Lecture 3: Loops and Series for sin(z)

1 Syntax of for loops

Unit increment:

for i = startValue:stopValue
block of statements
end

Arbitrary increment:

for i = startValue:inc:stopValue
block of statements

end
Examples

for i=1:10 for k=0:2:20
disp(i); disp(k);

end end

for j=10:-1:1 x=1[149 -7];
disp(j); for i=1:length(x)

end disp(x(i));

end

Example: Compute the average of elements in x

for k=0:2:21
disp(k);
end

for a=0:(pi/6):pi
disp(a);
end

function ave = myAverage(x)

==

n = length(x);
s = x(1);
for i=2:n

s =s + x(i);
end
ave = s/n;

myAverage Compute average of elements in the input vector

Example: Compute n!

function f = myfactorial(n)
% myfactorial Compute factorial of n

f =1;

for i=2:n
f = fx*i;

end

See also the built-in functions cumprod and factorial

2 Use for loops to evaluate n terms of a series

Example: Compute n terms of Series approximation to sin(x)

function s = nTermSinel(x,n)
% nTermSinel Evaluate the n-term series approximation to sin(x)

% Simplest approach: evaluate each term from scratch
)

% Synopsis: s = nTermSinel(x,n)

)

% Input: x = argument of sine(x)

% n = number of terms in the series

yA

% Output: s = approximation to sin(x) with n terms of the series
term = x;

s = term; % Initialize the sum and the sign of the term

sgn = 1;

fprintf (’\n i sign k term s\n’);

fprintf(° %4d %4d Y4d %18.13f ¥8.5f\n’,1,sgn,1,term,s);
for i=2:n

sgn = -sgn; % switch sign of term

k = 2%i - 1;

term = sgn*(x"k)/factorial(k);

s = s + term;

fprintf(° %44 %44 J4d 718.13f Y8.5f\n’,i,sgn,k,term,s)
end

Recursive evaluation of terms

Improve the efficiency of nTermSinel by eliminating redundant calculations.
See Example 5.7, pp. 217-219. Reducing the number of calculations usually
improves accuracy because the roundoff error present in each calculation is min-
imized: fewer calculations mean less roundoff.

Observe the Patterns:

3 5 7 9

1. The x part of each term is 22 times the = part of the preceding term.

2. The factorial of the current term can be obtained by two additional mul-
tiplications with the factorial of the preceding term.

.Ik $k72 1,2
KT k-2 k(k—1)
——

previous term

3. If n terms are evaluated, the maximum power of x is 2n — 1.

Copyright (© 2008, Gerald Recktenwald. All rights reserved.

Use preceding observations to write the following code chunk. (Not a complete
program.)

Xxterm = x; s = xterm; sgn = 1;
for i=3:2:(2%n-1)
sgn = -sgn;

xterm = xterm*x~2;
s = s + sgn*xterm/factorial(i);
end

This is called a recursive evaluation of the terms: calculate the current term by
modifying the previous term.

The factorial calculation can also be done recursively

xterm = x; fact = 1; s = xterm; sgn = 1;
for i=3:2:(2*n-1)
sgn = -sgn;

xterm = xterm*x~2;

fact = fact*ix(i-1);

s = s + sgn*xterm/fact;
end

Or, just combine the terms and eliminate sgn

term = x; s = term;

for i=3:2:(2%n-1)
term = -term*(x~2)/(i*(i-1));
s = s + term;

end

The complete m-file is nTermSine2.m listed below.

function s = nTermSine2(x,n)
% nTermSine2 Evaluate the n-term series approximation to sin(x)

% Recursive evaluation of each term

%

% Synopsis: s = nTermSine2(x,n)

%

% Input: x = argument of sine(x)

% n = number of terms in the series

%

% Output: s = approximation to sin(x) with n terms of the series
term = x;

s = term; % initialize the sum and the sign of the term
fprintf(’\n i term s\n’);

fprintf(’ %4d 7%18.13f ¥8.5f\n’,1,term,s);
for i=3:2:(2%n-1)

term = —term*(x~2)/(i*(i-1));

S = s + term;

fprintf(’ %4d %18.13f %8.5f\n’,i,term,s)
end

Copyright (© 2008, Gerald Recktenwald. All rights reserved.

