Review of DC Circuit Analysis

EAS 199A Notes

EAS 199A: DC Circuit Summary

Overview

1. Ohm's Law
2. Power dissipation
3. Resisters in series
4. Resistors in parallel

Ohm's Law (1)

$$
V=I R
$$

where
$V=$ voltage drop across the resistor (V)
$I=$ current through the resistor (A)
$R=$ resistance (Ω)

Ohm's Law (2)

Complex arrangements of resistors can be reduced to an equivalent resistance, $R_{\text {eq }}$, and then Ohm's law can be applied to the equivalent circuit.

Ohm's Law (3)

Ohm's law can be applied to any continuous segment of a circuit.

Ohm's law cannot be applied to LED, capacitors, inductors.
Ohm's law can only be applied to devices that act like simple resistors: e.g., simple resistors, incadenscent light bulbs, and long lengths of wire.

EAS 199A: DC Circuit Summary page 4

Power Dissipation (1)

When electrical current flows through resistor, electrical power is dissipated.

$$
P=V I
$$

Power Dissipation (2)

Power dissipation can be computed from one of three formulas

$$
P=V I \quad P=I^{2} R \quad P=\frac{V^{2}}{R}
$$

In each case, the V, I, and R refer to the values for the circuit element under consideration

Resistors in Series

$$
R_{\mathrm{eq}}=R_{1}+R_{2}
$$

Kirchoff's voltage law tells us that the voltages across the resistors adds:

$$
V_{\mathrm{AC}}=V_{\mathrm{AB}}+V_{\mathrm{BC}}
$$

Kirchoff's current law tells us that the current through the resistors is the same:

$$
I_{1}=I_{2}
$$

Resistors in Series on a Breadboard

Sockets in a column are not connected

Sockets in a row are connected

Schematic of breadboard

Kirchoff's voltage law tells us that the voltages across the resistors is the same

$$
V_{1}=V_{2}=V_{\mathrm{AB}}
$$

Kirchoff's current law tells us that the current through the resistors adds:

$$
I=I_{1}+I_{2}
$$

Resistors in Parallel on a Breadboard

Sockets in a column are not connected

Sockets in a row are connected

Breadboard

Schematic of breadboard

Example: Power dissipation for one resistor in a circuit (1)

What power is dissipated by R_{5} in the circuit to the right? What is the total power dissipation of the circuit? Use the following system parameters.

$$
\begin{aligned}
V_{s} & =10 \mathrm{~V} \\
R_{1} & =R_{4}=470 \Omega \\
R_{2} & =R_{3}=R_{5}=330 \Omega
\end{aligned}
$$

The power is $P_{5}=V_{5} I_{5}$, but neither V_{5} nor I_{5} is known.
Use the alterative formula $P_{5}=I_{5}^{2} R_{5}$. Since R_{5} is known, the first step is to determine the current I_{5}. Note that the current through R_{5} is the same as the total current leaving the battery, i.e., $I_{5}=I$.

Example: Power dissipation for one resistor in a circuit (2)

Solution Step 1: Replace the resistor network with a single equivalent resistor.

Example: Power dissipation for one resistor in a circuit (3)

Solution Step 2: Substitute the known values to compute $R_{\text {eq }}$.

$$
\begin{aligned}
R_{\mathrm{eq}} & =R_{1}+\frac{1}{\frac{1}{R_{2}+R_{3}}+\frac{1}{R_{4}}}+R_{5} \\
& =470 \Omega+\frac{1}{\frac{1}{330+330 \Omega}+\frac{1}{470 \Omega}}+330 \Omega \\
& =1074.5 \Omega
\end{aligned}
$$

Solution Step 3: Apply Ohm's law to the equivalent circuit to compute the total current, I.

$$
V_{s}=I R_{\mathrm{eq}} \Longrightarrow I=\frac{V_{s}}{R_{\mathrm{eq}}}=\frac{10 \mathrm{~V}}{1074.5 \Omega}=0.00931 \mathrm{~A}
$$

Example: Power dissipation for one resistor in a circuit (4)

Solution Step 4: Now that I is known, it is easy to calculate the power dissipated by R_{5}

$$
P_{5}=I_{5}^{2} R_{5}=(0.00931 \mathrm{~A})^{2}(330 \Omega)=0.0286 \mathrm{~W}=28.6 \mathrm{~mW}
$$

Solution Step 5: The total power dissipated in the entire circuit is

$$
P_{\text {total }}=V_{s} I=(10 \mathrm{~V})(0.00931 \mathrm{~A})=0.0931 \mathrm{~W}=93.1 \mathrm{~mW}
$$

Of course, the power dissipated at R_{5} must be less than the total power dissipated in the circuit.

$$
P_{5}=28.6 \mathrm{~mW}, \quad P_{\text {total }}=93.1 \mathrm{~mW}, \quad \text { and } \quad P_{5}<P_{\text {total }} \quad \text { (as expected). }
$$

Example: Power dissipation for one resistor in a circuit (5)

Practice: What is the power dissipated by R_{2} ? Answer: 4.9 mW .

