’,Bi(i),z(i),zfun(z(i),Bi(i)));

end

if nargout>0, zout=z(:); end % Optional return arguments

if nargout>1, Biout=Bi(:); end % insure that both are column vectors

Listing 4: The zRootFirst function finds the first root of Equation (10) for a
set of Bi in the range 0.01 ≤ Bi ≤ 100.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

REFERENCES 12

function T,r = Tsphere(Bi,Fo,nr,verbose)

% Tsphere Dimensionless T(r,t) for convective cooling of a sphere

%

% Synopsis: T = Tsphere(Bi,Fo)

% T = Tsphere(Bi,Fo,nr)

% T = Tsphere(Bi,Fo,nr,verbose)

% T,r = Tsphere(...)

%

% Input: Bi = scalar, Biot number for the sphere

% Fo = scalar or vector of Fourier numbers (dimensionless time)

% nr = number of r values at which to evaluate T(r,t). If nr=1

% only r=0 is used. Default: nr=1

% verbose = flag to control printing. Default: verbose = false

%

% Output: T = matrix of dimensionless temperatures (theta). Column j

% T(:,j) is a vector of theta values at the nr dimensionless

% radial locations uniformly spaced in 0 <= rstar <= 1.

% T(:,j) is the profile at dimensionless time Fo(j).

% r = dimensionless radial locations: 0 <= r <= 1

% verbose = flag to control printing. Default: verbose = false

if prod(size(Bi))>1, error(’Bi must be a scalar’); end

if nargin<3, nr=1; end

if nargin<4, verbose=false; end

% --- Find zeta in range 0<zeta<=50, and compute coefficients of series

zeta = zRoots(Bi,50);

c = 4*(sin(zeta) - zeta.*cos(zeta))./(2*zeta - sin(2*zeta));

% --- Special handling for nr=1 to avoid creation of a vector

if nr==1

rstar = eps; % Use eps instead of zero to avoid

else % division by zero in formula for T

rstar = linspace(eps,1,nr)’; % rstar must be a columnn vector

end

% --- Vectorized loop to evaluate theta = f(Bi,Fo). T is nr-by-nf

% matrix, where nf is number of radial locations and nf is number

% of Fo values. Construct T by summing outer products of column

% vector (sin(zeta1*rstar)./(zeta1*rstar)) with row vector

% exp(-zeta1^2*Fo).

rstar = linspace(2*eps,1,nr)’; % Avoid rstar exactly zero to avoid

% division by zero in formula for T

Fov = Fo(:)’; % Local copy of Fo, guaranteed to be a row vector

T = c(1)*(sin(zeta(1)*rstar)./(zeta(1)*rstar))*exp(-zeta(1)^2*Fov);

for k=2:length(zeta)

dT = c(k)*(sin(zeta(k)*rstar)./(zeta(k)*rstar))*exp(-zeta(k)^2*Fov);

dTmax = max(max(abs(dT)));

T = T + dT;

end

if dTmax > 0.005

warning(sprintf(’Series not converged: dTmax = %g\n’,dTmax));

end

.

.

.

% Omitted code for printing of T(r,t) table

Listing 5: Partial listing of the Tsphere function.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

REFERENCES 13

function sphereExample

% sphereExample T(r,t) for a metal sphere plunged into a water bath

% --- Specify constants

h = 6000; % heat transfer coefficent, W/m^2/C

k = 20; % thermal conductivity, W/m/K

alfa = 6.66e-6; % thermal diffusivity, m^2/s

ro = 5e-3; % radius of sphere, m

tmax = 5; % stop time, s

r = linspace(0,ro);

t = linspace(0,tmax);

% --- Compute theta at center and at the surface of the sphere.

% Characteristic length is r0 for the exact solution.

Bi = h*ro/k

Fo = alfa*t/ro^2;

theta = Tsphere(Bi,Fo,2); % nr = 2 for r*=1 and r*=1

% --- Convert to temperature and plot

Ti = 400; Tinf = 50;

T = Tinf + theta*(Ti-Tinf);

plot(t,T(1,:),’b-’,t,T(2,:),’r--’,[0 max(t)],[Tinf Tinf],’k:’);

axis([0 max(t) 20 Ti+20]);

xlabel(’Time (sec)’); ylabel(’T ({}^\circ C)’);

legend(’Center’,’Surface’,’Oil bath’,’Location’,’NorthEast’);

% --- Evaluate and plot the radial temperatures at t=0.5, 1, 5

t = [0.5 1 5]

Fo = alfa*t/ro^2;

[theta,rstar] = Tsphere(Bi,Fo,50);

T = Tinf + theta*(Ti-Tinf);

rmm = 1000*rstar*ro;

figure

plot(rmm,T(:,1),’k-’,rmm,T(:,2),’b--’,rmm,T(:,3),’r-.’,...

[0 max(t)],[Tinf Tinf],’k:’);

legend(’t = 0.5 sec’,’t = 1 sec’,’t = 5 sec’,’Oil bath’,’Location’,’NorthEast’);

xlabel(’r (mm)’); ylabel(’T ({}^\circ C)’);

axis([0 max(rmm) 20 Ti+20]);

Listing 6: The sphereExample function performs the sample calculations de-
scribed in § 3.3.1.

Copyright c© 2006, 2010, 2013, Gerald Recktenwald. All rights reserved.

