
EAS 361 Quiz 3 Solution 28 November 2006

Water from a pipeline flows through the axisymmetric nozzle depicted in the sketch. The jet of
water leaving the nozzle flows into the ambient air. A ridge around the external circumpherence
of the nozzle provides a surface for attaching two annular retaining clamps that hold the nozzle in
place.
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1. The volumetric flow rate Q, the dimensions d1 and d2, and the reading on the pressure gage
p1 are known. Neglect the weight of the water and derive a single formula for the horizontal
force on the retaining ring. The formula should be of the form F = . . . where all terms on the
right hand side are known.

Solution: Locate the (x, y) coordinate axes as shown in the schematic. Draw a control
volume as indicated by the red dashed line. The control volume traces the boundary between
the clamps and the external surface of the ridge on the nozzle body. It would also be acceptable
to have the control volume cut through the ridge on horizontal planes.

The control volume exposes the contact force Fr between the clamp and the ridge on the
nozzle. The direction of Fr is assumed to be to the left, i.e. in the negative x direction. Two
Fr vectors are shown in the sketch: one for the top clamp and one for the bottom clamp.

Assume that the flow is steady and incompressible. Apply the linear momentum equation in
the x direction. (Drop the unsteady term)∑

Fx =
∫

CS

Vxρ(V · n̂) dA

The left hand side (LHS) is the sum of pressure and reaction forces

LHS = p1A1 − p2A2 − 2Fr = p1A1 − 2Fr

where p2 = 0 because the jet enters the ambient and the analysis is carried out in gage pressure
units. The factor of two multiplying Fr accounts for the same magnitude of force being applied
to the upper and lower clamps.

Assume the velocity is uniform over the inlet and outlet, and evaluate terms on the right hand
side (RHS)

RHS = ρV1(−V1)A1 + ρV2(V2)A2

Use Q = V1A1 = V2A2 to simplify and collect terms

RHS = ρQV2 − ρQV1 = ρQV1

(
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− 1

)



2

Rearrange V1A1 = V2A2 to get V2/V1 = (d1/d2)2, and

RHS = ρQV1

[(
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d2

)2

− 1

]
Set LHS = RHS and solve for Fr

p1A1 − 2Fr = ρQV1
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− 1

]
=⇒ Fr =

1
2

{
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]}
Since Q = V1A1 we can factor out a common A1

Fr =
A1

2
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p1 − ρV 2
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]}
=

πd2
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♦

2. Assume that p1 > 0 (gage) and d1 > d2 (as shown). Under what conditions would the nozzle
move to the right if the clamps were suddenly removed?

Solution: The solution to problem 1 shows that a positive Fr acts to the left. Therefore,
when Fr is positive, i.e. when the right hand side of the expression for Fr evaluates to a
positive number, the nozzle will move to the right when the clamp is removed. The nozzle
moves to the right when

Fr > 0 or p1 > ρV 2
1

[(
d1

d2

)2

− 1

]
.

Note that both p1A1 and ρV 2
1

[(
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d2

)2

− 1

]
are always positive. Also note that according to

the momentum balance Fr could be either positive or negative. Further analysis is required
to determine whether there are additional constraints on the sign of Fr.

One case can be easily observed. Assume that A2 = 0, i.e. that the nozzle has no opening.
A2 = 0 implies that V1 = 0. Under this restriction the formula for Fr reduces to Fr = p1A1/2.
The factor of 1/2 accounts for the assumption that Fr acts on both the top and bottom clamps.

♦

3. The volumetric flow rate Q, the dimensions d1 and d2, and the reading on the pressure gage
p1 are known. Derive a formula for the head loss for the flow through the nozzle. The head
loss should be of the form hL = . . . where all terms on the right hand side are known.

Solution: Assume the flow is steady, incompressible, with one inlet and one outlet. Assume
the velocity profile over the inlet and outlet is uniform. Apply the steady flow energy equation
with station 2 as the “out” condition and station 1 as the “in” condition.
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γ
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+ z2 =

p1

γ
+
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1

2g
+ z1 + hs − hL

Simplify with z1 = z2, p2 = 0 and hs = 0 (no pump)
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Solve for hL

hL =
p1

γ
+

V 2
1

2g
− V 2

2

2g

Note: it is more to set V2 = 0 because the fluid leaving the jet will eventually come to rest
without doing further work (to reduce the energy wasted and entropy increased). We’ll leave
V2 6= 0 for now, but return to consider V2 = 0 in the answer to question 4.

Factor out V1

hL =
p1

γ
+

V 2
1

2g

[
1− V 2

2

V 2
1

]
Use V1A1 = V2A2 =⇒ V2/V1 = (d1/d2)2 to replace V 2

2 /V 2
1
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γ
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1
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♦

4. Is there a value of p1 that would make the head loss zero? If so, what is that value?

Solution: d1/d2 > 0 and p1 > 0 so
[
d4
1

d4
2

− 1
]

> 0 and
p1

γ
> 0.

Therefore, hL = 0 if
p1

γ
=

V 2
1

2g
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]

But the head loss calculation model used V2 6= 0, which assumes the fluid stream leaving the
nozzle can do useful work. If instead we neglect the kinetic energy of the fluid leaving the
nozzle, i.e. if we set V2 = 0 in the expression for hL we get

hL =
p1

γ
+

V 2
1

2g

Therefore, when the kinetic energy of the exit jet is assumed to be wasted, hL > 0 always
(because p1 > 0 and V 2

1 > 0). Note that for a physically realistic flow, hL is never negative.

♦


