
ME 322 Worksheet Winter 2007
Introduction to Compressible Flow

1. A two-liter cylindrical tank, 10 cm in diameter, has a piston that fits
perfectly. The piston does not leak, and there is no friction between
the piston and walls of the tank.
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Suppose the tank is filled with water that is initially at 1 atm of
pressure. How much additional weight must be placed on the piston
to move the piston 1 cm?

2. Suppose the tank in the preceding exerciseis filled with air that is
initially at 1 atm of pressure. How much additional weight must be
placed on the piston to move the piston 1 cm?

3. Calculate the speed of sound in air, and in Hydrogen at 70◦F.

4. Calculate the speed of sound in air at the altitudes in the following
table. Assume the specific heat ratio is k = 1.4.

Altitude
(m)

Temperature
(◦C)

Sound Speed
(m/s)

0 15

1000 8.5

5000 −17.5

10000 −49.9

20000 −56.5
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5. What is the stagnation temperature and stagnation pressure on the
nose of a reentry vehicle moving at a Mach number of 7 at an altitude
of 200,000 ft.? At 200,000 ft. the ambient temperaure is 457◦Rand
the pressure is 0.58× 10−2 inch Hg.

6. An ideal gas (k = 1.4, R = 100 ft · lbf/lbm/◦R) is supplied to a con-
verging nozzle at low velocity at at 100 psia and 540 ◦F. The nozzle
discharges to atmospheric pressure, 14.7 psia. Assuming frictionless,
adiabatic flow, and a mass flow rate of 2,lbm/s, calculate

a. The pressure in the exit plane in psia.
b. The velocity in the exit plane in ft/s.
c. The cross-sectional area of the exit plan in in2.

7. Air flowing in a duct has a pressure of 20 psia, a Mach number of 0.6,
and a flow rate of 0.5 lbm/s. The cross sectional area of the duct is
1.5 in2.

a. Compute the stagnation temperature of the stream.
b. What is the maximum percent reduction in area that could be

introduced without reducing the flow rate of the stream?
c. For the maximum reduction from part (b), find the velocity and

pressure at the minimum area. Assume that the flow is adiabatic
and friction is negligible.
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Solution

1. Apply the definition of bulk modulus to finite changes in p and V

Ev = −V dp

dV
≈ V ∆p

∆V
=⇒ ∆p = Ev

−∆V
V

(1)

where −∆V means that a positive pressure change occurs when ∆V is
negative.

Use simple geometry of the cylinder

V = LA and ∆V = −L∆x =⇒ −∆V
V

=
+∆x

L
(2)

where A = π
4 D2 is the area of the cylinder.

Combine Equation (1) and Equation (2)

∆p = Ev
∆x

L
(3)

From the definition of pressure, ∆p = (W −mg)/A, where W is the
added weight and m is the mass of the piston. Define W ′ = W −mg
as the change in weight necessary to compress the liguid, then

∆p =
W ′

A
=⇒ W ′ = A∆p = EvA

∆x

L
(4)

From the given geometric data

L =
V
A

=
(2`)

(
1000 cm3

`

)
π
4 (0.10 m)2

= 0.25 m

Substitute numerical values into Equation (4). From Table 1.6 in
Munson, Young and Okiishi (inside book cover), Ev = 2.15×109 N/m2

W ′ =
(

2.15× 109 N
m2

) (π

4
(0.10 m)2

) 0.010 m
0.25 m

= 675, 000 N

If a small car weighs 1.5 ton = 1.5×2000 lbf × (1 lbf/4.448 N) = 674 N,
then the weight of 1000 cars is required to compress the liquid by one
cm!
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2. Use the ideal gas law to find the relationship between changes in pres-
sure and changes in volume.

pV = mRT =⇒ p =
mRT

V

=⇒ p2

p1
=

m2RT2/V2

m1RT1/V1
=

T2

T1

V1

V2

Assume that the compression process is quasistatic and thermal equi-
librium with the environment is maintained. Then T1 = T2 and

p2

p1
=
V1

V2
=⇒ p2 = p1

V1

V2

From the geometry

V1 = LA and V2 = (L−∆x)A =⇒ p2 = p1
L

L−∆x

From definition of pressure, W = p2A. Combining the preceding equa-
tions gives

p2 =
W

A
= p1

L

L−∆x
=⇒ W = p1A

L

L−∆x

Substitute numerical values

W =
(

101325
N
m2

) (π

4
(0.10 m)2

) 0.25 m
0.25 m− 0.01 m

= 828N

828 N is the weight of

m =
W

g
=

828 N
9.8 m/s2

= 85 kg.

which is the mass of a large adult male.

Copyright c© 2007, Gerald Recktenwald. All rights reserved.



5

3. Evaluate c =
√

kRT . Use absolute temperatures and gc to get correct
units.

Air: R =
Ru

M
=

1545 ft·lbf
lbm·mol◦R

28.97 lbm
lbm·mol

= 53.33
ft · lbf

lbm
◦R

k = 1.4

c =
√

kRT

=

√
(1.4)

(
53.33

ft · lbf

lbm
◦R

)
(70 + 460 ◦R)

(
32.174 ft · lbf

lbms2

)
∴ c = 1130

ft
s

H2: R =
Ru

M
=

1545 ft·lbf
lbm·mol◦R

2.018 lbm
lbm·mol

= 765.6
ft · lbf

lbm
◦R

k = 1.4 coincidentally same as air

c =
√

kRT

=

√
(1.4)

(
765.6

ft · lbf

lbm
◦R

)
(70 + 460 ◦R)

(
32.174 ft · lbf

lbms2

)
∴ c = 4275

ft
s
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4. Use c =
√

kRT with k = 1.4, R =
8315 J

kg·molK

28.97 kg
kg·mol

= 287 J
kg·K

At 1000 m:

c =
√

kRT

=

√
(1.4)

(
287

J
kg ·K

)
(8.5 + 273.15 K)

= 336

√
J
kg

= 336

√
N ·m
kg

= 336

√
kg·m
s2
·m

kg

∴ c = 336
m
s

Repeat calculations to fill in the table.

Altitude
(m)

Temperature
(◦C)

Sound Speed
(m/s)

0 15 340

1000 8.5 336

5000 −17.5 320

10000 −49.9 300

20000 −56.5 295
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5. Apply formulas for stagnation pressure and temperature. Use abso-
lute pressures and temperatures. Given pressure and temperature are
ambient conditions and are the static pressure and temperature in the
formulas for stagnation temperature and pressure.

Given:

Ma = 7, T = 457 ◦R,

p =
(
0.58× 10−2 inchHg

) (
14.7 psia

29.92 inchHg

)
= 0.00285 psia

Compute stagnation temperature. k = 1.4 for air.

To = T

(
1 +

k − 1
2

Ma2

)
= 457 ◦R

(
1 +

0.4
2

72

)
= 457 ◦R(10.8)

∴ To = 4940 ◦R Hot!

Compute stagnation pressure.

po = p

(
To

T

)k/(k−1)

= (0.00285 psia) (10.8)1.4/0.4

∴ po = 11.83 psia

Note: The given pressure could not be a gage pressure because that
would imply that p ≈ 14.7 psia at 200,000 ft.
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6. Assume pressure at the exit plane is equal to the pressure of the sur-
roundings. Use subscript “e” to designate conditions at the exit plane.

p0 = 100 psia 
T0  
V  0

p = 14.7 psia

m = 2 lbm/s

Check for choked flow.

pe

p0
=

14.7 psia
100 psia

= 0.147

Since pe/p0 < 0.528 the flow
is choked. Therefore, Ma = 1
at the smallest area along the
flow path, which is the exit
plane

a. Ma = 1 =⇒ p = p∗ at the exit.

pe = p∗ = 0.528p0 (for k = 1.4)
= 0.528(100 psia)

∴ pe = 52.8 psia

b. Ma = 1 at the exit means Ve = c =
√

kRT and T = T ∗.
Compute T ∗ and then V .

T ∗

T0
= 0.833 =⇒ T ∗ = (0.833)(540 + 460 ◦R) = 833 ◦R

Recall that R = 100 ft · lbf/lbm/◦R for the gas (not air)

Ve =

√
(1.4)

(
100

ft · lbf

lbm
◦R

)
(833 ◦R)

(
32.174 ft · lbf

lbms2

)
∴ Ve = 1937

ft
s

c. ṁ = ρeVeAe = 2 lbm/s. Use ideal gas law to compute ρe and then
solve for Ae.

Ae =
ṁ

ρeAe
, ρe =

pe

RTe
=⇒ Ae =

ṁRTe

peVe

pe is known from the solution to part (a). Te and Ve values are
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known from solution to part (b).

Ae =

(
2 lbm

s

) (
100 ft·lbf

lbm
◦R

)
(833 ◦R)(

52.8 lbf

in2
144 in2

ft2

) (
1937 ft

s

) =
(
0.01131 ft2

) (
144 in2

ft2

)

∴ Ae = 1.63 in2

d. ṁ = ρeVeAe = 2 lbm/s. Use ideal gas law to compute ρe and then
solve for Ae.

Ae =
ṁ

ρeAe
, ρe =

pe

RTe
=⇒ Ae =

ṁRTe

peVe

pe is known from the solution to part (a). Te and Ve values are
known from solution to part (b).

Ae =

(
2 lbm

s

) (
100 ft·lbf

lbm
◦R

)
(833 ◦R)(

52.8 lbf

in2
144 in2

ft2

) (
1937 ft

s

) =
(
0.01131 ft2

) (
144 in2

ft2

)

∴ Ae = 1.63 in2
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7. Known: k = 1.4, Ma = 0.6, ṁ = 0.5 lbm/s, A = 1.5 in2, p = 20psia.

a. We need to find T before we can compute T0. Start by calculating
p0.

p

p0
=

 1

1 +
k − 1

2
Ma2


k/(k−1)

=

 1

1 +
0.4
2

(0.6)2


1.4/0.4

= 0.784

=⇒ p0 =
p

0.784
=

20
0.784

∴ p0 = 25.51 psia

Since ṁ is given the formula for the maximum flow rate is useful

ṁmax,air =
0.6847p0A

∗
√

RT0
(?)

Both ṁmax,air and A∗ are unknown. However, since A and Ma
are known we can compute A∗ from

A

A∗ =
1

Ma

[
2

k + 1

(
1 +

k − 1
2

Ma2

)](k+1)/[2(k−1)]

=
1

0.6

[
2

2.4

(
1 +

0.4
2

(0.6)2
)]2.4/0.8

∴
A

A∗ = 1.1882 and A∗ =
1.5 in2

1.1882
= 1.262 in2

But since ṁ does not vary along the duct

ṁmax,air = ṁ = 0.5
lbm

s

Ma = 1 
A = A*

Ma = 0.6 
A = 1.5 in2

m m

Solve Equation (?) for T0√
T0 =

0.6847p0A
∗

ṁmax,air

√
R

=⇒ T0 =
[
0.6847p0A

∗

ṁmax,air

]2 1
R

Everything on the right hand side is known. A factor of gc is
needed for the units to work out

T0 =

0.6847
(
25.51 lbf

in2

) (
1.262 in2

)
0.5 lbm

s

2

32.174 lbmft
lbfs2

53.33 ft·lbf
lbm

◦R

∴ T0 = 521 ◦R
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b. A∗ is the minimum possible area if the mass flow rate is to remain
unchanged. The actual area is A. Therefore the largest percent
reduction in area is

100× A−A∗

A
= 100× 1.5− 1.262

1.5
= 16 percent

c. Find V and p at A = A∗

V ∗ =
√

kRT ∗ =
√

kRT0
T ∗

T0

=

√
(1.4)

(
53.33

ft · lbf

lbm
◦R

)
(521 ◦R) (0.8333)

(
32.174 ft · lbf

lbms2

)

∴ V ∗ = 1021
ft
s

p∗

p0
= 0.5283 =⇒ p∗ = (0.5283)(25.51psia) ∴ p∗ = 13.5 psia
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