
Pipe Flow Analysis with Matlab

Gerald Recktenwald∗

January 28, 2007

This document describes a collection of Matlab programs for pipe flow
analysis. Using these functions it is relatively easy to perform head loss calcu-
lations, solve flow rate problems, generate system curves, and find the design
point for a system and pump.

1 Governing Equations

Figure 1 shows a single pipe flow system. For steady flow between station 1 and
station 2 mass conservation (continuity) requires

ṁ1 = ṁ2 or ρ1A1V1 = ρ2A2V2 (1)

where ṁ is the mass flow rate, ρ is the fluid density, A is the cross-section area,
and V is the average velocity. In most applications the flow is incompressible,
so ρ1 = ρ2 and Equation (1) simplifies to

A1V1 = A2V2 or Q1 = Q2 (2)

where Q is the volumetric flow rate.
Energy conservation between two stations requires [1][

p

γ
+

V 2

2g
+ z

]
out

=
[

p

γ
+

V 2

2g
+ z

]
in

+ hs − hL (3)

where the subscript “out” indicates the downstream station, and “in” indicates
the upstream station, γ = ρg is the specific weight of the fluid, hs is the shaft
work done on the fluid, and hL is the head loss due to friction. For the system
depicted in Figure 1, station 1 is “in” and station 2 is “out”.

All terms in Equation (3) have units of head. To convert hs and hL to units
of power use

Ẇs = ṁghs ẆL = ṁghL. (4)

∗Associate Professor, Mechanical and Materials Engineering Department Portland State
University, Portland, Oregon, gerry@me.pdx.edu

1

1

2

z2 – z1

m.

Figure 1: Energy must be supplied to the flowing fluid to overcome elevation
changes, viscous losses in straight sections of pipe, and minor losses due to
elbows, valves and changes of flow area.

1.1 Empirical Head Loss Data

The head loss due to friction is given by the Darcy-Weisbach equation

hL = f
L

D

V 2

2g
(5)

where f is the Darcy Friction Factor. For fully-developed, incompressible lami-
nar flow in a round pipe

flam =
64
Re

. (6)

The friction factor for turbulent flow in smooth and rough pipes is correlated
with the Colebrook equation

1√
f

= −2 log10

(
ε/D

3.7
+

2.51
Re
√

f

)
(7)

where ε is the roughness of the pipe wall, and Re is the Reynolds number

Re =
ρV D

µ
=

V D

ν
.

If the pipe is not round the same formulas may be applied if the hydraulic
diameter, Dh, is substituted for D in the definition of Re, and in the ε/D
term in the Colebrook equation. For a pipe with any cross-section area A and
perimeter P the hydraulic diameter is

Dh =
4× cross sectional area

wetted perimeter
=

4A

P
.

2

Laminar

ReD

 f

ε/D
increases

Smooth

Wholly turbulent

T
ra

ns
iti

on

Figure 2: Moody Diagram.

1.2 Minor Losses

Minor losses are caused by elbows, valves, and other components that disrupt
the fully-developed flow through the pipe. “Minor Loss” is a misnomer because
in many practical systems elbows, valves, and other components can account
for a significant fraction of the head loss.

Minor losses must be included in the head loss term in the energy equation.
For most pipe runs there will be multiple minor loss elements connected by
sections of straight pipe. The total loss can be represented by

hL,total =
∑

hL,pipe +
∑

hL,minor (8)

where hL,pipe is the viscous loss in a straight section of pipe and hL,minor is a
minor loss due to a fitting or other element. Note that the hL,pipe contributions
are usually computed by assuming that the flow in the pipe section is fully
developed. The empirical model for an individual minor loss is

hL,minor = KL
V 2

2g
(9)

where KL is a loss coefficient.

2 Solving the Colebrook Equation with Matlab

Equation (7) cannot be solved analytically for f when ε/D and Re are given.
However, if Equation (7) is rearranged as

F(f) =
1√
f

+ 2 log10

(
ε/D

3.7
+

2.51
Re
√

f

)
(10)

a numerical root-finding procedure can be used to find the f that makes F(f) =
0 when ε/D and Re are known [2].

3

function f = moody(ed,Re,verbose)

% moody Find friction factor by solving the Colebrook equation (Moody Chart)

%

% Synopsis: f = moody(ed,Re)

%

% Input: ed = relative roughness = epsilon/diameter

% Re = Reynolds number

%

% Output: f = friction factor

%

% Note: Laminar and turbulent flow are correctly accounted for

if Re<0

error(sprintf(’Reynolds number = %f cannot be negative’,Re));

elseif Re<2000

f = 64/Re; return % laminar flow

end

if ed>0.05

warning(sprintf(’epsilon/diameter ratio = %f is not on Moody chart’,ed));

end

if Re<4000, warning(’Re = %f in transition range’,Re); end

% --- Use fzero to find f from Colebrook equation.

% coleFun is an inline function object to evaluate F(f,e/d,Re)

% fzero returns the value of f such that F(f,e/d/Re) = 0 (approximately)

% fi = initial guess from Haaland equation, see White, equation 6.64a

% Iterations of fzero are terminated when f is known to whithin +/- dfTol

coleFun = inline(’1.0/sqrt(f) + 2.0*log10(ed/3.7 + 2.51/(Re*sqrt(f)))’,...

’f’,’ed’,’Re’);

fi = 1/(1.8*log10(6.9/Re + (ed/3.7)^1.11))^2; % initial guess at f

dfTol = 5e-6;

f = fzero(coleFun,fi,optimset(’TolX’,dfTol,’Display’,’off’),ed,Re);

% --- sanity check:

if f<0, error(sprintf(’Friction factor = %f, but cannot be negative’,f)); end

Listing 1: The moody function finds the friction factor from the formulas used
to create the Moody chart.

The moody function in Listing 1 uses Matlab’s built-in fzero function as
a root-finder to solve F(f). The initial guess at the f for the root finder is the
explicit formula of Haaland given by White [3].

f =

[
1.8 log10

(
6.9
Re

+
(

ed

3.7

)1.11
)]−2

(11)

The moody function can be called from the command line like this
>> moody(0.002,50e3)

ans =

0.0265

The moody function also uses Equation (6) for laminar flow when Re < 2000.
In the range 2000 ≤ Re ≤ 4000, the moody function uses the Colebrook equation

4

function myMoody

% myMoody Make a simple Moody chart

% --- Generate a log-spaced vector of Re values in the range 2500 <= Re < 10^8

Re = logspace(log10(2500),8,50);

ed = [0 0.00005 0.0002 0.005 0.001 0.005 0.02];

f = zeros(size(Re));

% --- Plot f(Re) curves for one value of epsilon/D at a time

% Temporarily turn warnings off to avoid lots of messges when

% 2000 < Re < 4000

warning(’off’)

figm = figure; hold(’on’);

for i=1:length(ed)

for j=1:length(Re)

f(j) = moody(ed(i),Re(j));

end

loglog(Re,f,’k-’);

end

ReLam = [100 2000];

fLam = 64./ReLam;

loglog(ReLam,fLam,’r-’);

xlabel(’Re’); ylabel(’f’,’Rotation’,0)

axis([100 1e9 5e-3 2e-1]); hold(’off’); grid(’on’)

warning(’on’);

% --- MATLAB resets loglog scale? Set it back

set(gca,’Xscale’,’log’,’Yscale’,’log’);

% --- Add text labels like "epsilon/D = ..." at right end of the plot

Remax = max(Re); ReLabel = 10^(floor(log10(Remax)) - 1);

for i=2:length(ed)

fLabel = moody(ed(i),Remax);

text(ReLabel,1.1*fLabel,sprintf(’\\epsilon/D = %5.4f’,ed(i)),’FontSize’,14);

end

Listing 2: The myMoody function uses the moody function to create a simplified
version of the Moody chart.

to find f . Inspection of Figure 2 shows that the Colebrook equation for smooth
pipes gives a more conservative estimate of f (higher f for a given Re) than
Equation (6). For example

>> Re = 3000; ed = 0;

>> f = moody(ed,Re)

Warning: Re = 3000.000000 in transition range

> In moody at 22

f =

0.0435

>> flam = 64/Re

flam =

0.0213

5

10
2

10
4

10
6

10
8

10
−2

10
−1

Re

f

ε/D = 0.0001

ε/D = 0.0002

ε/D = 0.0050

ε/D = 0.0010

ε/D = 0.0050

ε/D = 0.0200

Figure 3: Moody Diagram created with the myMoody function.

Example 1 Creating a Custom Moody Chart
The moody function accepts only scalar values of ε/D and Re. To generate a

vector of friction factor values, an explicit loop is necessary. For example, the
following code snippet prints a table of friction factors for ε/D = 0.002 and for
five Reynolds numbers in the range 5000 ≤ Re ≤ 5× 106.

Re = logspace(log10(5000),6,5);

ed = 0.002;

for i=1:length(Re)

f(i) = moody(ed,Re(i));

fprintf(’ %12.2e %8.6f\n’,Re(i),f(i))

end

5.00e+03 0.039567

1.88e+04 0.030085

7.07e+04 0.025713

2.66e+05 0.024099

1.00e+06 0.023607

The preceding code suggests that the mood function can be used to create a
Moody chart. The myMoody function in Listing 2 makes the plot in Figure 3.

�

3 Head Loss Computation

The simplest pipe flow problem involves computing the head loss when the pipe
diameter and the flow rate are known.

6

function MYOEx85

% MYOEx85 Head loss problem of Example 8.5 in Munson, Young and Okiishi

% --- Define constants for the system and its components

L = 0.1; % Pipe length (m)

D = 4e-3; % Pipe diameter (m)

A = 0.25*pi*D.^2; % Cross sectional area

e = 0.0015e-3; % Roughness for drawn tubing

rho = 1.23; % Density of air (kg/m^3) at 20 degrees C

g = 9.81; % Acceleration of gravity (m^2/s)

mu = 1.79e-5; % Dynamic viscosity (kg/m/s) at 20 degrees C

nu = mu/rho; % Kinematic viscosity (m^2/s)

V = 50; % Air velocity (m/s)

% --- Laminar solution

Re = V*D/nu;

flam = 64/Re;

dplam = flam * 0.5*(L/D)*rho*V^2;

% --- Turbulent solution

f = moody(e/D,Re);

dp = f*(L/D)*0.5*rho*V^2;

% --- Print summary of losses

fprintf(’\nMYO Example 8.5: Re = %12.3e\n\n’,Re);

fprintf(’\tLaminar flow: ’);

fprintf(’flam = %8.5f; Dp = %7.0f (Pa)\n’,flam,dplam)

fprintf(’\tTurbulent flow: ’);

fprintf(’f = %8.5f; Dp = %7.0f (Pa)\n’,f,dp);

Listing 3: The MYOEx85 function obtains the solution to Example 8.5 in the
textbook by Munson, Young and Okiishi [1].

Example 2 MYO Example 8.5: Head Loss in a Horizontal Pipe

The MYOEx85 function in Listing 3 obtains the solution for Example 8.5 in the
textbook by Munson, Young, and Okiishi [1]. Air flows in a horizontal pipe of
diameter 4.0 mm. The problem involves computing the pressure drop for a 0.1 m
long section of the pipe if the flow is assumed to be laminar and if the flow is
assumed to be turbulent. Running MYOEx85 produces the following output.

>> MYOEx85

MYO Example 8.5: Re = 1.374e+04

Laminar flow: flam = 0.00466; Dp = 179 (Pa)

Turbulent flow: f = 0.02910; Dp = 1119 (Pa)

�

7

1

m
.

2 3

4

5 6 7

Figure 4: Pipe system used to develop a generic calculation procedure.

3.1 Head Loss in Single-Pipe Systems

Head loss problems are slightly more complicated when multiple pipe segments
and multiple minor loss elements are connected in series. The calculations are
more tedious than difficult, and a computer tool can relieve the tedium.

A general procedure can be developed by considering the system in Figure 4.
The system consists of six pipe segments with lengths L1,2, L2,3, L3,4, L4,5,
L5,6, L6,7 and diameters D1,2, D2,3, D3,4, D4,5, D5,6, D6,7. In general, each
pipe segment could be made of a different material, so each segment could
potentially have a different wall roughness.

The system in Figure 4 also has four minor loss elements: elbows at stations
3 and 5, a valve at station 4, and a reducer at station 6.

Applying Equation (8) to the system in Figure 4 gives the total head loss
from station 2 to station 7 is

hL,2−7 = f2,3
L2,3

D2,3

Q2

2gA2
2,3

+ f3,4
L3,4

D3,4

Q2

2gA2
3,4

+ f4,5
L4,5

D4,5

Q2

2gA2
4,5

+ f5,6
L5,6

D5,6

Q2

2gA2
5,6

+ f6,7
L6,7

D6,7

Q2

2gA2
6,7

(12)

+ KL,3
Q2

2gA2
3

+ KL,4
Q2

2gA2
4

+ KL,5
Q2

2gA2
5

+ KL,6
Q2

2gA2
6

Notice that the flow rate, Q is common to all terms. Also notice that the viscous
terms involve the product of Q2 with f , which is also a function of Q, because
Q determines the Reynolds number.

3.1.1 Head Loss Worksheets

Figure 5 and Figure 6 contain worksheets to list the terms on the right hand
side of Equation (8). Each pipe section is specified by its length, L, hydraulic
diameter, Dh, cross-sectional area, A, and roughness, ε. Values of these param-
eters are entered for each pipe section in the first four columns of the worksheet
in Figure 5. The cross-sectional area is specified independently of the hydraulic

8

diameter so that non-circular ducts can be properly treated. For a round pipe,
Ai = (π/4)D2

i , where i is the index of the pipe section (row in Figure 5).
Each minor loss element is specified by its loss coefficient, KL, and the cross-

sectional area, Am that defines the flow velocity for the element. For most minor
loss elements, e.g., valves and elbows, Am is the cross-sectional area of the pipe.
For flow through a sudden contraction, Am is the downstream pipe area. For
flow through a sudden expansion, Am is the upstream pipe area.

3.2 Generating a System Curve

4 Solving Flow-Rate Problems

5 Solving Pipe-Sizing Problems

6 Generating a Pump Curve from Tabulated Per-
formance Data

7 System Balance Point

9

Q =
m3

s
ν =

kg
m · s

L Dh A ε V =
Q

A
ReDh

=
V Dh

ν
f = F

[
ε

Dh
,ReDh

]
hL = f

L

Dh

V 2

2g

Total:

Figure 5: Worksheet for caculating viscous losses in straight pipes.

Q =
m3

s

KL Am V =
Q

A
hm = KL

V 2

2g

Total:

Figure 6: Worksheet for caculating minor losses.

10

function [out1,out2,out3] = pipeLoss(Q,L,A,Dh,e,nu,KL,Am)

% pipeLoss Viscous and minor head loss for a single pipe

%

% Synopsis: hL = pipeLoss(Q,L,A,Dh,e,nu)

% hL = pipeLoss(Q,L,A,Dh,e,nu,KL)

% hL = pipeLoss(Q,L,A,Dh,e,nu,KL,Am)

% [hL,f] = pipeLoss(...)

% [hv,f,hm] = pipeLoss(...)

%

% Input: Q = flow rate through the system (m^3/s)

% L = vector of pipe lengths

% A = vector of cross-sectional areas of ducts. A(1) is area of

% pipe with length L(1) and hydraulic diameter Dh(1)

% Dh = vector of pipe diameters

% e = vector of pipe roughnesses

% nu = kinematic viscosity of the fluid

% KL = minor loss coefficients. Default: KL = [], no minor losses

% Am = areas associated with minor loss coefficients.

% For a flow rate, Q, through minor loss element 1, the area,

% Am(1) gives the appropriate velocity from V = Q/Am(1). For

% example, the characteristic velocity of a sudden expansion

% is the upstream velocity, so Am for that element is the

% area of the upstream duct.

%

% Output: hL = (scalar) total head loss

% hv = (optional,vector) head losses in straight sections of pipe

% hm = (optional, vector) minor losses

% f = (optional, vector) friction factors for straight sections

if nargin<7, KL = []; Am = []; end

if nargin<8, Am = A(1)*ones(size(KL)); end

if size(Am) ~= size(KL)

error(’size(Am) = [%d,%d] not equal size(KL) = [%d,%d]’,size(Am),size(KL));

end

% --- Viscous losses in straight sections

g = 9.81; % acceleration of gravity, SI units

if isempty(L)

hv = 0; f = []; % no straight pipe sections

else

V = Q./A; % velocity in each straight section of pipe

f = zeros(size(L)); % initialize friction factor vector

for k=1:length(f)

f(k) = moody(e(k)/Dh(k),V(k)*Dh(k)/nu); % friction factors

end

hv = f.*(L./Dh).*(V.^2)/(2*g); % viscous losses in straight sections

end

% --- minor losses

if isempty(KL)

hm = 0; % no minor lossess

else

hm = KL.*((Q./Am).^2)/(2*g); % minor lossess

end

% --- optional return variables

if nargout==1

out1 = sum(hv) + sum(hm); % return hL = total head loss

elseif nargout==2

out1 = hv; out2 = f; % return viscous losses and friction factors

elseif nargout==3

out1 = hv; out2 = f; % return viscous losses, friction factors

out3 = hm; % and minor losses

else

error(’Only 1, 2 or 3 return arguments are allowed’);

end

Listing 4: The pipeLoss function computes the total head for a single pipe.

11

function MYOEx88

% MYOEx88 Flow rate problem in Example 8.8 in Munson, Young and Okiishi

% --- Define system components

L = [15 10 5 10 10 10]*0.3048; % Pipe lengths (m)

D = 0.0625*0.3048*ones(size(L)); % True pipe diameters, all equal

% at 0.0625*0.3048 (m)

A = 0.25*pi*D.^2; % Cross sectional area

e = 0.0015e-3*ones(size(L)); % Roughness for drawn tubing

KL = [1.5 1.5 1.5 1.5 10 2]; % Minor loss coefficients

Am = A(1)*ones(size(KL)); % Areas of pipe used with minor loss

% coefficients are same as pipe area

rho = 998.2; % Density of water (kg/m^3) at 20 degrees C

gam = rho*9.81; % specific weight of fluid (N/m^3)

mu = 1.002e-3; % Dynamic viscosity (kg/m/s) at 20 degrees C

nu = mu/rho; % Kinematic viscosity (m^2/s)

dz = -20*0.3048; % Inlet is 20ft below outlet

Q = 12*6.309e-5; % 12 gpm flow rate converted to m^3/s

% --- The pipeLoss function uses root-finding to find head loss at given Q

[hv,f,hm] = pipeLoss(Q,L,A,D,e,nu,KL,Am);

% --- Print summary of losses

fprintf(’\nViscous losses in straight pipe sections\n’);

fprintf(’ section Re f hL\n’);

for k=1:length(L)

Re = (Q/A(k))*D(k)/nu;

fprintf(’ %3d %12.2e %8.4f %6.3f\n’,k,Re,f(k),hv(k));

end

fprintf(’\nMinor losses in straight pipe sections\n’);

fprintf(’ fitting KL hm\n’);

for k=1:length(KL)

fprintf(’ %3d %8.2f %6.3f\n’,k,KL(k),hm(k));

end

% --- Total head loss is sum of viscous (major) and minor losses

hLtot = sum(hv) + sum(hm);

fprintf(’\nTotal head loss’);

fprintf(’ = %6.1f (m H20), %6.1f (ft H20)\n’,hLtot,hLtot/0.3048);

% --- Total static pressure difference

p1 = gam*(hLtot-dz);

fprintf(’\np1 = %8.0f (Pa) = %8.1f (psi)\n’,p1,p1*14.696/101325);

fprintf(’\nFlow rate = %11.3e (m^3/s) = %6.1f (gpm)\n’,Q,Q/6.309e-5);

Wp = gam*Q*hLtot; % pump power (eta = 1) (W)

fprintf(’Pump power = %6.1f (W) = %6.1f hp\n’,Wp,Wp*1.341e-3);

Listing 5: The MYOEx88 function obtains the solution to Example 8.8 in the
textbook by Munson, Young, and Okiishi [1].

12

function demoSystemCurve

% demoSystemCurveGenerate the system curve for a single pipe system

% --- data for straight pipe sections

dsteel = 0.127; % diameter of commercial steel pipe used (m)

diron = 0.102; % diameter of cast iron pipe used (m)

epsSteel = 0.045e-3; % roughness of steel pipe (m)

epsIron = 0.26e-3; % roughness of cast iron pipe (m)

L = [50; 10; 20; 25; 20]; % pipe lengths (m)

D = [dsteel; dsteel; dsteel; diron; dsteel]; % pipe diameters (m)

A = 0.25*pi*D.^2; % X-sectional areas (m^2)

e = [epsSteel; epsSteel; epsSteel; epsIron; epsSteel]; % roughness

% --- data for minor losses

kelbow = 0.3;

kvalve = 10;

Asteel = 0.25*pi*dsteel^2;

Airon = 0.25*pi*diron^2;

kcontract = contractionLoss(Asteel,Airon);

kexpand = (1 - Airon/Asteel)^2;

KL = [kelbow; kelbow; kvalve; kcontract; kexpand; kvalve];

Am = [Asteel; Asteel; Asteel; Airon; Airon; Asteel];

% --- overall elevation change

dz = L(2); % outlet is above inlet by this amount

% --- fluid properties

rho = 999.7; % density of water (kg/m^3) at 10 degrees C

mu = 1.307e-3; % dynamic viscosity (kg/m/s) at 10 degrees C

nu = mu/rho; % kinematic viscosity (m^2/s)

% --- Create system curve for a range of flow rates

Q = linspace(0,0.075,10);

hL = zeros(size(Q));

for k = 2:length(Q) % loop starts at 2 to avoid Q=0 calculation

hL(k) = pipeLoss(Q(k),L,A,D,e,KL,Am,nu);

end

hsys1 = hL + dz;

% --- Repeat analysis with gate valves instead of globe valves

KL(3) = 0.15; KL(6) = 0.15; % replace loss coefficients for valves

for k = 2:length(Q) % loop starts at 2 to avoid Q=0 calculation

hL(k) = pipeLoss(Q(k),L,A,D,e,KL,Am,nu);

end

hsys2 = hL + dz;

% --- Plot both system curves and annotate

plot(Q,hsys1,’o-’,Q,hsys2,’s-’);

xlabel(’Flow rate (m^3/s)’); ylabel(’Head (m)’);

legend(’globe valves’,’gate valves’,2);

Listing 6: The testSystemCurve function generates and plots the system curve
for a single pipe.

13

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

Figure 7: System curve.

14

function h = pipeHeadBal(Q,L,A,Dh,e,KL,Am,nu,dz,pc)

% pipeHeadBal Head imbalance in energy equation for a single pipe with a pump

% This equations is of the form f(Q) = 0 for use with a

% standard root-finding routine for flow rate problems or

% system balance point problems

%

% Synopsis: h = pipeHeadBal(Q,L,A,Dh,e,KL,Am,nu,dz,pc)

%

% Input: Q = flow rate through the system (m^3/s)

% L = vector of pipe lengths

% A = vector of cross-sectional areas of ducts. A(1) is area of

% pipe with length L(1) and hydraulic diameter Dh(1)

% Dh = vector of pipe diameters

% e = vector of pipe roughnesses

% KL = vector of minor loss coefficients

% Am = vector of areas associated with minor loss coefficients.

% For a flow rate, Q, through minor loss element 1, the area,

% Am(1) gives the appropriate velocity from V = Q/Am(1).

% Thus, different minor loss elements will have different

% velocities for the same flow rate. For a sudden expansion

% the characteristic velocity is the upstream velocity, so

% Am for that element is the area of the upstream duct.

% nu = kinematic viscosity of the fluid

% dz = change in elevation, z_out - z_in; dz>0 if outlet is above

% the inlet; dz = 0 for closed loop

% pc = vector of polynomial coefficients defining the pump curve.

% Note that the polynomial is defined in decreasing power of Q:

% hs(Q) = pc(1)Q^n + pc(2)*Q^(n-1) + ... + pc(n)*Q + pc(n+1)

%

% Output: h = imbalance in head in energy equation; h = 0 when

% energy equation is satisfied

if isempty(pc)

hs = 0; % no pump curve data -> no pump

else

hs = polyval(pc,Q); % evaluate polynomial model of pump curve at Q

end

h = hs - dz - pipeLoss(Q,L,A,Dh,e,nu,KL,Am);

Listing 7: The pipeHeadBal function evaluates the energy equation and returns
the head imbalance. When the correct flow rate and pipe diameter are supplied,
the head imbalance is zero.

15

function c = makePumpCurve(Q,h,n);

% makePumpCurve Find polynomial model for pump curve

%

% Synopsis: c = makePumpCurve(Q,h,n)

%

% Input: Q = pump flow rate; (Both Q and h must be given)

% h = pump head

% n = (optional) degree of polynomial curve fit; Default: n=3

if nargin<3; n = 3; end

c = polyfit(Q,h,n);

fprintf(’\nCoefficients of the polynomial fit to the pump curve:\n’);

fprintf(’ (in DECREASING powers of Q)\n’);

for k=1:length(c)

fprintf(’ Q^%d %18.10e\n’,n+1-k,c(k));

end

% --- evaluate the fit and plot along with orignal data

Qfit = linspace(min(Q),max(Q));

hfit = polyval(c,Qfit);

plot(Q,h,’o’,Qfit,hfit,’-’);

xlabel(’Flow rate’); ylabel(’pump head’);

Listing 8: The makePumpCurve function uses the least squares method to obtain
the coefficients of a polynomial curve fit to a pump curve. If no data is supplied,
the data from the pump curve given in Example 12.4 by Munson et. al [1] is
used.

16

function MYOEx124

% MYOEx124 Find balance point for single pipe system in Example 12.4

% of Munson, Young and Okiishi

L = 200*0.3048; % pipe length (m)

D = (6/12)*0.3048; % true pipe diameter (m)

A = 0.25*pi*D^2; % cross sectional area

e = 0.26e-3; % roughness for cast iron

KL = [0.5; 1.5; 1]; % minor loss for entrance, elbow, and exit

Ah = [A; A; A]; % areas of pipe associated with minor loss

% coefficients are same as pipe area

rho = 998.2; % density of water (kg/m^3) at 20 degrees C

mu = 1.002e-3; % dynamic viscosity (kg/m/s) at 20 degrees C

nu = mu/rho; % kinematic viscosity (m^2/s)

dz = 10*0.3048; % outlet is 10 ft above inlet

% --- Data for pump curve

Q = [0 400 800 1400 1800 2200 2300]*6.309e-5; % m^3/s

h = [88 86 81 70 60 46 40]*0.3048; % m

n = 3;

pc = makePumpCurve(Q,h,n); % polynomial curve fit of degree n

eta = 0.84; % pump efficiency

% --- evaluate pump curve for balance point plot

Qfit = linspace(min(Q),max(Q));

hfit = polyval(pc,Qfit);

% --- generate system curve

Qs = linspace(min(Q),max(Q),10);

hL = zeros(size(Qs));

for k = 2:length(Qs) % loop starts at 2 to avoid Q=0 calculation

hL(k) = pipeLoss(Qs(k),L,A,D,e,nu,KL,Ah);

end

% --- superimpose system curve and pump curve in new window

% to give graphical solution to balance point

f = figure;

plot(Q,h,’o’,Qfit,hfit,’-’,Qs,hL+dz,’v-’);

xlabel(’Flow rate (m^3/s)’); ylabel(’head (m)’);

legend(’pump data’,’pump curve (fit)’,’system curve’,2);

Q0 = [0.01 1.2]; % initial guess brackets the flow rate (m^3/s)

[Q,hL,hs] = pipeFlowSolve(Q0,L,A,D,e,KL,Ah,nu,dz,pc); % find balance point

Wp = rho*9.81*Q*hs/eta; % pump power (W) with efficiency of eta

hold on;

plot([Q Q],[0 hL+dz],’--’); % vertical line at balance pt.

hold off;

% --- convert to ancient system of units and print

fprintf(’\nFlow rate = %6.1f gpm\n’,Q/6.309e-5);

fprintf(’Pump head = %6.1f ft\n’,hs/0.3048);

fprintf(’Pump power = %6.1f hp\n’,Wp*1.341e-3);

Listing 9: The MYOEx124 function solves the flow rate problem given as Exam-
ple 12.4 by Munson et. al [1].

17

8 References

References

[1] Bruce R. Munson, Donald F. Young, and Theodore H. Okiishi. Fundamen-
tals of Fluid Mechanics. Wiley, New York, fifth edition, 2006.

[2] Gerald W. Recktenwald. Numerical Methods with Matlab: Implementa-
tions and Applications. Prentice-Hall, Englewood Cliffs, NJ, 2000.

[3] Frank M. White. Fuid Mechanics. McGraw-Hill, New York, fourth edition,
1999.

18

