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Overview

Topics

• Basic Concepts

• Review of bulk compressibility in liquids and gases

• Ideal Gas Relationships

• Speed of sound

• Mach number

• When are compressible effects important?

• Isentropic, compressible flow in ducts with variable area
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Overview

Learning Objectives

• Be able to list fluid properties associated with compressible flow.

• Be able to use and manipulate isentropic relationships between p, T , and ρ, e.g.,

p/ρk = constant

• Be able to write (from memory) and correctly use the formula for speed of sound of an

ideal gas.

• Be able to compute the Mach number and use its value to correctly identify the flow

regime.

• Be able to predict whether a compressible flow will increase or decrease as a result of

area change and the current value of Ma.

• Be able to evaluate the isentropic relationships for the stagnation properties

• Be able to explain the physical significance of the ∗ states.
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Basic Concepts

Incompressible:

Density variations are not important in determining the dynamics of the fluid

motion. Small changes in density do not affect velocity and pressure.

Equations governing fluid motion are

• Mass conservation (continuity)

• Momentum conservation

• Energy equation only if fluid experiences heat and work interactions

Compressible:

Density variations are important in determining the dynamics of the fluid motion.

Changes in density do affect velocity and pressure.

Equations governing fluid motion are

• Mass conservation (continuity)

• Momentum conservation

• Energy conservation

• Equation of state
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Applications where Compressible Flow is Important

• High speed aeronautics: jet airplanes, rockets, ballistics

• Gas turbines and compressors, vapor power cycles

• Gas transmission lines (factories, natural gas supply)

• Acoustics: audio equipment, phase change ink jet printers, noise abatement

• Free convection

• Water hammer
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Bulk Compressibility in Liquids and Gases (1)

Bulk modulus (MYO, §1.7.1, pp. 20–21)

Ev = −
dp

dV/V
= V

dp

dV
(?)

where V is the volume of the liquid.

An equivalent formula for Ev is

Ev =
dp

dρ/ρ
= ρ

dp

dρ
(??)

where ρ is the volume of the liquid.

Note that Equation (?) and Equation (??) have different signs on the right hand sides.
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Bulk Compressibility in Liquids and Gases (2)

Isothermal compressibility

α = −
1

v̂

„
∂v̂

∂p

«
T

=
1

ρ

„
∂ρ

∂p

«
T

where v̂ is the specific volume of the fluid.

Volumetric Thermal Expansion coefficient — important in free convection problems

β =
1

v̂

„
∂v̂

∂T

«
p

= −ρ

„
∂ρ

∂p

«
p

See Çengel and Boles, Chapter 11 for a discussion of these compressibility properties. (p.

617 in fourth edition)
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Bulk Compressibility in Liquids and Gases (3)

Now what?

• Bulk compressibility is a material property

• Key Question: How does compressibility affect fluid motion?

• Before studying the equations of motion, we’ll review ideal gas relationships

• Compressible flow is complex, we will only be introducing the simplest models that are

most likely to be of use to the broadest population of practicing engineers.
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Review of Ideal Gas Relationships (1)

Ideal Gas Equation

p = ρRT p =
m

V
RT

where

ρ is the gas density,

p is the absolute pressure,

T is the absolute temperature,

R =
Ru

M
is the gas constant,

Ru is the universal gas constant,

Ru = 8315 J
kg·mol K = 49709

ft·lbf
slug·mol ◦R = 1545

ft·lbf
lbm·mol◦R

M is the molecular weight of the gas.

Mair = 28.97 lbm
lbm·mol = 28.97 slug

slug·mol = 28.97 kg
kg·mol
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Review of Ideal Gas Relationships (1)

Specific Heats

cv ≡
„

∂ǔ

∂T

«
v

cp ≡
 

∂ȟ

∂T

!
p

ǔ is the specific internal energy

ȟ is the specific enthalpy
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Review of Ideal Gas Relationships (2)

Specific Internal Energy

For an ideal gas ǔ is a function of temperature only

ǔ = ǔ(T ) =⇒ cv ≡
„

∂ǔ

∂T

«
v

=
dǔ

dT
=⇒ dǔ = cvdT

Therefore

ǔ2 − ǔ1 =

Z T2

T1

cvdT

Often we assume that cv is constant so that the integral reduces to

ǔ2 − ǔ1 = c̄v(T2 − T1)

Where c̄v is the average value of cv for the temperature range of interest.
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Review of Ideal Gas Relationships (3)

Specific Enthalpy

ȟ = ǔ +
p

ρ

so if ǔ = ǔ(T ), then ȟ = ȟ(T )

ȟ = ȟ(T ) =⇒ cp ≡
 

∂ȟ

∂T

!
p

=
dȟ

dT
=⇒ dȟ = cpdT

Therefore

ȟ2 − ȟ1 =

Z T2

T1

cpdT

Often we assume that cp is constant so that the integral reduces to

ȟ2 − ȟ1 = c̄p(T2 − T1)

Where c̄p is the average value of cp for the temperature range of interest.
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Review of Ideal Gas Relationships (4)

Specific Heat Relationships for Ideal Gases

p = ρRT

ȟ = ǔ +
p

ρ

9>=>; =⇒ ȟ = ǔ + RT

Differentiate the preceding relationship with respect to T

dȟ

dT
=

dǔ

dT
+ R =⇒ cp = cv + R =⇒ cp − cv = R

Define k ≡
cp

cv

so that

cp =
Rk

k − 1
and cv =

R

k − 1
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Review of Ideal Gas Relationships (5)

Entropy Relationships

Without approximation the following relationships hold for a pure (single component)

substance

ds =
cv

T
dT +

„
∂p

∂T

«
v

dv ds =
cp

T
dT −

„
∂v

∂T

«
p

dp

See Çengel and Boles, Chapter 11 (pp. 615–616 in fourth edition)

For an ideal gas with constant specific heats the preceding equations can be integrated

directly to give

s2 − s1 = cv ln
T2

T1

+ R ln
ρ1

ρ2

s2 − s1 = cp ln
T2

T1

− R ln
p2

p1
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Review of Ideal Gas Relationships (6)

Isentropic Relationships

State changes that are reversible and adiabatic are also isentropic.

The first ∆s relationship gives

∆s = 0 =⇒ cv ln
T2

T1

= −R ln
ρ1

ρ2

=⇒ ln

„
T2

T1

«cv

= ln

„
ρ2

ρ1

«R

„
T2

T1

«cv

=

„
ρ2

ρ1

«R

T2

T1

=

„
ρ2

ρ1

«R/cv

∴
T2

T1

=

„
ρ2

ρ1

«k−1
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Review of Ideal Gas Relationships (7)

Isentropic Relationships

The second ∆s relationship gives

∆s = 0 =⇒ cp ln
T2

T1

= R ln
p2

p1

=⇒ ln

„
T2

T1

«cp

= ln

„
p2

p1

«R

„
T2

T1

«cp

=

„
p2

p1

«R

T2

T1

=

„
p2

p1

«R/cp

∴
T2

T1

=

„
p2

p1

«(k−1)/k
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Review of Ideal Gas Relationships (8)

T2

T1

=

„
ρ2

ρ1

«k−1

and
T2

T1

=

„
p2

p1

«(k−1)/k

=⇒
p2

p1

=

„
ρ2

ρ1

«k
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Speed of Sound (1)

Overview

• Thought experiment of a pressure pulse traveling in a tube

• Apply momentum and mass conservation for a moving control volume

• Use ideal gas relationships

• Result: c =
√

kRT
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Speed of Sound (2)

Consider a pressure pulse moving through a tube

c
u = 0

p, ρ, T p + ρ + ρ, T + 

p

x

u = 

Pressure wave 
moving at speed c

Pistonp + p
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Speed of Sound (3)

Change frame of reference: Move with the pulse

u = c

p, ρ, T p + ρ + ρ, T + 

p

x

u = c

1D Control volume
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Speed of Sound (4)

Apply mass conservation:

ρAc =
`
ρ + ∆ρ

´
A
`
c−∆V

´
=⇒ ∆V = c

∆ρ

ρ + ∆ρ
(1)

(2)

u = c

p 
ρ 
T

p +  
ρ + ρ 
T + 

u = c

We assume that the pulse is a small pressure perturbation. This is consistent with

observations of sound waves.

∆p

p
� 1 =⇒

∆ρ

ρ
� 1 =⇒ ∆V � c
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Speed of Sound (5)

Apply momentum conservation:

X
Fx = ṁ

`
Vout − Vin

´
=⇒ pA−

`
p + ∆p

´
A = ρAc

»`
c + ∆V

´
− c

–
which simplifies to

∆V =
∆p

ρc
(3)

u = c

p 
ρ 
T

p +  
ρ + ρ 
T + 

u = c
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Speed of Sound (6)

Combining Equation (1) and Equation (3) to eliminate ∆V gives

∆p

ρc
= c

∆ρ

ρ + ∆ρ

or

c
2
=

∆p

∆ρ

„
1 +

∆ρ

ρ

«
(4)

Recall that c is the speed of the disturbance propagating through the fluid.

For small pressure disturbances ∆ρ/ρ � 1 and Equation (4) reduces to

c
2
=

∆p

∆ρ
(5)
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Speed of Sound (7)

Assume:

• The disturbance is small, i.e. ∆p/p � 1, ∆ρ/ρ � 1

• Friction and heat transfer are negligible in the control volume

=⇒ The passing pulse is adiabatic, reversible, and therefore isentropic

Under these assumptions Equation (5) is equivalent to

c
2
=

„
∂p

∂ρ

«
s

or c =

s„
∂p

∂ρ

«
s

(6)

Thus c is a thermodynamic property of the substance.

c is called the speed of sound because sound transmission occurs via small pressure

perturbations consistent with the assumptions used in the derivation.
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Speed of Sound (8)

Sound Speed for Ideal Gases

For an isentropic process of an ideal gas

p2

p1

=

„
ρ2

ρ1

«k

=⇒ p2 = p1

„
ρ2

ρ1

«k

=
p1

ρk
1

ρ
k
2 =⇒ p = Bρ

k

where B = p/ρk is a constant.

=⇒
„

∂p

∂ρ

«
s

= Bkρ
k−1

=

„
p

ρk

«
kρ

k−1
=

p

ρ
k

From the ideal gas equation
p

ρ
= RT , so, for an ideal gas

„
∂p

∂ρ

«
s

= kRT and c =
√

kRT
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Speed of Sound (9)

In General

The definition of bulk modulus is

Ev = ρ

„
∂p

∂ρ

«
s

=⇒
„

∂p

∂ρ

«
s

=
Ev

ρ

Therefore

c =

s
Ev

ρ

which applies to liquids and solids, as well as gases.
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Mach Number

The Mach number is named after Ernst Mach (1838–1916), a physicist and philosopher

who made early contributions to our understanding of compressible flow.

Definition:

Ma =
V

c
=

V
√

kRT

Ma depends on the local velocity V , and varies throughout a compressible flow.

Ma Range Flow Nomenclature and Features

0 ≤ Ma < 0.3 Incompressible flow, density variations are neglected

Ma < 1 Subsonic flow

Ma ∼ 1 Transonic flow

Ma = 1 Sonic flow

Ma > 1 Supersonic flow

Ma > 5 Hypersonic flow
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Ducts with Area Change (1)

One-Dimensional, Isentropic Flow Model

A useful engineering model can be obtained by neglecting heat transfer, friction, and

other irreversible effects in short ducts. We also need to neglect boundary layer effects

and assume the variations in the x direction (flow direction) are dominant.

V = V(x)

x
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Ducts with Area Change (2)

Mass Conservation

ṁ = ρV A = constant =⇒
dρ

ρ
+

dV

V
+

dA

A
= 0

Momentum Conservation (no viscous shear, no external work interactions)

dp +
1

2
ρd(V

2
) + ρgdz = 0 neglect dz for gases =⇒

dp

ρV 2
= −

dV

V

Combine Mass and Momentum Equations

dV

V
=

−1

1−Ma2

dA

A

dp

p
=

Ma2

1−Ma2

dA

A

These equations give us some insight into the strangeness of supersonic flow.
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Ducts with Area Change (3)

Subsonic flow

Ma < 1

Supersonic flow

Ma > 1

Flow dA < 0

dV > 0

dA < 0

dV < 0

dV

V
=

−1

1−Ma2

dA

A

Flow

dA > 0

dV < 0

dA > 0

dV > 0
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Isentropic Flow in Ducts with Area Change (1)

Combine mass and momentum conservation

with isentropic relations for ideal gases to get

cp(T0 − T )−
V 2

2
= 0

or

T0 = T +
V 2

2cp

where T0 is the stagnation temperature

along the flow path.

V = V(x)

x

Stagnation states are reference conditions that are constant along an isentropic flow.
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Isentropic Flow in Ducts with Area Change (2)

T

T0

=
1

1 +
k − 1

2
Ma2

p

p0

=

2664 1

1 +
k − 1

2
Ma2

3775
k/(k−1)

ρ

ρ0

=

2664 1

1 +
k − 1

2
Ma2

3775
1/(k−1)

Given Ma it is straightforward to find T/T0, but given T/T0 an iterative root-finding

procedure is necessary to compute Ma. These equations are tabulated so that it’s possible

to work them in both directions. See Munson, Young, and Okiishi, Figure D.1, p. 7.66
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Isentropic Flow in Ducts with Area Change (3)

Since T varies along the flow, so does the speed of sound.

Define:

c =
√

kRT is the sound speed at temperature T

c0 =
p

kRT0 is the sound speed at temperature T0

This leads to

c

c0

=

»
T

T0

–1/2

=

2664 1

1 +
k − 1

2
Ma2

3775
1/2

Introduction to Compressible Flow: February 27, 2007 page 32



Isentropic Flow in Ducts with Area Change (4)

Isentropic flow relationships at sonic conditions

Use ∗ to designate conditions at Ma = 1.

T ∗

T0

=
2

k + 1

T ∗

T0

= 0.8333 for k = 1.4

p∗

p0

=

»
2

k + 1

–k/(k−1) p∗

p0

= 0.5283 for k = 1.4

ρ∗

ρ0

=

»
2

k + 1

–1/(k−1) ρ∗

ρ0

= 0.6339 for k = 1.4

c∗

c0

=

»
2

k + 1

–1/2 c∗

c0

= 0.9129 for k = 1.4
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Isentropic Flow in Ducts with Area Change (5)

Flow Rate Calculations
The mass flow rate at any point along the

duct is

ṁ = ρAV = ρ
∗
A
∗
V
∗

The properties ρ∗, A∗, V ∗ exist at the cross

section where Ma = 1.

V = V(x)

x

The ∗ states are reference properties even if the flow does not have Ma = 1 anywhere.
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Isentropic Flow in Ducts with Area Change (6)

Choked Flow

• If flow is sonic in the duct, Ma = 1 at the minimum area

• If Ma = 1 at the minimum area the flow is choked

• For choked flow, reducing the downstream pressure cannot increase the flow rate.

The choked flow state is

ṁ = ρ
∗
V
∗
A
∗

Note that we can identify (and compute) ρ∗, V ∗, and A∗ even if the flow is not choked

anywhere in the duct.
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Isentropic Flow in Ducts with Area Change (7)

Since the flow steady, mass conservation requires

ρAV = ρ
∗
A
∗
V
∗
=⇒

A

A∗ =
ρ∗

ρ

V ∗

V

Algebraic manipulations yield

V ∗

V
=

√
kRT ∗

Ma
√

kRT

ρ∗

ρ
=

»
2

k + 1

„
1 +

k − 1

2
Ma

2

«–1/(k−1)

T ∗

T
=

„
2

k + 1

«„
1 +

k − 1

2
Ma

2

«

A

A∗ =
1

Ma

»
2

k + 1

„
1 +

k − 1

2
Ma

2

«–(k+1)/[2(k−1)]
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Isentropic Flow in Ducts with Area Change (8)

The maximum possible mass flow rate through a duct is

ṁmax = ṁ
∗
= ρ

∗
A
∗
V
∗

Substitute

ρ
∗
= ρ0

„
2

k + 1

«1/(k−1)

, V
∗
=
√

kRT ∗ =

„
2k

k + 1
RT0

«1/2

and simplify to get

ṁmax =

„
2

k + 1

«(k+1)/[2(k−1)]

A
∗
ρ0

p
kRT0
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Isentropic Flow in Ducts with Area Change (9)

For air (k = 1.4)

ṁmax,air =
0.6847p0A

∗
√

RT0

Note: ṁmax is unaffected by downstream conditions!

That is the nature of choked flow.
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