
EAS 361 Final Exam Solution 5 December 2006
with corrections

1. The sketch below shows water flowing from an upper reservoir to a lower reservoir. Applying
the energy equation to each of the two arrangements shows that the head loss for the system
with the turbine is less than the head loss for the system without the turbine.
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Reason: Apply the energy equation.(
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The inlet is station 1 on the upper free surface. The outlet is station 2 on the lower free
surface. At the free surfaces: p1 = 0, V1 = 0, p2 = 0, V2 = 0. The energy equation simplifies
to

z2 = z1 + hs − hL =⇒ hL,T = hs + z1 − z2 with the turbine

Without the turbine hs = 0 so

hL,NT = z1 − z2 without turbine

For a turbine hs < 0 because work is being done on the fluid. Therefore hL,T < hL,NT
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2. In the sketch below, water flows steadily from a very large tank into a horizontal pipe. At
station 1 the velocity profile is uniform. At station 2, which is far downstream from station 1
the profile has a maximum on the centerline. If V1 is the average velocity at station 1, and
V2,max is the maximum velocity at station 2, which one of the following statements is true? Do
not attempt to compare the magnitudes of V1 and V2,max based on the length of the arrows
in the sketch. The arrows representing the velocity vectors at station 1 and station 2 are not
drawn to scale.

Solution: V2,max > V1

Reason: Apply the following facts:

• The velocity profile at station 1 is uniform. Therefore, the average velocity at station 1
is V1.

• The problem statement indicates that the flow is steady. Since the flow is steady and
water is incompressible, the average velocity is the same at station 1 and station 2.
Therefore, the average velocity at station 2 is also V1.

• The diagram indicates that the velocity at station 2 is not uniform: the velocity is zero
at the wall and a maximum in the center of the pipe. The average velocity at station 2
must be between zero and the maximum velocity at station 2, i.e. 0 ≤ V2,ave ≤ V2,max.

Therefore, V2,max > V1 because V2,max > V2,ave and V2,ave = V1,ave = V1.

V1

V2,max

water
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3. A dome shaped bulkhead of diameter, d, is located on the side of a large rectangular tank of
water. The geometric center of the bulkhead is a distance, yc, down from the free surface.

The center of pressure for the bulkhead is located at

(a) yc (b) yc +
d

2
− d

3
(c) yc +

d

3
(d) None of the above.

water

cross section end view

yc

d

Reason: The center of pressure on the bulkhead is at

yCP = yc +
Ixc

ycA

where yc is the depth of the centroid, Ixc is the moment of inertia of the bulkhead about a
horizontal axis through the centroid, and A = πr2 is the area of the bulkhead. From the
universal cheat sheet Ixc = πr4/4 so

yCP = yc +
πr4/4
ycπr2

= yc +
r2

4yc
= yc +

d2

16yc

where r = d/2.



4

4. You have been asked to design a floating deck for swimmers at a lake. Four identical, cylindrical
drums (diameter d, and length L) are to be used for floatation. Two designs being considered
depicted in the sketch. (Only two of the four drums are visible for each design in the sketch.)
The top surface of the deck is the same for both designs. To provide the deck capable of
carrying the maximum weight choose design A or B, both can carry the same weight.

d

L

design A: drums on their sides design B:  drums on their ends

WA WB

Water

dsA

sB

Reason: The maximum weight is carried when the drums are completely submerged. Since
the total volume of the drums is the same for both designs, the maximum load is the same for
both designs because the maximum submergible volume is the same.

Design A is better because it is more stable, but that is a different design criteria.

The two designs have different relationships between the applied load and the depth of submer-
gence. Let sA and sB be the depths to which the two tanks are submerged. The submerged
volume of the tanks in design B increases linearly with sB . The submerged volume of the
tanks in design A increases nonlinearly with sA.

♦

5. The PSU Human Powered Vehicle (HPV) Team is designing an aerodynamic bicycle that has
a fairing to surround the rider and reduce drag. The HPV team wants to use a wind tunnel
to measure the drag on a scale model of the fairing. In order to maintain similitude, the
Reynolds number ρV L/µ for the model tests must be the same as the Reynolds number for
the real fairing at the design speed for the bicycle.

The model will be 1/10 the size of the real fairing. To maintain similitude, the air velocity in
the wind tunnel must be 10 times the design speed.

Reason: For similitude Remodel = Refull scale. Let f.s. designate the full scale fairing.

ρVmodelLmodel

µ
=

ρVf.sLf.s.

µ
=⇒ Vmodel

Vf.s.
=

Lf.s.

Lmodel
= 10

♦
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6. A cylindrical tank of water has a hole of diameter di in the bottom. You observe that the
stream of water draining from the bottom of the tank gets narrower with x. Why? Use a
mathematical formula to show that the d(x) must decrease.

V

d(x)

di

D

x

h

water

1

2

Solution: Consider the velocity and diameter of the free falling stream at station 1 and
station 2. The fluid accelerates as it falls downward under the influence of gravity, therefore
V2 > V1.

For steady, incompressible flow, ass conservation in the stream requires V2A2 = V1A1 where
A is the cross sectional area of the stream. Assume that the streams are round

V2
πd2

2

4
= V1

πd122

4
=⇒ d2 = d1

√
V1

V2

Therefore if V increases with x, then d must decrease with x.

So, to answer the question “Why?”: The diameter decreases with x because the velocity
increases with x.

♦
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7. In a book on whitewater rescue techniques, the authors try
to demonstrate how easy it is to misjudge the force of flowing
water. The table to the right shows how an increase in the
water velocity increases the force exerted by the water on the
legs of a person standing in a river. Assume that water has
the same knee-high depth for all speeds and that the velocity
profile is uniform. What value of force should replace the
“?” in the table?

velocity water force
(ft/s) lbf

3 16.8
6 67.2
9 ?

Solution: The relationship between the force on the leg and the velocity of the water is
obtained by a simple scaling argument. The force of the the water increases with the pressure
on the front of the leg. By estimating how the pressure on the front of the leg varies with
velocity, it is possible to estimate how the force on the leg varies with velocity.

The following sketch depicts a leg as a cylinder of diameter d submerged to a depth L in a
stream with on-coming water velocity V .

d

21
L

The force on the front of the leg depends on the pressure and the frontal area of the leg

F ∼ pA = pLd

where L is the depth of the stream and d is the diameter of the leg.

Apply the Bernoulli equation along the stagnation streamline approaching the leg.

p1 +
1
2
ρV 2

1 = p2 +
1
2
ρV 2

2

At the stagnation point V2 = 0 so

p2 − p1 =
1
2
ρV 2

1

From this we conclude that the pressure on the front of the leg is proportional to the square
of the velocity of the free-flowing water. Therefore,

F ∼ pLd ∼ 1
2
ρV 2LD.

and we conclude that F scales varies with V 2

For two different water velocities Va and Vb we can take the ratio of forces

Fa

Fb
=

V 2
a

V 2
b

or Fa = Fb
V 2

a

V 2
b

The ratio eliminates the need to know L or d. Using the data in the table with Va = 9 ft/s,
Vb = 6 ft/s, and Fb = 67.2 lbf gives

Fa = (67.2 lbf)
92

62
= 151 lbf
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Why can’t the momentum integral equation be used?
The momentum integral requires information about the velocity entering and leaving a control
volume around the leg. The following sketch is a top view of a “leg” of diameter d in a uniform
on-coming flow with velocity V .

dV u(y)
y

x

The dashed line represents a control volume around the leg. The control volume must be
sufficiently large in the y direction that water does not leave and enter through the top and
bottom boundaries, i.e. the streamlines at the top and bottom boundaries of the control
volume must be parallel to the top and bottom edges of the control volume.

If the water flow exerts a force on the leg, then either the velocity or pressure (or both) must
change from the inlet to the outlet. Since the river is an open channel, there will be no
pressure difference from the inlet to the outlet. We neglect changes in elevation. Therefore, if
the fluid exerts a force on the leg, there must be a change in the velocity profile from the inlet
to the outlet. Since the problem statement gave no information about the velocity profile, the
momentum integral equation is not useful for solving this problem.

♦
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8. The viscosity, µ, of a liquid can be measured by deter-
mining the time, t, it takes for a sphere of diameter,
d, to settle slowly through a distance, b, in a vertical
cylinder of diameter, D, containing the liquid. The ap-
paratus for making such a measurement is shown in
the sketch to the right. Assume that the ball veloc-
ity V = b/t is related to the other parameters of the
problem by

V = f(d,D, µ, γ, W )

where µ is the viscosity of the fluid, γ is the specific
weight of the fluid, and W is the weight of the ball.
Use repeating variables d, µ, and γ to find a dimen-
sionless group for V .

b

liquid

sphere

cylinder with 
diameter D

Solution: Apply the systematic method for forming a dimensionless group involving V and
the repeating variables d, µ, and γ.
First, identify the dimensions of the repeating variables.

[d] = L

[µ] =
M
LT

[γ] =
F
L3

=
ML/T2

L3
=

M
L2T2

Next, form the product of the non-repeating variable V with the repeating variables raised to
the undetermined powers.

Π = V daµbγc

where a, b, and c are integers to be determined.
The Pi group must be dimensionless, so[

V daµbγc
]

= M0L0T0

=⇒
(

L
T

)
(L)a

(
M
LT

)b (
M

L2T2

)c

= M0L0T0

The powers of M, L, and T in the preceding equation must be the same on both sides.

M : b + c = 0
L : 1 + a− b− 2c = 0
T : − 1− b− 2c = 0

The M equation gives b = −c. Substitute b = −c into the T equation and solve for c:

−1 + c− 2c = 0 =⇒ −1− c = 0 =⇒ c = −1 and b = +1.

Substitute c = −1 and b = +1 into the L equation to solve for a:

1 + a− 1 + 2 = 0 =⇒ a = −2

Therefore

Π = V d−2µ1γ−1 or Π =
V µ

γd2

♦
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9. A cylindrical tank of water is fitted with a frictionless piston.
A mass m is placed on the top of the piston. There is a hole
of diameter d in the side of the tank. For t < 0 a plug is
placed in the hole in the side of the tank and the mass and
piston are held in place by a mechanism not shown in the
sketch. At t = 0 the plug is removed and the mass and
piston are released. Derive a formula for the velocity of the
water jet as a function of h.

D

water

h
d <<  D

m
piston

1

2

z

Solution: Identify station 1 as the underside of the piston and station 2 as the exit hole
through which the water leaves the tank. Neglect losses on the streamline between stations 1
and 2, and apply the Bernoulli equation

p1

γ
+

V 2
1

2g
+ z1 =

p2

γ
+

V 2
2

2g
+ z2

Since d � D the downward velocity of the piston is negligible, i.e. V1 ≈ 0. Station 2 is the
beginning of the free jet so p2 = 0. With these simplifications the Bernoulli equation can be
rearranged as

V 2
2

2g
=

p1

γ
+ z1 − z2 =

p1

γ
+ h.

Solve for V2:

V 2
2 =

2p1

ρ
+ 2gh =⇒ V2 =

√
2

(
p1

ρ
+ gh

)
.

The pressure on the underside of the piston is determined
by a force balance on the piston:

p1
π

4
D2 = (m + mp)g =⇒ p1 =

4(m + mp)g
πD2

where mp is the mass of the piston.

p1

m
mp

(m + mp)g

Substitute this expression for p1 into the equation for V2 to get

V2 =

√
2

(
4(m + mp)g

ρπD2
+ gh

)

♦
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10. Two identical cylindrical tanks are connected by a pipe with a shut-off valve. One tank is filled
to a depth hi with water, and the other tank is filled to a depth hi with oil having SG = 0.85.
Both tanks are open to atmospheric pressure at the top. The diameter of the connecting pipe
is much smaller than the diameter of the tanks.

The valve is opened and the two fluids reach a new static equilibrium. Let hw be the height of
the free surface for the tank that originally contained only water. Let ho be the height of the
free surface for the tank that originally contained only oil. What are the equilibrium values
of hw and ho when the valve is open? Neglect the volume of fluid in the connecting pipe.
Assume hi is known. The solutions are two simple formulas for hw and ho in terms of hi and
SG.

D

water oil, 
SG = 0.85

D

hi d <<  D

closed 
valve

hi

Solution: Water has a greater density than the oil (with SG = 0.85). When the valve is
opened, water will flow into the bottom of the tank that originally had oil in it. Both oil
and water can be assumed to be incompressible, therefore the total volume of fluid in the two
tanks must be equal before and after the valve is opened. The fluid configuration after the
valve is opened is depicted in the following sketch.

D

water
oil, 
SG = 0.85

D

hw
d <<  D

valve 
open

hi

water

ho

hi hw
A B

Neglecting the volume of the connecting pipe means that the water side is lower by hi − hw

and the oil side is higher by hi − hw.

Since the water is continuous at the bottom of the tank, Pascal’s law requires that pA = pB ,
where A and B are two points on the bottoms of the two tanks.

pA = pB =⇒ γwhw = γohi + γw(hi − hw)

Solve for hw:

2γwhw = γohi + γwhi = hi(γo + γw) =⇒ hw = hi
γo + γw

2γw
=⇒ hw = hi

SG + 1
2
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Note that SG < 1 so the formula for hw gives hw < hi, as expected.

From the sketch of the configuration with the valve open,

ho = hi + (hi − hw) = 2hi − hw

Substitute hw = hi(SG + 1)/2 and solve for ho:

ho = 2hi − hi
SG + 1

2
=

(
2− SG + 1

2

)
hi =

(
4− SG− 1

2

)
hi =

(
3− SG

2

)
hi

Therefore

ho =
3− SG

2
hi

♦
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11. The schematic depicts a pump test stand that
is used to measure the ability of a pump to
deliver a volumetric flow rate Q when work-
ing against a flow resistance. The table to
the right shows the type of data measured
during a pump test. The symbol repre-
sents a numerical value recorded during the
test. All piping in the test stand has the same
diameter d.

Valve Q p1 p2 Ẇin

closed 0
1/4 open
1/2 open
3/4 open

a. Assume that measured data for Q, p1 and p2 are available for each setting of the control
valve. Derive an expression for the head loss between the downstream side of the pump
and the free surface of the tank. Consider only the head loss downstream of the pump.

b. The Ẇin column is the measured electrical power supplied to the motor that drives the
pump. Derive an expression for efficiency η = Ẇshaft/Ẇin in terms of the measured data
where Ẇshaft is the shaft power actually delivered to the water. Neglect head loss in the
pump. (Head loss in the pump reduces the head gain that the pump can produce, so
internal head loss is already accounted for in the data.)

p1 p2

Valve
Pump

Flowmeter

Q

Q

water

h

Q

d

2

3

1

Solution (a): Apply the steady flow energy equation between station 2 and station 3

p3

γ
+

V 2
3

2g
+ z3 =

p2

γ
+

V 2
2

2g
+ z2 + hs − hL

Station 3 is the free surface at the top of the (large) tank, so p3 = 0 and V3 = 0. There is no
pump between station 2 and station 3 so hs = 0. Rearranging the energy equation to solve
for hL gives

hL =
p2

γ
+

V 2
2

2g
+ z2 − z3

Use z3 − z2 = h and V2 = Q/A2

hL =
p2

γ
+

Q2

2gA2
2

− h

Solution (b):

η =
Ẇshaft

Ẇin

=
ṁghs

Ẇin

=
ρQghs

Ẇin

=
γQhs

Ẇin



13

Apply the steady flow energy equation between stations 1 and 2

p2

γ
+

V 2
2

2g
+ z2 =

p1

γ
+

V 2
1

2g
+ z1 + hs − hL.

Neglect the head loss inside the pump. The pipe diameter is the same on both sides of the
pump, so under steady flow conditions, V1 = V2. Stations 1 and 2 are also at the same
elevation so z1 = z2. With these simplifications the steady flow energy equation becomes

hs =
p2 − p1

γ
.

Substitute this expression for hs into the formula for η to get

η =
(p2 − p1)Q

Ẇin

.

♦
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12. An upward jet of water from a pipe of diameter d impinges on a circular plate of diameter D.
The plate has a mass m, and it is suspended by thin cable attached to a spring scale. The
other end of the spring scale is attached to a wall. What flow rate Q is needed so that the
spring scale reads zero? Neglect friction in the pulley and the mass of the cable and mass of
the spring scale.

Circular plate 
with diameter D

Q

d

pulley

spring scale

light weight cable

water

pipe
x

y

2

1

T = net tension

V1

mg
V2 V2

Solution: Draw the control volume, coordinate axes, and label the inlet (1) and outlet (2).
Station 2 is the circular jet of water spraying outward from the center of the plate. Students
in EAS 361 will recognize this as being nearly identical to the jet momentum experiment in
the lab.

Apply the linear momentum equation in the y direction.∑
Fy =

∂

∂t

∫
CV

Vy ρ dV +
∫

CS

Vyρ(V · n̂) dA

The flow is steady so the time derivative is zero. Assume the velocity profiles at the inlet and
outlet are uniform. Under these restrictions the right hand side of the momentum equation is
simplified to

∂

∂t

∫
CV

Vy ρ dV +
∫

CS

Vyρ(V · n̂) dA = ρV1(−V1)A1 = −ρV1Q = −ρ
Q2

A1
(?)

The left hand side of the momentum equation is∑
Fy = T −mg (??)

where T is the net tension measured by the spring scale, and mg is the weight of the plate. Put
the pieces of the momentum equation back together, i.e. set the right hand side of Equation (?)
equal to the right hand side of Equation (??).

−ρ
Q2

A1
= T −mg
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Solve for Q

ρ
Q2

A1
= mg − T =⇒ Q =

√
(mg − T )A1

ρ

Therefore, the flow rate necessary to give T = 0 is

Q(T = 0) =

√
mgA1

ρ

♦


