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Overview

Learning Objectives

• Be able to sketch a basic system curve.

• Be able to modify a sketch of a system curve to take into account changes in elevation

and changes in valve settings.

• Be able to define NPSH, NPSHA, and NPSHR

• Be able to define the vapor pressure of a liquid

• Be able to explain why maintaining adequate NPSH is necessary for pump operation.

• Be able to sketch the balance point of a system and a pump.

• Be able to show how the balance point changes when a valve in the system changes.

• Be able to identify the role of pump efficiency and motor efficiency in overall system

performance.
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Pump Performance Data

Data from Problem 11.13 in Fox and McDonald

h = f1(Q) Ẇf = f2(Q) η = f3(Q)
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Pump Performance Data

Simplified One Manufacturer’s version

h

η

Q

Eshaft

.
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Net Positive Suction Head (1)

Goal: Avoid cavitation in the pump

Cavitation: Spontaneous generation of vapor caused by lowering the pressure in a liquid.

Vapor is generated when p < psat, where psat is the vapor pressure of the liquid.

Review vapor pressure in §1.8 in the textbook.
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Net Positive Suction Head (1)

Source: Munson, Young and Okiishi, Figure 12.13

Apply energy equation with absolute pressures

p2

γ
+

V 2
2

2g
+ z2 =

patm

γ
+ z1 − hL

Solve for p2

p2 = patm −
ρV 2

2
− γ(z2 − z1)− hL
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Net Positive Suction Head (2)

Source: Munson, Young and Okiishi, Figure 12.13

p2 = patm −
ρQ2

2A2
− γ(z2 − z1)− hL

If p2 < psat the liquid cavitates at station 2

The pressure inside the pump is less than p2, so

cavitation can still occur.

Manufacturers provide Net Positive Suction Head data to specify a safe margin for the

pressure immediately upstream of the pump inlet (suction).
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Net Positive Suction Head (3)

Define Net Positive Suction Head (NPSH)

NPSH =
pi

ρg
+

V 2
i

2g
−

pv

ρg

where pi and Vi are the pressure and average velocity at the pump inlet, and pv is the

vapor pressure of the liquid at the design temperature

If NPSH < 0 the pump will cavitate
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Net Positive Suction Head (4)

Design procedure

• Compute NPSHA, the actual NPSH, at the maximum flow rate. Write the energy

equation between a known datum and the pump inlet. Use absolute pressure units.

• Look up NPSHR, the required NPSH, on the pump performance map

make sure that NPSHA > NPSHR

• Adjust system design as necessary to allow for proper NPSH

. Place pump in lowest spot in loop to maximize NPSHA You may need to place

the pump lower than any other system components. This might increase the

pumping requirements by increasing the length of pipe.

. Choose another pump
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A Typical Pump Application (1)

Goal: Find a pump capable of delivering

the fluid from the lower reservoir to the

upper reservoir.
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A Typical Pump Application (2)

Energy Equation:

z12 − z1 = hs − hL

hs = H(Q) pump head curve

hL =
X

fi,j

Li,j

Di,j

V 2
i,j

2g
+

X
KL,i

V 2
i

2g

=
X

fi,j

Li,j

Di,j

Q2

2gA2
i,j

+
X
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Q2
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i
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Solution is a root-finding problem: Find Q such that

z12 − z1 −H(Q) +
X

fi,j

Li,j

Di,j

Q2

2gA2
i,j

+
X

KL,i

Q2
i

2gA2
i

= 0
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A Typical Pump Application (3)

The energy equation (from preceding slide) is

z12 − z1 = H(Q)−
X

fi,j

Li,j

Di,j

Q2

2gA2
i,j

−
X

KL,i

Q2

2gA2
i

Factor out Q from summations on the right hand

z12 − z1 = H(Q)−Q
2

»X
fi,j

Li,j

Di,j

1

2gA2
i,j

−
X KL,i

2gA2
i

–
Define C as the big term in brackets

z12 − z1 = H(Q)− CQ
2

or

H(Q)− CQ
2 −∆z = 0

where ∆z is the elevation difference between the outlet and the inlet
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Matching a Pump to a System (1)

The simplified view of the energy equation is

H(Q)− CQ
2 −∆z = 0 or H(Q) = CQ

2
+ ∆z

where complexity of head loss calculation is hidden in C.

Although a pump can operate over a range of h and Q values, there is only one operating

point where the pump output matches the system. This operating point is the balance

point for the pump and system.
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Matching a Pump to a System (2)

System curve:

hL =
X

fi,j

Li,j

Di,j

Q2

2gA2
i,j

+
X

KL,i

Q2

2gA2
i

= CQ
2

Q

h
h = cQ2

close valve

∆z
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Matching a Pump to a System (3)

Pump curve System curve

 
point (Q*,h*)

Q

Q

Q

h

hh

h*

Q*

h = cQ2

h = H (Q)

The energy equation contains the matching condition

H(Q)− CQ
2 −∆z = 0 or H(Q) = CQ

2
+ ∆z
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Matching a Pump to a System (4)

Minimal objectives

• Pump needs sufficient “capacity” (h and Q)

=⇒ pump and system curves should intersect

• Pump operates with NPSHA > NPSHR

Optimization

• Select pump so that the design operating point is near BEP

• Pumps will likely operate at “off-design” conditions

• Economic analysis should weigh first-cost versus life-cycle cost

Other considerations

• Aging of pipes: scale build-up reduces flow area

• Critical installations will require redundant pumps to allow for maintenance
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Pumps in Series and Parallel
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Pump Performance

Other pump performance parameters:

η = efficiency Ėshaft = shaft power, a.k.a. BHP

h

η

Q

Eshaft

.

Note: The Ėshaft curve is not a system curve. The Ėshaft curve shows the shaft

power required to deliver flow rate Q.
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Power Input to the Pump

Pump

QEin

. Motor

Q

The motor supplies the shaft power to the pump.

Overall efficiency of the motor/pump combination relates the power delivered to the fluid

to the electrical power supplied to the motor.

η =
Ėf

Ėin

=
power supplied to the fluid

electrical power supplied to the motor
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Shaft Power from the Motor

Pump

Ein

. Motor

Eshaft

.
Eshaft

.

Q

Q

Motor inefficiencies

Ėshaft < Ėin

Pump inefficiencies

Ėf < Ėshaft < Ėin
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Overall and Mechanical Efficiency

Overall efficiency

η =
Ėf

Ėin

=
power supplied to the fluid

electrical power supplied to the motor

Mechanical efficiency of the pump alone

ηmech =
Ėf

Ėshaft

=
power supplied to the fluid

shaft power supplied to the pump
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Power Loss in System

Power loss in the piping system does not directly affect the efficiency of the pump.

Ein

.

Ehead,lost

.

Power lost in the fluid system is

Ėhead,loss = γQhL

where hL is the head loss for the fluid system.
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