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Displacement Thickness (1)

x = coordinate measured from the leading edge

U

Streamline

h h + δ*

δ∗ is the amount by which the streamline just outside the boundary layer is displaced.
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Displacement Thickness (2)

Apply mass conservation to the control volumeZ
CS

ρ(~V · n̂)dA = 0
x = coordinate measured from the leading edge

U

Streamline

h h + δ*

−
Z h

0

ρUbdy +

Z h+δ∗

0

ρu(y)bdy = 0

−ρUbh +

Z h+δ∗

0

ρu(y)bdy = 0

=⇒ Uh =

Z h+δ∗

0

u(y)dy (?)
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Displacement Thickness (3)

Continue . . . add and subtract U to the integrand on the right hand side of

Equation (?).

Uh =

Z h+δ∗

0

(U − U + u(y))dy = U(h + δ
∗
) +

Z h+δ∗

0

(u(y)− U)dy

Solve for δ∗

δ
∗
=

1

U

Z h+δ∗

0

(U − u(y))dy =

Z h+δ∗

0

„
1−

u(y)

U

«
dy
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Displacement Thickness (4)

The preceding analysis shows tht

δ
∗
=

Z h+δ∗

0

„
1−

u(y)

U

«
dy

Since u(y) = U = constant outside the boundary layer, the upper limit is arbitrary as

long as h and h + δ∗ are outside the boundary layer. So, we can change the upper limit

of integration to ∞

δ
∗
=

Z ∞

0

„
1−

u(y)

U

«
dy
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Scale Analysis for Laminar Boundary Layers (1)

Assume the boundary layer is thin, i.e. assume
δ

L
� 1

The continuity equation requires that v is small, i.e. v ∼ U
δ

L

The x direction momentum equation requires that
δ

L
∼ Re

−1/2
L

Therefore
δ

L
will be small if ReL is large.

Generally we take ReL ≈ 1000 as the minimum ReL for a boundary layer to exist.
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Boundary Layer Flow Regimes

Laminar Transition Turbulent

x = coordinate measured from the leading edge

L = total length of the plate

U

Rex =
ρUx

µ
ReL =

ρUL

µ

The critical Reynolds number for transition from laminar to turbulent flow is

Recr ≈ 5× 10
5
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Integral Analysis for Laminar Boundary Layers (1)

http://en.wikipedia.org/wiki/Theodore_Von_
Karman
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Integral Analysis for Laminar Boundary Layers (2)

Derive momentum integral for flat plate — MYO, Equation (9.22), p 502.

D(x) = ρb

Z δ(x)

0

u(U − u)dy (1)

von Kàrmàn wrote equation (1) as

D(x) = ρbU
2
θ (2)

where

θ =

Z δ

0

u

U

„
1−

u

U

«
dy (3)

is called the momentum thickness.

θ is a measure of total plate drag. Note that θ has dimensions of length.
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Integral Analysis for Laminar Boundary Layers (3)

Since the plate is parallel to the on-coming flow, the drag is only due to wall shear stress

D(x) = b

Z x

0

τw(x) dx (4)

Take derivatives of equation (4) and (2)

dD

dx
= bτw (5)

Boundary Layer Analysis: February 1, 2007 page 9



Integral Analysis for Laminar Boundary Layers (4)

Assume U is constant and take derivative of equation (2)

dD

dx
= ρbU

2dθ

dx
(6)

Combine equation (5) and equation (6)

τw = ρU
2dθ

dx

constant U

laminar or turbulent
(7)
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Integral Analysis for Laminar Boundary Layers (5)

Summary so far. We have the von Kàrmàn integral momentum equation

τw = ρU
2dθ

dx
(7)

• Equation (7) relates the local wall shear stress to the local momentum thickness.

Both τw and θ vary with position along the plate.

• Equation (7) is a tool for analysis of flat plate boundary layers. All we need to do is

make assumptions for the profile shape, i.e.,
u

U
= fcn

„
y

δ

«
, and equation (7) will

allow us to calculate τw(x), and from there, D(x) and Dtotal
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Integral Analysis for Laminar Boundary Layers (6)

Apply von Kàrmàn parabolic profile:

Assume

u

U
= 2

y

δ
−

y2

δ2

0 0.2 0.4 0.6 0.8 1
0

0.1
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0.6
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1

u/U

y/δ

Substitute into definition of θ

θ =

Z δ

0

 
2
y

δ
−

y2

δ2

! 
1− 2

y

δ
+

y2

δ2

!
dy =

2

15
δ

Boundary Layer Analysis: February 1, 2007 page 12



Integral Analysis for Laminar Boundary Layers (7)

Substitute parabolic profile into definition of τw

τw = µ
∂u

∂y

˛̨̨̨
y=0

∂u

∂y
= U

„
2

δ
− 2

y

δ

«
=⇒

∂u

∂y

˛̨̨̨
y=0

=
2

δ

∴ τw =
2µU

δ
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Integral Analysis for Laminar Boundary Layers (8)

Put the pieces back into equation (7)

τw = ρU
2dθ

dx
=⇒

2µU

δ
= ρU

2 d

dx

„
2

15
δ

«
Rearrange

δdδ = 15
ν

U
dx

where ν = µ/ρ

Integrate to get
1

2
δ

2
=

15νx

U
or

δ

x
= 5.5

„
ν

Ux

«1/2

= 5.5Re
−1/2
x
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Integral Analysis for Laminar Boundary Layers (9)

Now we know u/U = fcn(y/δ). From this velocity profile we can compute the wall

shear stress

τw = µ
∂u

∂y

˛̨̨̨
y=0

=
2µU

δ
= (2µU) (5.5xRe

−1/2
x )

Make dimensionless as cf

cf =
τ2

(1/2)ρU2
=

r
8

15
Re

−1/2
x =

0.73

Re1/2
x
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Integral Analysis for Laminar Boundary Layers (10)

Recall definition of displacement thickness

δ
∗
=

Z δ

0

„
1−

u

U

«
dy

So the displacement thickness for parabolic profile is

δ
∗
=

Z δ

0

 
1− 2

y

δ
+

y2

δ2

!
dy =

δ

3

or
δ∗

x
=

1.83

Re1/2
x
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Integral Analysis for Laminar Boundary Layers (11)

Summary of results from von Kàrmàn integral analysis

Boundary layer thickness
δ

x
=

5.48

Re−1/2
x

Momentum thickness
θ

x
=

0.73

Re−1/2
x

Friction coefficient cf =
0.73

Re−1/2
x
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Blasius Analytical Solution for Laminar Boundary Layers (1)
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