Using Excel and MathCAD
 in DC Circuit Analysis

EAS 199A Notes

The Goal

These slides provide a very brief analysis of a DC circuit.
The goal is to set up an analysis that is performed in Excel and MathCAD.
There are no Excel or MathCAD computations in these slides.

The Problem

What is the total power consumed by the circuit, and the power consumed by resistor R_{4} for the following two circuits?

Use $R_{1}=R_{2}=330 \Omega, R_{3}=500 \Omega, V_{s}=12 \mathrm{~V}$ and let R_{4} vary from 50Ω to 500Ω.

The Problem in Standard Form

Examination of the two circuits shows that they are both equivalent to the following.

Circuit Simplification

Resistors R_{2}, R_{3}, and R_{4} can be combined to yield the equivalent resistance R_{234}.

$$
R_{234}=\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{3}}}+R_{4}
$$

R_{1} and R_{234} can be further combined to give the equivalent resistance for the circuit

$$
R_{\mathrm{eq}}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{234}}}
$$

Total Current and Power

With $R_{\text {eq }}$ known, the total current and total power from the voltage supply can be computed

$$
\begin{gathered}
V_{s}=I_{\mathrm{tot}} R_{\mathrm{eq}} \Longrightarrow I_{\mathrm{tot}}=\frac{V_{s}}{R_{\mathrm{eq}}} \\
P_{\mathrm{tot}}=I_{\mathrm{tot}}^{2} R_{\mathrm{eq}}
\end{gathered}
$$

Current and Power through R_{4}

R_{1} and R_{234} are in parallel with V_{s}, therefore

$$
V_{s}=I_{234} R_{234} \Longrightarrow I_{234}=\frac{V_{2}}{R_{234}}
$$

Finally, with I_{234} known, the power dissipated by R_{4} is

$$
P_{4}=I_{234}^{2} R_{4}
$$

