## A Breathing LED Indicator

**EAS 199A Notes** 

Gerald Recktenwald
Portland State University
Department of Mechanical Engineering
gerry@me.pdx.edu

EAS 199A: Breathing LED equations

## **Motivation**

- 1. A reverse engineering exercise: emulate the breathing style of LED pulsing on a Macintosh laptop
- 2. Controlling LED brightness requires Pulse-width modulation (PWM), which can also used to control the speed of DC motors.
- 3. This is also an opportunity to practice algebra and Excel plotting

### US Patent # 6,658,577 B2



| (12) | United     | <b>States</b> | <b>Patent</b> |
|------|------------|---------------|---------------|
|      | Huppi et a | l.            |               |

(10) Patent No.: US 6,658,577 B2 (45) Date of Patent: Dec. 2, 2003

| (54) BREATHING STATUS LED INDICA | CATOR |
|----------------------------------|-------|
|----------------------------------|-------|

- (75) Inventors: Brian Q. Huppi, Cupertino, CA (US);
  Christopher J. Stringer, Pacifica, CA
  (US); Jory Bell, San Francisco, CA
  (US); Christopher L. Capener,
  Cupertino, CA (US)
- (73) Assignee: Apple Computer, Inc., Cupertino, CA
- (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 10/197,542
- (22) Filed: Jul. 15, 2002
- (65) **Prior Publication Data**

US 2002/0178388 A1 Nov. 28, 2002

#### Related U.S. Application Data

- (63) Continuation of application No. 09/332,242, filed on Jun. 14, 1999.
- (51) **Int. Cl.**<sup>7</sup> ...... **G06F 1/26**; G06F 1/28

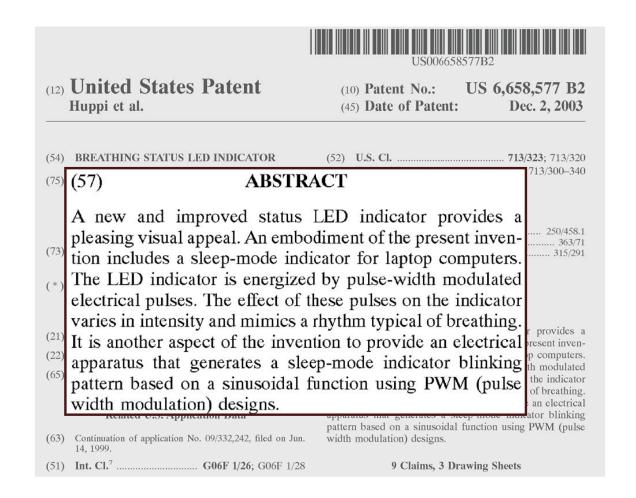
| (32) 0.0. 01 | (52) | U.S. Cl. |  | 713/323; | 713/3 | 20 |
|--------------|------|----------|--|----------|-------|----|
|--------------|------|----------|--|----------|-------|----|

#### (56) References Cited

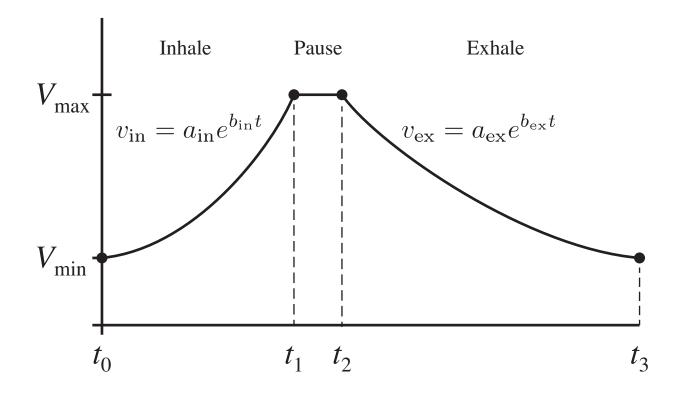
#### U.S. PATENT DOCUMENTS

| 5,608,225 | Α | 181 | 3/1997  | Kamimura et al 250/458.1 |
|-----------|---|-----|---------|--------------------------|
| 5,659,465 | Α | *   | 8/1997  | Flack et al 363/71       |
| 6,153,985 | Α | *   | 11/2000 | Grossman 315/291         |

<sup>\*</sup> cited by examiner

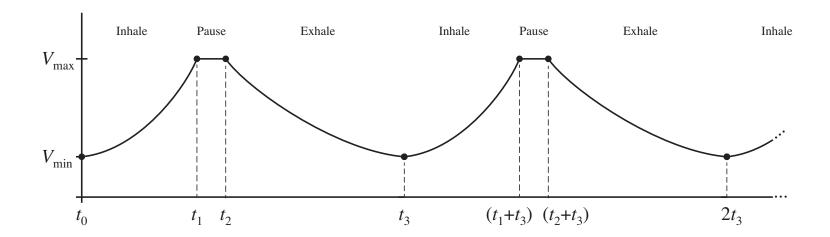

Primary Examiner—Rupal Dharia

#### (57) ABSTRACT

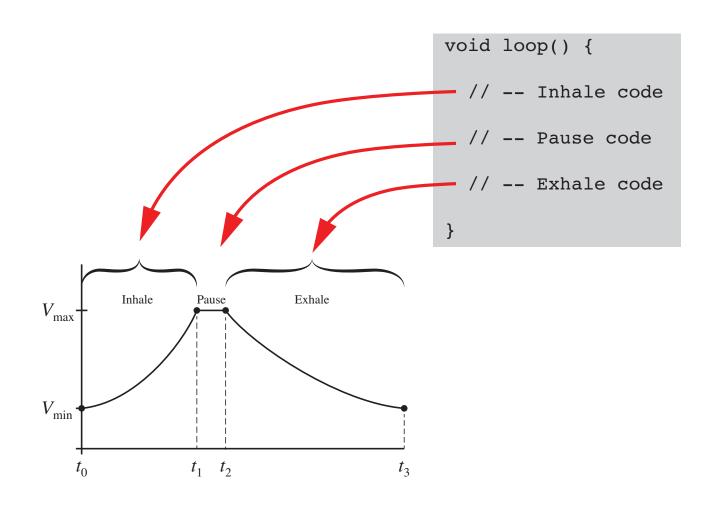

A new and improved status LED indicator provides a pleasing visual appeal. An embodiment of the present invention includes a sleep-mode indicator for laptop computers. The LED indicator is energized by pulse-width modulated electrical pulses. The effect of these pulses on the indicator varies in intensity and mimics a rhythm typical of breathing. It is another aspect of the invention to provide an electrical apparatus that generates a sleep-mode indicator blinking pattern based on a sinusoidal function using PWM (pulse width modulation) designs.

#### 9 Claims, 3 Drawing Sheets

### US Patent # 6,658,577 B2




## The breathing pattern has three phases: inhale, pause, and exhale

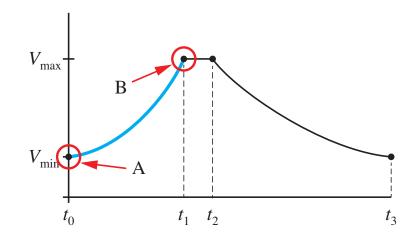



*Note:* This *not* the pattern claimed on US patent # 6658577.

# The breathing pattern repeats indefinitely



## The repeated pattern is the body of the loop function




### Inhale and exhale Functions have the same form

Inhale and exhale functions are of the form

$$v = ae^{bt} \tag{1}$$

Require that this function pass through two points  $(t_A, v_A)$  and  $(t_B, v_B)$ .



Substituting these data pairs into Equation (1) gives

$$v_A = ae^{bt_A} (2)$$

$$v_B = ae^{bt_B} (3)$$

## Linearize the Equations to Simply the Algebra

Recall that if

$$z = xy$$

then

$$\ln(z) = \ln(x) + \ln(y).$$

In words: the logarithm of a product is the sum of the logarithms of the terms being multiplied.

Also recall that if

$$r = e^{st}$$

then

$$ln(r) = st.$$

## Linearize the Equations to Simply the Algebra

Take the logarithm of Equation (1) and apply the rules for manipulating logarithms of products:

$$\ln(v) = \ln\left[ae^{bt}\right] \longrightarrow \ln(v) = \ln(a) + \ln\left[e^{bt}\right] \longrightarrow \ln(v) = \ln(a) + bt$$

Apply the transformation to Equations (2) and (3) to get

$$\ln(v_A) = \ln(a) + bt_A \tag{4}$$

$$ln(v_B) = ln(a) + bt_B$$
(5)

These are two *linear* equations for the two unknowns, ln(a) and b. The linear equations can be solved more easily.

## Solve for a and b (1)

Subtract Equation (5) from Equation (4) to get

$$\ln(v_A) - \ln(v_B) = b(t_A - t_B) \tag{6}$$

Since  $t_A$ ,  $v_A$ ,  $t_B$  and  $v_B$  are known, we can solve for b

$$b = \frac{\ln(v_A) - \ln(v_B)}{t_A - t_B}. (7)$$

## Solve for a and b (2)

Now that the formula for b is known, we can substitute Equation (7) into either Equation (4) or Equation (5) to solve for a.

$$\ln(v_A) = \ln(a) + \left[\frac{\ln(v_A) - \ln(v_B)}{t_A - t_B}\right] t_A$$

$$\ln(a) = \ln(v_A) - \left[\frac{\ln(v_A) - \ln(v_B)}{t_A - t_B}\right] t_A$$

$$= \ln(v_A) \left[\frac{t_A - t_B}{t_A - t_B}\right] - \left[\frac{\ln(v_A) - \ln(v_B)}{t_A - t_B}\right] t_A$$

$$= \frac{\ln(v_A) \left[t_A - t_B\right] - \left[\ln(v_A) - \ln(v_B)\right] t_A}{t_A - t_B}$$

$$= \frac{t_A \ln(v_B) - t_B \ln(v_A)}{t_A - t_B}$$

## Solve for a and b (3)

Therefore,

$$\ln(a) = \frac{t_A \ln(v_B) - t_B \ln(v_A)}{t_A - t_B}$$

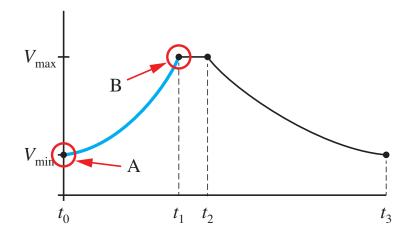
Applying the exponential function to both sides of the preceding equation gives the formula for computing  $\boldsymbol{a}$ 

$$a = \exp\left[\frac{t_A \ln(v_B) - t_B \ln(v_A)}{t_A - t_B}\right] \tag{8}$$

### We have created the formulas that model either inhale or exhale

Given  $(t_A, v_A)$  and  $(t_B, v_B)$ , we can compute

$$a = \exp\left[\frac{t_A \ln(v_B) - t_B \ln(v_A)}{t_A - t_B}\right]$$


and

$$b=rac{\ln(v_A)-\ln(v_B)}{t_A-t_B}.$$

which allows us to evaluate

$$v = ae^{bt}$$

for any t in the interval  $t_A \leq t \leq t_B$ .



## Applying the Equations to find a and b (1)

- 1. Choose appropriate values of  $V_{\min}$ ,  $V_{\max}$ ,  $t_1$ ,  $t_2$  and  $t_3$ . These are somewhat arbitrary design choices that you make to achieve a desired look to your inhale and exhale functions.
- 2. Use Equations (8) and (7) to compute  $a_{\rm in}$  and  $b_{\rm in}$ .
- 3. Use Equations (8) and (7) (again) to compute  $a_{\rm ex}$  and  $b_{\rm ex}$ .

## Applying the Equations to find a and b (2)

Once you have obtained values for  $a_{\rm in}$ ,  $b_{\rm in}$ ,  $a_{\rm ex}$  and  $b_{\rm ex}$ , it is a good idea to add this step

4. Plot the  $v_{\rm in}(t)$  and  $v_{\rm ex}(t)$  functions (say, with Excel or MATLAB) to make sure you do not have an error in your algebra.

### Recapitulation

#### So far:

- 1. Both the inhale and exhale phases can be modeled with  $v=ae^{bt}$
- 2. We choose the end points to give a desired shape.
- 3. When the endpoints are known, we can solve for a and b.
- 4. With known values of a and b for each phase, we can write code to control the brightness of the LED.

**Next:** translate the  $v = ae^{bt}$  function into Arduino code.

**But first:** Let's make a plot of our  $v=ae^{bt}$  functions to make sure we understand the math.