ME 322 Worksheet Friction Factor Calculation

Winter 2007

- 1. Use the Moody chart to find the friction factor for these conditions
 - a. Re = 5.5×10^6 , $\varepsilon/D = 0.003$
 - b. Re = $40,000, \varepsilon/D = 0.006$
- 2. For a particular pipe flow problem, f=0.04 and $\varepsilon/D=0.001$. What is Re?
- 3. You are checking pipe flow analysis performed by another engineer. For a particular pipe flow problem the engineer's calculations have Re = $100,000,\,f=0.02$ and $\varepsilon/D=0.0001$. Do you agree with this result? Explain your answer
- 4. The friction factor cannot be computed explicitly from Colebrook equation. An iterative or root-finding procedure is required. A simple form of root-finding is called fixed point iteration. Given the Colebrook equation

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right) \tag{*}$$

we can developed a fixed point iteration formula by assuming the f on the right hand side is a known or guessed value, and then solving for the f on the left hand side.

Designate the f on the right hand side of Equation (*) as f_{old} , designate the f on the left hand side as f_{new}

$$\frac{1}{\sqrt{f_{\text{new}}}} = -2\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}_D\sqrt{f_{\text{old}}}}\right)$$

Solve for f_{new} to get

$$f_{\text{new}} = \left[2\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}_D\sqrt{f_{\text{old}}}}\right)\right]^{-2}$$
 (**)

Equation $(\star\star)$ is now in the form of a fixed point iteration.

Use the fixed point iteration to find f for Re = $5.5 \times 10^6 \ \epsilon/D = 0.003$. Perform three iterations (i.e. apply Equation (**) three times) with a starting guess of f = 0.02.