
Lecture 3: Loops and Series for sin(x)

1 Syntax of for loops

Unit increment:
for i = startValue:stopValue

block of statements

end

Arbitrary increment:
for i = startValue:inc:stopValue

block of statements

end

Examples

for i=1:10

disp(i);

end

for k=0:2:20

disp(k);

end

for k=0:2:21

disp(k);

end

for j=10:-1:1

disp(j);

end

x = [1 4 9 -7];

for i=1:length(x)

disp(x(i));

end

for a=0:(pi/6):pi

disp(a);

end

Example: Compute the average of elements in x

function ave = myAverage(x)

% myAverage Compute average of elements in the input vector

n = length(x);

s = x(1);

for i=2:n

s = s + x(i);

end

ave = s/n;

Example: Compute n!

function f = myfactorial(n)

% myfactorial Compute factorial of n

f = 1;

for i=2:n

f = f*i;

end

See also the built-in functions cumprod and factorial

1



2

2 Use for loops to evaluate n terms of a series

Example: Compute n terms of Series approximation to sin(x)

function s = nTermSine1(x,n)

% nTermSine1 Evaluate the n-term series approximation to sin(x)

% Simplest approach: evaluate each term from scratch

%

% Synopsis: s = nTermSine1(x,n)

%

% Input: x = argument of sine(x)

% n = number of terms in the series

%

% Output: s = approximation to sin(x) with n terms of the series

term = x;

s = term; % Initialize the sum and the sign of the term

sgn = 1;

fprintf(’\n i sign k term s\n’);

fprintf(’ %4d %4d %4d %18.13f %8.5f\n’,1,sgn,1,term,s);

for i=2:n

sgn = -sgn; % switch sign of term

k = 2*i - 1;

term = sgn*(x^k)/factorial(k);

s = s + term;

fprintf(’ %4d %4d %4d %18.13f %8.5f\n’,i,sgn,k,term,s)

end

Recursive evaluation of terms

Improve the efficiency of nTermSine1 by eliminating redundant calculations.
See Example 5.7, pp. 217–219. Reducing the number of calculations usually
improves accuracy because the roundoff error present in each calculation is min-
imized: fewer calculations mean less roundoff.

Observe the Patterns:

s = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
+ · · ·

1. The x part of each term is x2 times the x part of the preceding term.

2. The factorial of the current term can be obtained by two additional mul-
tiplications with the factorial of the preceding term.

xk

k!
=

xk−2

(k − 2)!︸ ︷︷ ︸
previous term

x2

k(k − 1)

3. If n terms are evaluated, the maximum power of x is 2n − 1.

Copyright c© 2008, Gerald Recktenwald. All rights reserved.



3

Use preceding observations to write the following code chunk. (Not a complete
program.)

xterm = x; s = xterm; sgn = 1;

for i=3:2:(2*n-1)

sgn = -sgn;

xterm = xterm*x^2;

s = s + sgn*xterm/factorial(i);

end

This is called a recursive evaluation of the terms: calculate the current term by
modifying the previous term.

The factorial calculation can also be done recursively

xterm = x; fact = 1; s = xterm; sgn = 1;

for i=3:2:(2*n-1)

sgn = -sgn;

xterm = xterm*x^2;

fact = fact*i*(i-1);

s = s + sgn*xterm/fact;

end

Or, just combine the terms and eliminate sgn

term = x; s = term;

for i=3:2:(2*n-1)

term = -term*(x^2)/(i*(i-1));

s = s + term;

end

The complete m-file is nTermSine2.m listed below.

function s = nTermSine2(x,n)

% nTermSine2 Evaluate the n-term series approximation to sin(x)

% Recursive evaluation of each term

%

% Synopsis: s = nTermSine2(x,n)

%

% Input: x = argument of sine(x)

% n = number of terms in the series

%

% Output: s = approximation to sin(x) with n terms of the series

term = x;

s = term; % initialize the sum and the sign of the term

fprintf(’\n i term s\n’);

fprintf(’ %4d %18.13f %8.5f\n’,1,term,s);

for i=3:2:(2*n-1)

term = -term*(x^2)/(i*(i-1));

s = s + term;

fprintf(’ %4d %18.13f %8.5f\n’,i,term,s)

end

Copyright c© 2008, Gerald Recktenwald. All rights reserved.


