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Overview

1. Motivation

• System curves and loss coefficients
• Fan curves
• Control of flow for heat transfer experiments

2. Methods of flow rate measurement

3. Flow bench

• Primary components and principle of operation
• Fan curve measurement
• Loss coefficient measurement
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Steady Flow Energy Equation

Steady flow energy equation
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where

p is the static pressure,

ρ is the fluid density,

V is the average velocity at a cross-section,

z is the elevation relative to a datum,

hloss is the head loss due to friction, kinetic
energy dissipation, etc.,

hfan is head gain from a fan (pump)
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Steady Flow Energy Equation

For air-cooled systems, gravitational effects are negligible, so the energy equation can be
rewritten as
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= hloss − hfan (2)
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System Curve (1)

To define the system curve for an electronics enclosure, we need to separate the fan from
the system.

System Curve:  !psys = f(Q) Fan Curve:  !pfan = f(Q)

System with fan

1 2 3

1 2 32
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System Curve (2)

System Curve:  !psys = f(Q) Fan Curve:  !pfan = f(Q)

1 2 32

On the left, station 2′ is the exit pressure necessary to draw the a given flow rate through
the system when the fan is not powered. On the right, station 2′′ is the upstream
condition for the fan during a fan test, i.e., when the fan is not connected to a system.
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System Curve (3)

Apply energy equation between stations 1 and 3:

p1 = p3 =⇒ hloss = hfan

In words: The head input by the fan is matched by the overall head loss for the
system.

Apply energy equation between stations 1 and 2′

p1 − p2′

ρg
= hsys (3)

This defines the head loss for the system
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Fan Curve (1)

Conceptual measurement apparatus:
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Typical result (a fan curve):

!p

Q

no

flow

free air

∆p is the pressure rise across the fan.

Q is the volumetric flow rate through the fan
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Fan Curve (2)

System Curve:  !psys = f(Q) Fan Curve:  !pfan = f(Q)

1 2 32

Apply steady flow energy equation between stations 2′′ and 3:

p3 − p2′′ = ρghfan

The pressure rise across the fan corresponds to a gain in head. The head gain is matched
by head losses elsewhere in the system.
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Fan Curve (3)

For vendor-specific information see (as of April 2006)

http://www.comairrotron.com/engineering_notes.asp
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Methods of Flow Rate Measurement

Measurement of fan curves and system curves requires

• Control of the flow rate

• Measurement of the flow rate

• Measurement of ∆p across the device under test (DUT)

Measuring the ∆p across the DUT is relatively simple.

Methods of flow rate measurement

• Velocity profile measurement

• Laminar flow meters

• Rotameters

• Turbine flow meters

• Obstruction flow meters
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Obstruction Flow Meters

Sharp-Edged
Orifice

!p

Q

Long Radius
Nozzle

!p

Q

Venturi

Q

!p
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Flow Bench

A flow bench is a device for providing a controlled and measurable flow rate to or from a
device under test (DUT).

!p
n

Blower

Blast
Gate

plenumplenum
DUT

settling
screens

p1 T1 nozzle wall

patm

air
flow

• Two plenums

• Nozzle wall

• Flow control damper (blast gate)

• Blower

• Instrumentation
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Nozzle Wall

Three nozzles are mounted in an
aluminum sheet that separates the
two plenums.
Using custom made rubber stoppers,
the nozzles can be operated one at
a time, or in parallel combinations.
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Role of the Blower

• Blower overcomes ∆p due
to pressure losses

• Largest pressure drops are
due to nozzles and blast gate
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Control of Flow Rate

During fan curve measurement

• Blast gate controls system flow rate.

• Flow rate determines fan flow rate.

• At a given flow rate, the fan produces a fixed pressure rise.

During system curve measurement

• Blast gate controls system flow rate.

• Flow rate determines pressure drop through DUT.
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System Curve or Loss Coefficient Measurement

Locate the Device Under Test (DUT) at inlet
of flow bench

!p
n

Blower

Blast
Gate

plenumplenum
DUT

settling
screens

p1 T1 nozzle wall

patm

air
flow

System curve:

∆psys = patm − p1 = f(Q) (4)

∆psys is pressure drop necessary
to overcome flow
resistance of DUT,

patm is local ambient pressure,

p1 is pressure in upstream
plenum,

Q is volumetric flow rate
measured by nozzle(s).
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Fan Curve Measurement

Locate the fan at inlet of flow bench

!p

Blower

Blast Gate

plenumplenum

settling screens

Fan curve:

∆pfan = p1 − patm = f(Q) (5)

∆pfan is pressure rise provided
by fan,

patm is local ambient pressure,

p1 is pressure in upstream
plenum,

Q is volumetric flow rate
measured by nozzle(s).

Note that when the DUT is a fan, p1 > patm, and when the DUT is an electronic
enclosure, patm > p1.
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Flow Bench Instrumentation

To compute flow rate, measure

• Pressure in plenum 1

• Temperature in plenum 1

• Pressure drop across the nozzle

To characterize the DUT, measure the pressure drop between ambient and plenum 1. In
practice we measure

patm with barometer

T1 with thermocouple upstream of nozzle

patm − p1 with inclined manometer or pressure
transducer

p1 − p2 with manometer, pressure gage, or
pressure transducer
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Data Reduction (1)

Compute

p1 = patm − (patm − p1)

Q = CdAnY

s
2∆p

ρ(1− β4)
(6)

Cd is the nozzle discharge coefficient,

An is the area of the nozzle throat,

Y expansion factor to account for compressibility,

dt is the throat diameter,

∆p is the measured pressure drop across the nozzle,

ρ is the fluid density upstream of the nozzle

β = dt/D is the contraction ratio,

D is the diameter of the upstream duct.
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Data Reduction (2)

The nozzles are built to ASME/ANSI specification, but are not individually calibrated.
Use the generic equation for the discharge coefficient

Cd = 0.9986−
7.006
√

Ret

+
134.6

Ret
(7)

Ret =
Vtdt

ν
=

4Q

πdtν
(8)

Vt = Q/An is the velocity in the throat,

ρ is the fluid density,

µ is the fluid viscosity evaluated at the pressure and
temperature upstream of the nozzle.
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Data Reduction (3)

The analytical expression for the expansion factor is

Y =

"
γ

γ − 1
α2/γ1− α(γ−1)/γ

1− α

#1/2 "
1− β4

1− β4α2/γ

#1/2

(9)

where γ = cp/cv and

α =
p−∆p

p

0 ≤ Y ≤ 1. As ∆p → 0, Y → 1.

Volumetric Flow Rate Measurement page 22

Data Reduction (4)

An iterative procedure is required to compute Q for each measured ∆p:

Initialize:

Compute and store KQ = AnY

s
2∆p

ρ(1− β4)

Guess a value of Cd, say Cd = 0.98

Iterate:

1. Compute Q = CdKQ

2. Compute Ret from equation (8)

3. Compute Cd from equation (7)

4. If the new Cd is “close enough” to the old Cd, stop.
Otherwise, return to step (1)
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Data Reduction (5)

function Q = nozzleFlow(d,D,dp,p,T)
% nozzleFlow Volumetric flow rate of air through a long radius nozzle.

% --- Evaluate fluid properties and other constants
mu = airViscosity(T); % kinematic viscosity
rho = p/(287*(T+273.15)); % air density from ideal gas law
bbeta = d/D;
y = expansionFactor(p,dp,bbeta,1.4);
area = 0.25*pi*d^2;
qcon = area*y*sqrt(2*dp/(rho*(1-bbeta^4))); rcon = rho*d/(area*mu);

% --- Initialize and loop until cd converges
tol = 5e-6; it = 0; maxit = 25; cdold = 0; cd = 0.9;
while abs(cdold-cd)>tol && it<maxit
cdold = cd;
Q = cd*qcon;
Re = rcon*Q;
cd = 0.9986 - 7.006/sqrt(Re) + 134.6/Re;
it = it + 1;

end
if it>=maxit, error(’No convergence after %d iterations’,it); end
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Least Squares Fit to System Curve (1)

The energy equation for the system with an unpowered fan is

∆psys

ρg
= hloss (10)

Recall that for pipe systems, minor losses are represented by

hminor = K
V 2

2g

where K is the so-called minor loss coefficient.

By analogy we assume that the loss through the system will also vary as the square of the
average velocity.

hloss = K
V 2

2g
= K

Q2

2gA2
(11)

where A is the effective cross-sectional area of the system.
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Least Squares Fit to System Curve (2)

Substitute ∆psys = ρghloss from
Equation (10) into Equation (11)

∆psys = CQ2 (12)

where C = ρK/(2A2) is assumed
to be a constant for the system.

Typical loss coefficient data
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Least Squares Fit to System Curve (3)

To obtain the system curve, measure a series of (∆psys, Q) pairs. A least squares curve
fit is then used to find C.

Software tools (e.g. Matlab or spreadsheets) have built-in procedures for performing
least squares fit to polynomials. Such a tool would require a curve fit of the form

∆psys = c1Q
2 + c2Q + c3

But Equation (12) does not have the constant or a term linear in Q. Fortunately it is very
easy to derive a simple formula that uses the least squares principle to obtain C from
measured data
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Least Squares Fit to System Curve (4)
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Least Squares Fit to System Curve (5)

Given a set of m data pairs(∆p1, Q1), (∆p2, Q2), . . . (∆pm, Qm), write the matrix
equation 2

6664

Q2
1

Q2
2...

Q2
m

3

7775
C =

2

6664

∆p1

∆p2
...

∆pm

3

7775
(13)

Equation (13) is an overdetermined system for the one unknown value C. Multiply both
sides by (Q2

1, Q2
2, . . . , Q2

m)T

ˆ
Q2

1 Q2
2 · · · Q2
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Least Squares Fit to System Curve (6)

Equation (14) is the normal equation for the over determined system in Equation (13).
Solving Equation (14) gives the value of C that is the least squares solution to
Equation (13).

Evaluating the inner products in Equation (14) gives

 
mX

i=1

Q4
i

!
C =

 
mX

i=1

Q2
i∆pi

!
(15)

This is just a scalar equation involving the one unknown value C. Solving for C gives

C =

Pm
i=1 Q2

i∆piPm
i=1 Q4

i

(16)

Therefore, given pairs of (∆p, Q) data from a flow loss measurement, Equation (16)
provides a simple computational formula for obtaining the C that is the least squares fit
of the data to Equation (12).
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