Lecture 3: Loops and Series for $\sin(x)$

1 Syntax of for loops

Unit increment:

for $i = startValue:stopValue$
 block of statements
end

Arbitrary increment:

for $i = startValue:inc:stopValue$
 block of statements
end

Examples

for $i=1:10$
 disp(i);
end

for $k=0:2:20$
 disp(k);
end

for $k=0:2:21$
 disp(k);
end

for $j=10:-1:1$
 disp(j);
end

for $a=0:(\pi/6):\pi$
 disp(a);
end

for $j=0:-1:1$
 x = [1 4 9 -7];
 for $i=1:length(x)$
 disp($x(i)$);
 end
end

Example: Compute the average of elements in x

```matlab
function ave = myAverage(x)
% myAverage Compute average of elements in the input vector

n = length(x);
s = x(1);
for $i=2:n$
  s = s + x($i$);
end
ave = s/n;
```

Example: Compute $n!$

```matlab
function f = myfactorial(n)
% myfactorial Compute factorial of n

f = 1;
for $i=2:n$
  f = f*1;
end
```

See also the built-in functions `cumprod` and `factorial`
2 Use for loops to evaluate n terms of a series

Example: Compute n terms of Series approximation to $\sin(x)$

```matlab
function s = nTermSine1(x,n)
% nTermSine1 Evaluate the n-term series approximation to sin(x)
% Synopsis: s = nTermSine1(x,n)
% Input: x = argument of sine(x)
% n = number of terms in the series
% Output: s = approximation to sin(x) with n terms of the series

term = x;
s = term; % Initialize the sum and the sign of the term
sgn = 1;
fprintf('
 i sign k term s
');
fprintf(' %4d %4d %4d %18.13f %8.5f
',1,sgn,1,term,s);
for i=2:n
    sgn = -sgn; % switch sign of term
    k = 2*i - 1;
    term = sgn*(x^k)/factorial(k);
    s = s + term;
    fprintf(' %4d %4d %4d %18.13f %8.5f
',i,sgn,k,term,s)
end
```

Recursive evaluation of terms

Improve the efficiency of `nTermSine1` by eliminating redundant calculations. See Example 5.7, pp. 217–219. Reducing the number of calculations usually improves accuracy because the roundoff error present in each calculation is minimized: fewer calculations mean less roundoff.

Observe the Patterns:

\[s = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \cdots \]

1. The x part of each term is x^2 times the x part of the preceding term.

2. The factorial of the current term can be obtained by two additional multiplications with the factorial of the preceding term.

\[
\frac{x^k}{k!} = \frac{x^{k-2}}{(k-2)!} \frac{x^2}{k(k-1)}
\]

3. If n terms are evaluated, the maximum power of x is $2n - 1$.

Copyright © 2008, Gerald Recktenwald. All rights reserved.
Use preceding observations to write the following code chunk. (Not a complete program.)

```matlab
xterm = x; s = xterm; sgn = 1;
for i=3:2:(2*n-1)
    sgn = -sgn;
    xterm = xterm*x^2;
    s = s + sgn*xterm/factorial(i);
end
```

This is called a recursive evaluation of the terms: calculate the current term by modifying the previous term.

The factorial calculation can also be done recursively

```matlab
xterm = x; fact = 1; s = xterm; sgn = 1;
for i=3:2:(2*n-1)
    sgn = -sgn;
    xterm = xterm*x^2;
    fact = fact*i*(i-1);
    s = s + sgn*xterm/fact;
end
```

Or, just combine the terms and eliminate `sgn`

```matlab
term = x; s = term;
for i=3:2:(2*n-1)
    term = -term*(x^2)/(i*(i-1));
    s = s + term;
end
```

The complete m-file is `nTermSine2.m` listed below.

```matlab
function s = nTermSine2(x,n)
    % nTermSine2 Evaluate the n-term series approximation to sin(x)
    % Recursive evaluation of each term
    %
    % Synopsis: s = nTermSine2(x,n)
    %
    % Input: x = argument of sine(x)
    % n = number of terms in the series
    %
    % Output: s = approximation to sin(x) with n terms of the series

term = x;
s = term; % initialize the sum and the sign of the term
fprintf('
 i term s
');
fprintf('%4d %18.13f %8.5f
',1,term,s);
for i=3:2:(2*n-1)
    term = -term*(x^2)/(i*(i-1));
    s = s + term;
    fprintf('%4d %18.13f %8.5f
',i,term,s)
end
```

Copyright © 2008, Gerald Recktenwald. All rights reserved.