Boundary Layer Analysis ME 322 Lecture Slides, Winter 2007

Gerald Recktenwald*

February 1, 2007

^{*}Associate Professor, Mechanical and Materials Engineering Department Portland State University, Portland, Oregon, gerry@me.pdx.edu

Displacement Thickness (1)

 δ^* is the amount by which the streamline just outside the boundary layer is displaced.

Displacement Thickness (2)

Apply mass conservation to the control volume

$$\int_{CS} \rho(\vec{V} \cdot \hat{\boldsymbol{n}}) dA = 0$$

$$-\int_{0}^{h} \rho U b dy + \int_{0}^{h+\delta^{*}} \rho u(y) b dy = 0$$

$$-\rho U b h + \int_{0}^{h+\delta^{*}} \rho u(y) b dy = 0$$

$$\implies U h = \int_{0}^{h+\delta^{*}} u(y) dy \qquad (\star)$$

Displacement Thickness (3)

Continue . . . add and subtract U to the integrand on the right hand side of Equation (\star) .

$$Uh = \int_0^{h+\delta^*} (U - U + u(y))dy = U(h+\delta^*) + \int_0^{h+\delta^*} (u(y) - U)dy$$

Solve for δ^*

$$\delta^* = \frac{1}{U} \int_0^{h+\delta^*} (U - u(y)) dy = \int_0^{h+\delta^*} \left(1 - \frac{u(y)}{U}\right) dy$$

Displacement Thickness (4)

The preceding analysis shows tht

$$\delta^* = \int_0^{h+\delta^*} \left(1 - \frac{u(y)}{U}\right) dy$$

Since u(y)=U= constant outside the boundary layer, the upper limit is arbitrary as long as h and $h+\delta^*$ are outside the boundary layer. So, we can change the upper limit of integration to ∞

$$\delta^* = \int_0^\infty \left(1 - \frac{u(y)}{U}\right) dy$$

Scale Analysis for Laminar Boundary Layers (1)

Assume the boundary layer is thin, i.e. assume $\frac{\delta}{L} \ll 1$

The continuity equation requires that v is small, i.e. $v \sim U \frac{\delta}{L}$

The x direction momentum equation requires that $\frac{\delta}{L} \sim \mathrm{Re}_L^{-1/2}$

Therefore $\frac{\delta}{L}$ will be small $if \ \mathrm{Re}_L$ is large.

Generally we take $\mathrm{Re}_L pprox 1000$ as the minimum Re_L for a boundary layer to exist.

Boundary Layer Flow Regimes

$$\operatorname{Re}_x = \frac{\rho U x}{\mu}$$
 $\operatorname{Re}_L = \frac{\rho U L}{\mu}$

The critical Reynolds number for transition from laminar to turbulent flow is

$$\mathrm{Re}_{cr} \approx 5 \times 10^5$$

Integral Analysis for Laminar Boundary Layers (1)

http://en.wikipedia.org/wiki/Theodore_Von_ Karman

Integral Analysis for Laminar Boundary Layers (2)

Derive momentum integral for flat plate — MYO, Equation (9.22), p 502.

$$D(x) = \rho b \int_0^{\delta(x)} u(U - u) dy \tag{1}$$

von Kàrmàn wrote equation (1) as

$$D(x) = \rho b U^2 \theta \tag{2}$$

where

$$\theta = \int_0^\delta \frac{u}{U} \left(1 - \frac{u}{U} \right) \, dy \tag{3}$$

is called the momentum thickness.

 θ is a measure of total plate drag. Note that θ has dimensions of length.

Integral Analysis for Laminar Boundary Layers (3)

Since the plate is parallel to the on-coming flow, the drag is only due to wall shear stress

$$D(x) = b \int_0^x \tau_w(x) dx \tag{4}$$

Take derivatives of equation (4) and (2)

$$\frac{dD}{dx} = b\tau_w \tag{5}$$

Integral Analysis for Laminar Boundary Layers (4)

Assume U is constant and take derivative of equation (2)

$$\frac{dD}{dx} = \rho b U^2 \frac{d\theta}{dx} \tag{6}$$

Combine equation (5) and equation (6)

$$\tau_w = \rho U^2 \frac{d\theta}{dx}$$
 constant U laminar or turbulent (7)

Integral Analysis for Laminar Boundary Layers (5)

Summary so far. We have the von Karman integral momentum equation

$$\tau_w = \rho U^2 \frac{d\theta}{dx} \tag{7}$$

- Equation (7) relates the *local* wall shear stress to the *local* momentum thickness. Both τ_w and θ vary with position along the plate.
- Equation (7) is a tool for analysis of flat plate boundary layers. All we need to do is make assumptions for the profile *shape*, i.e., $\frac{u}{U}=\operatorname{fcn}\left(\frac{y}{\delta}\right)$, and equation (7) will allow us to calculate $\tau_w(x)$, and from there, D(x) and D_{total}

Integral Analysis for Laminar Boundary Layers (6)

Apply von Kàrmàn parabolic profile:

Assume

$$\frac{u}{U} = 2\frac{y}{\delta} - \frac{y^2}{\delta^2}$$

Substitute into definition of θ

$$heta = \int_0^\delta \left(2rac{y}{\delta} - rac{y^2}{\delta^2}
ight) \left(1 - 2rac{y}{\delta} + rac{y^2}{\delta^2}
ight) \, dy \qquad = rac{2}{15}\delta$$

Integral Analysis for Laminar Boundary Layers (7)

Substitute parabolic profile into definition of au_w

$$\tau_w = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0}$$

$$\frac{\partial u}{\partial y} = U\left(\frac{2}{\delta} - 2\frac{y}{\delta}\right) \qquad \Longrightarrow \qquad \frac{\partial u}{\partial y}\Big|_{y=0} = \frac{2}{\delta}$$

$$\therefore \tau_w = \frac{2\mu U}{\delta}$$

Integral Analysis for Laminar Boundary Layers (8)

Put the pieces back into equation (7)

$$\tau_w = \rho U^2 \frac{d\theta}{dx} \qquad \Longrightarrow \qquad \frac{2\mu U}{\delta} = \rho U^2 \frac{d}{dx} \left(\frac{2}{15}\delta\right)$$

Rearrange

$$\delta d\delta = 15 \frac{\nu}{U} dx$$

where $\nu=\mu/
ho$

Integrate to get

or

$$\frac{1}{2}\delta^2 = \frac{15\nu x}{U}$$

$$\frac{\delta}{x} = 5.5 \left(\frac{\nu}{Ux}\right)^{1/2} = 5.5 \text{Re}_x^{-1/2}$$

Integral Analysis for Laminar Boundary Layers (9)

Now we know $u/U = \mathrm{fcn}(y/\delta)$. From this velocity profile we can compute the wall shear stress

$$\tau_w = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0} = \frac{2\mu U}{\delta} = (2\mu U) \left(5.5x \operatorname{Re}_x^{-1/2} \right)$$

Make dimensionless as c_f

$$c_f = \frac{\tau_2}{(1/2)\rho U^2} = \sqrt{\frac{8}{15}} \operatorname{Re}_x^{-1/2} = \frac{0.73}{\operatorname{Re}_x^{1/2}}$$

Integral Analysis for Laminar Boundary Layers (10)

Recall definition of displacement thickness

$$\delta^* = \int_0^\delta \left(1 - \frac{u}{U}\right) \, dy$$

So the displacement thickness for parabolic profile is

$$\delta^* = \int_0^\delta \left(1 - 2\frac{y}{\delta} + \frac{y^2}{\delta^2}\right) dy = \frac{\delta}{3}$$

or

$$\frac{\delta^*}{x} = \frac{1.83}{\operatorname{Re}_x^{1/2}}$$

Integral Analysis for Laminar Boundary Layers (11)

Summary of results from von Kàrmàn integral analysis

Boundary layer thickness
$$\frac{\delta}{x} = \frac{5.48}{\text{Re}_x^{-1/2}}$$

Friction coefficient
$$c_f = \frac{0.73}{\mathrm{Re}_r^{-1/2}}$$

