Boundary Layer Analysis
ME 322 Lecture Slides, Winter 2007

Gerald Recktenwald™

February 1, 2007

*Associate Professor, Mechanical and Materials Engineering Department Portland State University, Portland, Oregon,
gerry@me.pdx.edu



Displacement Thickness (1)

Streamline
Vs I

I—> x = coordinate measured from the leading edge

0™ is the amount by which the streamline just outside the boundary layer is displaced.
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Displacement Thickness (2)

Apply mass conservation to the control volume J e

=T v
/ p(V - )dA =0 :”Lj ......................... }2
s

I-» x = coordinate measured from the leading edge

h h+6*
—/ pUbdy—|—/ pu(y)bdy =0
0 0
h+68*
—pUbh + / pu(y)bdy = 0
0

h+8*
— Uh= [ u(way (*)
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Displacement Thickness (3)

Continue . . . add and subtract U to the integrand on the right hand side of
Equation (x).

h+6* h+o*
Uh = / (U—U+u(y)dy = Ulh+ 5" + / (u(y) — U)dy

Solve for 6™

0" = %/OhM*(U —u(y))dy = /Ohw (1 — #) dy
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Displacement Thickness (4)

The preceding analysis shows tht

5 /Oh+5*<1 _ #) dy

Since u(y) = U = constant outside the boundary layer, the upper limit is arbitrary as
long as h and h + 6™ are outside the boundary layer. So, we can change the upper limit

of integration to oo
6" = / (1 — M) dy
0 U
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Scale Analysis for Laminar Boundary Layers (1)

Assume the boundary layer is thin, i.e. assume 7 <1

o

The continuity equation requires that v is small, i.e. v ~ UZ

—1/2

The x direction momentum equation requires that — ~ Re,
L

Therefore 7 will be small if Rep is large.

Generally we take Rey, = 1000 as the minimum Rey, for a boundary layer to exist.
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Boundary Layer Flow Regimes

U Laminar Transition Turbulent
— - L L .
—

|

X = coordinate measured from the leading edge »l

/

L = total length of the plate

U UL
pUs o _ UL
u u

Re, =

The critical Reynolds number for transition from laminar to turbulent flow is

Re, ~ 5 x 10°
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Integral Analysis for Laminar Boundary Layers (1)

http://en.wikipedia.org/wiki/Theodore_Von
Theodore p:// P g/wiki/ -'on-

vonKarman | Karman
Aerospace Scientist

"
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Integral Analysis for Laminar Boundary Layers (2)

Derive momentum integral for flat plate — MYQO, Equation (9.22), p 502.

d(x)
D(x) = pb/O uw(U — u)dy (1)

von Karman wrote equation (1) as

D(zx) = pbU~# (2)

9:/5%(1-%)@ (3)

is called the momentum thickness.

where

0 is a measure of total plate drag. Note that 6 has dimensions of length.
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Integral Analysis for Laminar Boundary Layers (3)

Since the plate is parallel to the on-coming flow, the drag is only due to wall shear stress
D(x) = b/ Tw(x) dx (4)
0
Take derivatives of equation (4) and (2)

— = b1y, (5)
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Integral Analysis for Laminar Boundary Layers (4)

Assume U is constant and take derivative of equation (2)

dD _  »df 6
dr P dx
Combine equation (5) and equation (6)
do constant U
— 2_
Tw = pU dx laminar or turbulent (7)
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Integral Analysis for Laminar Boundary Layers (5)

Summary so far. We have the von Karman integral momentum equation

Tw:,OU % (7)

e Equation (7) relates the local wall shear stress to the local momentum thickness.
Both 7,, and 6 vary with position along the plate.

e Equation (7) is a tool for analysis of flat plate boundary layers. All we need to do is

u
make assumptions for the profile shape, i.e., i = fcn % , and equation (7) will

allow us to calculate 7, (), and from there, D(x) and Diotal
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Integral Analysis for Laminar Boundary Layers (6)

Apply von Karman parabolic profile:

Assume 1

0.9F

(\v}

0.8f

I
N
|
|

0.7F

e
dh

0.6}
YR st
0.4}
0.3f
0.2}

0.1f

u/U

Substitute into definition of 6

L) b
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Integral Analysis for Laminar Boundary Layers (7)

Substitute parabolic profile into definition of 7,

ou
Tw = b —
ay y=0
ou [ (2 2y> N ou 2
oy ) ) Oyl,—og 6
2uU
Tw = ——
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Integral Analysis for Laminar Boundary Layers (8)

Put the pieces back into equation (7)

[ do N 2uU [ d
Tw = —_— —_— = e
P dx ) P dx
Rearrange
v
ddd = 15 —dx
where v = u/p
Integrate to get
1 5, 1dvx
—5° =
2 U
or 5 12
— =55 (—) — 5.5Re_ /?
x x
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Integral Analysis for Laminar Boundary Layers (9)

Now we know u /U = fcn(y/d). From this velocity profile we can compute the wall
shear stress

0 2pU _
Tw = M ot Sl ki (2uU) (5.5zRe, 1/2)
Y |y—o )
Make dimensionless as cy
o — T2 o E e_1/2 o 0.73
7 (1/2)pU2 15 @ Re!/’
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Integral Analysis for Laminar Boundary Layers (10)

Recall definition of displacement thickness

So the displacement thickness for parabolic profile is

0 2
. y oy )
0 = 1 —2=+="— ] dy = —
/o< 5+52> Y 3

o 1.83

x - Re}v/2

or
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Integral Analysis for Laminar Boundary Layers (11)

Summary of results from von Karman integral analysis

Boundary layer thickness

Momentum thickness

Friction coefficient

)

0
x

CfZ

5.48

- Re /2

0.73
Re—1/2

X

0.73
Re_ /2

x
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Blasius Analytical Solution for Laminar Boundary Layers (1)
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