Obstruction-Type Flow Meters ME 322 Lecture Slides, Winter 2007

Gerald Recktenwald*

January 30, 2007

^{*}Associate Professor, Mechanical and Materials Engineering Department Portland State University, Portland, Oregon, gerry@me.pdx.edu

Overview of Flow Measurements

- > Local: velocity, temperature and pressure at at point
- > Integrated: mass or volume flow rate at a cross-section
- ➤ Global: flow visualization

Velocity Measurements At a Point (1)

Pitot probe

The dynamic pressure is

$$p_d = \frac{1}{2}\rho V^2 = \gamma_m h$$

Solve for the velocity

$$V = \sqrt{\frac{2\gamma_m h}{\rho}}$$

Velocity Measurements At a Point (2)

Thermal anemometer – hot wire anemometer

Source: TSI Thermal Anemometry Probe catalog

- Low cost sensors are \sim \$1500 US in 2007
- Research-quality systems cost \$30k and up

Velocity Measurements At a Point (3)

Optical systems

- Laser Doppler anemometer
- Particle image velocemetry

These systems

- Are more expensive than hot wire systems
- Require optical access
- Require seeding of the flow
- Are non-intrusive no probe body disturbs the flow
- Are the only option in extreme environments
 - ▷ velocity field around a cell
 - > velocity field in a rocket exhaust
 - > velocity field inside the cylinder of a reciprocating engine

Pressure Measurements At a Point

Pressure measurements require a *pressure tap* connected to a pressure sensor.

Pressure sensors

- manometer
 - ▷ Static pressure along walls
- Bourdon gages
- Pressure transducers

 - ▷ Piezoelectric

Volumetric Flow Rate Measurement (1)

Rotameters, a.k.a. variable area meters

Source: Munson, Young and Okiishi, Figure 8.46

Volumetric Flow Rate Measurement (2)

Paddle wheel and turbine meters

Source: Munson, Young and Okiishi, Figure 8.47

Volumetric Flow Rate Measurement (3)

- Metering pumps, e.g. gas clocks
- Capillary tubes Laminar flow meters

Volumetric Flow Rate Measurement (4)

Metering pumps and gas clocks

Source: Munson, Young and Okiishi, Figure 8.49

Obstruction Type Flowmeter (1)

Volumetric Flow Rate Measurement (2)

Volumetric Flow Rate Measurement (3)

Compute flow rate with

$$Q = C_o A_o \sqrt{\frac{2(p_1 - p_2)}{\rho(1 - \beta^4)}}$$

Meter Type	Typical C_o
Orifice	0.60
Nozzle	0.97
Venturi	0.98

where C_o is the discharge coefficient and $\beta = d_0/D_1$.