Temperature Measurement

Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@me.pdx.edu

January 21, 2010

ME 4/549: Temperature Measurement

Temperature Measurement

- Liquid bulb thermometers
- Gas bulb thermometers
- bimetal indicators
- RTD: resistance temperature detectors (Platinum wire)
- thermocouples
- thermistors
- IC sensors
- Optical sensors
 - ▷ Pyrometers
 - ▷ Infrared detectors/cameras
 - ▷ liquid crystals

IC Temperature Sensors

- Semiconductor-based temperature sensors or thermocouple reference-junction compensation
- Packaged suitable for inclusion in a circuit board
- Variety of outputs: analog (voltage or current) and digital
- More useful for a manufactured product or as part of a control system than as laboratory instrumentation.

Examples (circa 2006)

Manufacturer	Part number
Analog Devices	AD590, AD22103
Dallas Semiconductor	DS1621
Maxim	Max675, REF-01, LM45
National Instruments	LM35, LM335, LM75, LM78

Thermistors (1)

A thermistor is an electrical resistor used to measure temperature. A thermistor designed such that its resistance varies with temperature in a repeatable way.

A simple model for the relationship between temperature and resistance is

 $\Delta T = k \Delta R$

A thermistor with k > 0 is said to have a *positive* temperature coefficient (PTC). A thermistor with k < 0 is said to have a *negative* temperature coefficient (NTC).

Photo from YSI web site: www.ysitemperature.com

Thermistors (2)

- NTC thermistors are semiconductor materials with a well-defined variation electrical resistance with temperature
- Mass-produced thermistors are interchangeable: to within a tolerance the thermistors obey the same T = F(R) relationship.
- Measure resistance, e.g., with a multimeter
- Convert resistance to temperature with calibration equation

Thermistors (3)

Advantages

- Sensor output is directly related to absolute temperature no reference junction needed.
- Relatively easy to measure resistance
- Sensors are interchangeable $(\pm 0.5 \,^{\circ}\text{C})$

Disadvantages

- Possible self-heating error
 - ▷ Each measurement applies current to resistor from precision current source
 - Measure voltage drop, then compute resistance from known current and measured voltage
 - ▷ Repeated measurements in rapid succession can cause thermistor to heat up
- More expensive than thermocouples: \$20/each versus \$1/each per junction
- More difficult to apply for rapid transients: slow response and self-heating

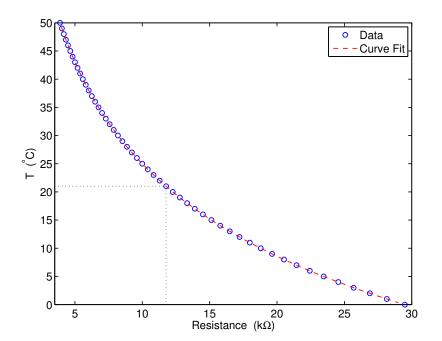
Thermistors (4)

Calibration uses the Steinhart-Hart equation

$$T = \frac{1}{c_1 + c_2 \ln R + c_3 (\ln R)^3}$$

Nominal resistance is controllable by manufacturing.

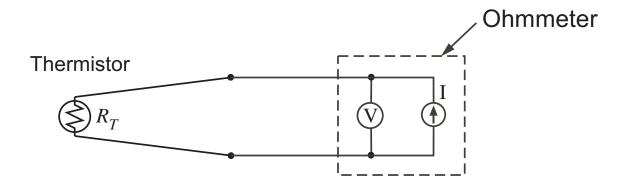
Typical resistances at 21 $^{\circ}C$: 10 k Ω , 20 k Ω , . . . 100 k Ω .



Thermistors (5)

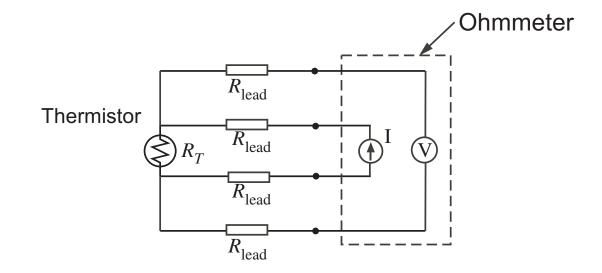
Two-wire resistance measurement: $R_T = \frac{V}{I}$.

Resistance in the lead wires can lead to inaccurate temperature measurement.



Thermistors (6)

Four-wire resistance measurement eliminates the lead resistance¹



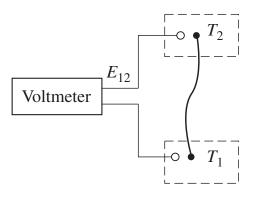
¹Sketch adapted from *Hints for Making Better Digital Multimeter Measurements*, Agilent Technologies Corporation, www.agilent.com.

Thermocouples: Overview

- Principle of operation
- Wire types: B, E, J, K, N, R, S, T
- Formats: prefab, homemade, fast response, slow response
- Circuit diagrams: reference junction compensation
- Good practice

Seebeck Effect (1)

Temperature gradient in a conductor induces a voltage potential



$$E_{12} = \bar{\sigma}(T_2 - T_1) \tag{1}$$

where $\bar{\sigma}$ is the average *Seebeck coefficient* for the range $T_1 \leq T \leq T_2$.

Seebeck Effect (2)

Perturb T_2 while holding T_1 fixed:

$$E_{12} + \Delta E_{12} = \bar{\sigma}(T_2 - T_1) + \sigma(T_2)\Delta T_2$$
(2)

Subtract Equation (1) from Equation (2) to get

$$\Delta E_{12} = \sigma(T_2) \Delta T_2 \tag{3}$$

Rearrange

$$\sigma(T_2) = \frac{\Delta E_{12}}{\Delta T_2} \tag{4}$$

 σ is an intrinsic property of the material, so

$$\sigma(T) = \lim_{\Delta T \to 0} \left(\frac{\Delta E}{\Delta T} \right)$$
(5)

ME 4/549: Temperature Measurement

Seebeck Effect (3)

Applying the limit yields the derivative:

$$\lim_{\Delta T \to 0} \left(\frac{\Delta E}{\Delta T} \right) = \frac{dE}{dT}$$

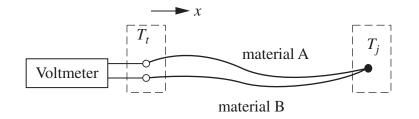
SO

$$\sigma(T) = \frac{dE}{dT} \tag{6}$$

Equation (6) is the *definition of the Seebeck Coefficient*

EMF Relationships for Thermocouples (1)

A simple thermocouple:



Rewrite Equation (6) as

$$dE = \sigma(T) \, dT \tag{7}$$

Thus, the emf generated in material A between the junction at T_t and the junction at T_j is

$$E_{A,tj} = \int_{T_t}^{T_j} \sigma_A(T) dT \tag{8}$$

Applying Equation (8) to consecutive segments of the circuit gives

$$E_{AB} = \int_{T_t}^{T_j} \sigma_A \, dT + \int_{T_j}^{T_t} \sigma_B \, dT \tag{9}$$

ME 4/549: Temperature Measurement

EMF Relationships for Thermocouples (2)

Switch limits of integration

$$E_{AB} = \int_{T_t}^{T_j} \sigma_A \, dT - \int_{T_t}^{T_j} \sigma_B \, dT = \int_{T_t}^{T_j} (\sigma_A - \sigma_B) \, dT \tag{10}$$

Define the Seebeck coefficient for the material pair AB as

$$\sigma_{\rm AB} = \sigma_A - \sigma_B \tag{11}$$

Then

$$E_{AB} = \int_{T_t}^{T_j} \sigma_{AB} \, dT \tag{12}$$

The emf generated by the Seebeck effect is due to the temperature gradient along the wire. The emf is not generated at the junction between two dissimilar wires.

ME 4/549: Temperature Measurement

EMF Relationships for Thermocouples (3)

Nominal values of Seebeck Coefficient

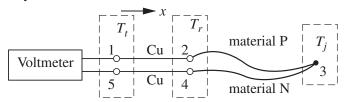
Metal		Seebeck	Temperature	
Туре	+	_	Coefficient	Range
J	Iron	Constantan	$50\mu\mathrm{V/^{o}C}$	-210 to $+760~^\circ\mathrm{C}$
K	Nickel- Chromiur	Nickel n	$39\mu\mathrm{V/^{\circ}C}$	-270 to $+1372^{\circ}\mathrm{C}$
Т	Copper	Constantan	$38\mu\mathrm{V/^{\circ}C}$	-270 to $+400~^{\circ}\mathrm{C}$

 σ values are small, so the voltage output from thermocouples is small, typically on the order of $10^{-3}~{\rm V}.$

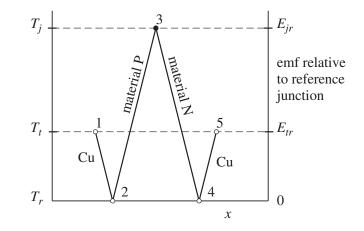
Reference Junction (1)

Thermocouples are only capable of measuring temperature differences. To measure the temperature of an object, we need a known reference temperature. The thermocouple is used to measure the temperature difference between the object and the known reference temperature.

Physical Circuit:



Conceptual T(x) Plot:



Reference Junction (2)

Applying Equation (12) gives

$$E_{15} = \int_{T_t}^{T_r} \sigma_C dT + \int_{T_r}^{T_j} \sigma_P dT + \int_{T_j}^{T_r} \sigma_N dT + \int_{T_r}^{T_t} \sigma_C dT$$
(13)

where σ_C is the absolute Seebeck coefficient of copper, σ_P is the absolute Seebeck coefficient of the positive leg, and σ_N is the absolute Seebeck coefficient of negative leg.

Reversing the limits of integration gives

$$\int_{T_t}^{T_r} \sigma_C dT = -\int_{T_r}^{T_t} \sigma_C dT \tag{14}$$

Therefore, the first and last terms in Equation (13) cancel.

$$\implies E_{15} = \int_{T_r}^{T_j} \sigma_P dT + \int_{T_j}^{T_r} \sigma_N dT$$
(15)

ME 4/549: Temperature Measurement

Reference Junction (3)

Reversing the limits on the second integral in Equation (15) gives

$$E_{15} = \int_{T_r}^{T_j} \sigma_P dT - \int_{T_r}^{T_j} \sigma_N dT \qquad = \int_{T_r}^{T_j} (\sigma_P - \sigma_N) dT$$

or

$$E_{15} = \int_{T_r}^{T_j} \sigma_{PN} \, dT \tag{16}$$

where $\sigma_{PN} \equiv \sigma_P - \sigma_N$.

Calibration Curves (1)

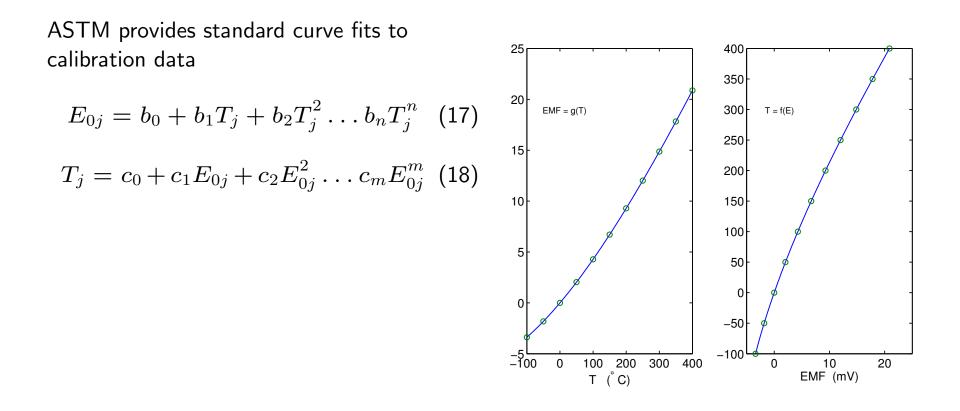
Working with calibration data

- Integrals are never evaluated.
- Data is tabulated and curve fit
- Standard polynomial curve fits and coefficients are available for common thermocouple types

Calibration data for T-Type thermocouples:

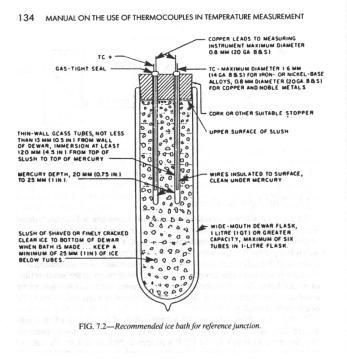
E (mV)	T (°C)
0.0000	0
2.0357	50
4.2785	100
6.7041	150
9.2881	200
12.0134	250
14.8619	300
17.8187	350
20.8720	400

Calibration Curves (2)



Ice Point Reference Junction

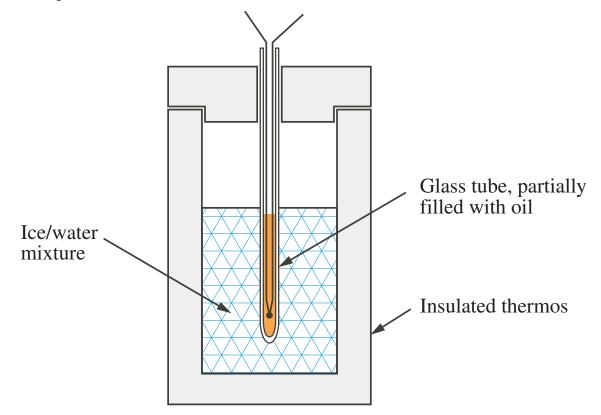
Construction of ice-point reference junction, as recommended by ASTM²



²Figure 7.2, p. 134, *Manual on the Use of Thermocouples in Temperature Measurement*, fourth ed., 1993, ASTM, Philadelphia, PA.

Ice Point Reference Junction

Ice-point reference junction used in the thermal lab:



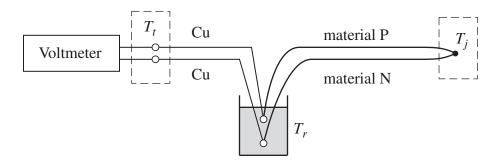
Practical Thermocouple Circuits

Thermocouple circuits used in our laboratory.

- Compensation with a reference junction in an ice bath;
- Compensation with a reference junction at an arbitrary temperature;
- Use of zone boxes for large numbers of thermocouples.

Single Ice-Point Compensation Circuits (1)

Common textbook circuit for ice-point compensation



This circuit was analzed in preceding slides. The emf measured by the voltmeter is

$$E = \int_{T_r}^{T_j} \sigma_{PN} \ dT$$

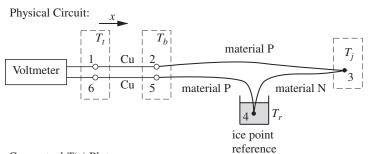
Since T_r is at the melting temperature of ice, the standard calibration equations apply.

ME 4/549: Temperature Measurement

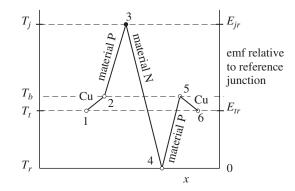
Single Ice-Point Compensation Circuits (2)

is

Alternative ice-point compensation circuit



Conceptual T(x) Plot:

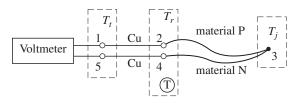


The emf measured by the voltmeter

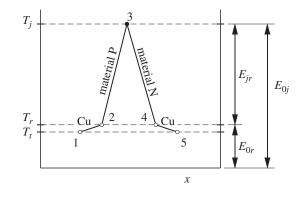
$$E = \int_{T_r}^{T_j} \sigma_{PN} \ dT$$

Thus, the standard calibration equations apply to this circuit also.

Thermocouple Conversion for Arbitrary Reference Temperature (1)



Conceptual T(x) Plot:



The emf measured by the voltmeter is

$$E_{rj} = E_{0j} - E_{0r}$$
 (19)

where E_{0j} is the emf of a thermocouple with its reference junction at 0 °C and E_{rj} is the output of the thermocouple circuit in the schematic.

Now, since

$$E_{0j} = E_{rj} + E_{0r}$$

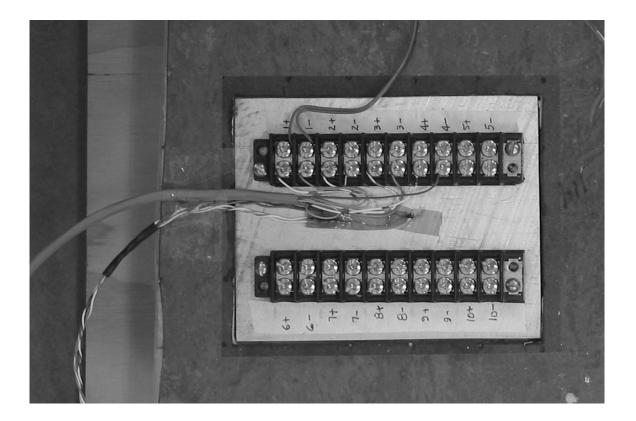
the standard calibration equations apply to this circuit also.

Thermocouple Conversion for Arbitrary Reference Temperature (2)

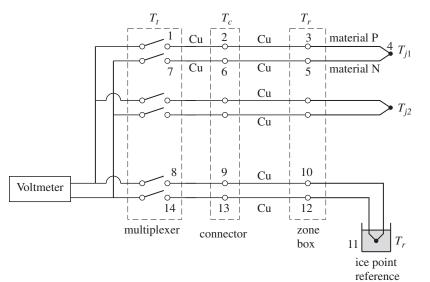
The following steps are used to compute the temperature of a thermocouple with a reference junction at an arbitrary temperature T_r :

- 1. Measure E_{rj} , the emf of a thermocouple with its reference junction at T_r and its measuring junction at T_j .
- 2. Compute $E_{0r} = F(T_r)$, the emf of an ice-point compensated thermocouple at temperature T_r .
- 3. Compute $E_{0j} = E_{rj} + E_{0r}$, the emf of an ice-point compensated thermocouple at T_j .
- 4. Compute $T_j = F(E_{0j})$ from the ice-point calibration data for the thermocouple.

Zone Box for Reference Junction Compensation (1)



Zone Box for Reference Junction Compensation (2)



The emf output of thermocouple \boldsymbol{j} is

$$E_{0j,1} = \int_0^{T_{j1}} \sigma_{PN} dT$$

Writing the preceding integral as the sum of two integrals and performing simple rearrangments gives

$$E_{0j,1} = -E_{r0} + E_{rj,1} \qquad (20)$$

Therefore, by combining the two electrical measurements of E_{r0} and $E_{rj,1}$, the effective emf of a thermocouple with a reference junction at 0 °C is obtained.

Zone Box for Reference Junction Compensation (3)

The following steps are used to compute the temperatures of the measuring junctions:

- 1. Measure E_{r0} , $E_{rj,1}$, $E_{rj,2}$, . . .
- 2. For each measuring junction, compute

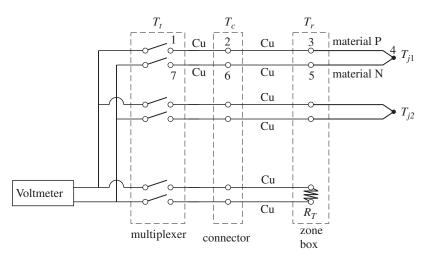
$$E_{0j,i} = E_{rj,i} - E_{r0}$$
 $i = 1, ..., n$

where n is the total number of measuring junctions.

3. Use the thermocouple tables, or Equation (18) to compute the temperature of each junction T_{ji} from $E_{0j,i}$.

Zone Box for Reference Junction Compensation (4)

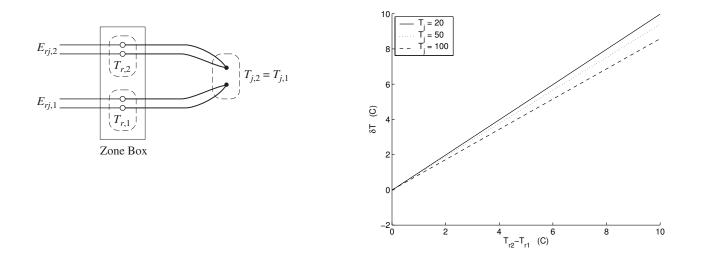
The reference tempeature can be obtained by other means – T_r does not need to be the ice-melting-point. It can be any other temperature, as long as that temperature is known.



Effect of Non-uniform Zone Box Temperature

A zone box is designed to hold the temperature of all reference junctions at a uniform and easily measured value.

The measurement error introduced by non-uniformities in zone box temperature is roughly linear in he zone box temperature difference: A 0.5° C non-uniformity from junction to junction *in the zone box* causes a 0.5° C error in the reading of the measurement junctions.



Zone Box Heat Load from Wiring

