Review of DC Circuit Analysis

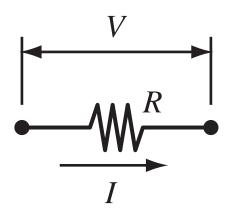
EAS 199A Notes

EAS 199A: DC Circuit Summary

Overview

- 1. Ohm's Law
- 2. Power dissipation
- 3. Resisters in series
- 4. Resistors in parallel

Ohm's Law (1)


$$V = IR$$

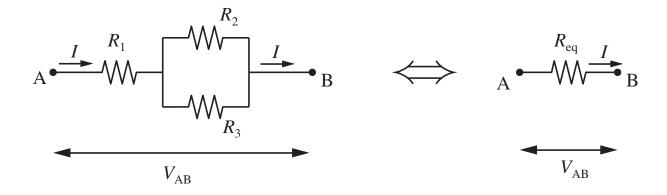
where

V = voltage drop across the resistor (V)


I = current through the resistor (A)

 $R = \text{resistance } (\Omega)$

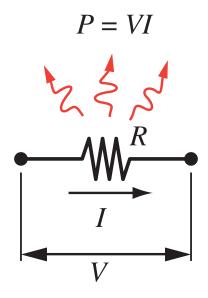
Ohm's Law (2)


Complex arrangements of resistors can be reduced to an equivalent resistance, $R_{\rm eq}$, and then Ohm's law can be applied to the equivalent circuit.

$$R_{\text{eq}} = R_1 + \frac{1}{\frac{1}{R_2 + R_3} + \frac{1}{R_4}} + R_5$$
 $V_s = IR_{\text{eq}}$

Ohm's Law (3)

Ohm's law can be applied to any continuous segment of a circuit.

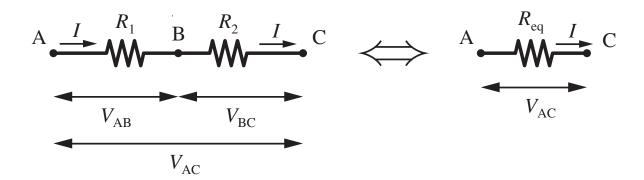


Ohm's law cannot be applied to LEDs, capacitors, inductors.

Ohm's law can only be applied to devices that act like simple resistors: e.g., simple resistors, incadenscent light bulbs, and long lengths of wire.

Power Dissipation (1)

When electrical current flows through resistor, electrical power is dissipated.


Power Dissipation (2)

Power dissipation can be computed from one of three formulas

$$P = VI$$
 $P = I^2R$ $P = \frac{V^2}{R}$

In each case, the V, I, and R refer to the values for the circuit element under consideration

Resistors in Series

$$R_{\rm eq} = R_1 + R_2$$

Kirchoff's voltage law tells us that the voltages across the resistors adds:

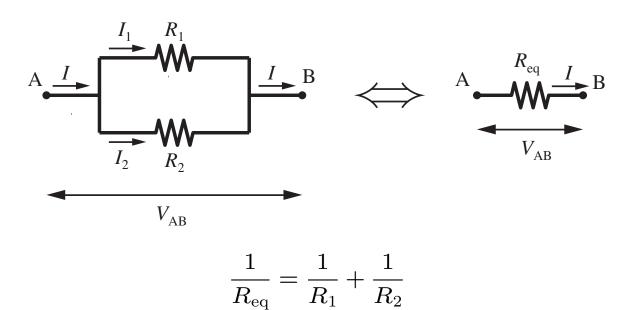
$$V_{\rm AC} = V_{\rm AB} + V_{\rm BC}$$

Kirchoff's current law tells us that the current through the resistors is the same:

$$I_1 = I_2$$

Resistors in Series on a Breadboard

Sockets in a column are not connected


Sockets in a row

Schematic of breadboard

Conductors along rows of breadboard

are connected

Resistors in Parallel

Kirchoff's voltage law tells us that the voltages across the resistors is the same

$$V_1 = V_2 = V_{AB}$$

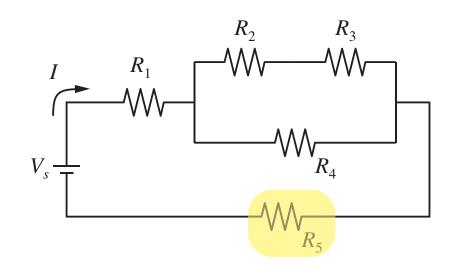
Kirchoff's current law tells us that the current through the resistors adds:

$$I = I_1 + I_2$$

Resistors in Parallel on a Breadboard

Sockets in a column are not connected

Sockets in a row are connected


Sockets in a row are connected

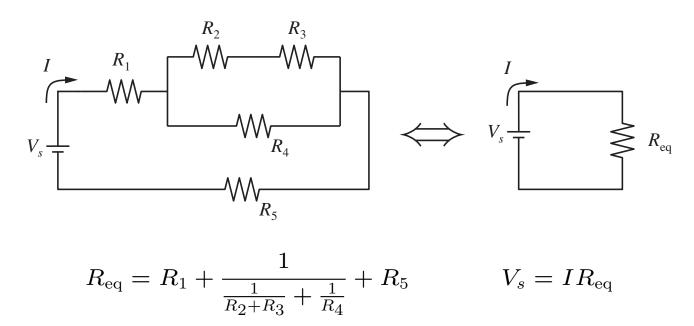
Sockets in a row are connected

Example: Power dissipation for one resistor in a circuit (1)

What power is dissipated by R_5 in the circuit to the right? What is the *total* power dissipation of the circuit? Use the following system parameters.

$$V_s = 10 \text{ V}$$

 $R_1 = R_4 = 470 \Omega$
 $R_2 = R_3 = R_5 = 330 \Omega$



The power is $P_5=V_5I_5$, but neither V_5 nor I_5 is known.

Use the alterative formula $P_5=I_5^2R_5$. Since R_5 is known, the first step is to determine the current I_5 . Note that the current through R_5 is the same as the total current leaving the battery, i.e., $I_5=I$.

Example: Power dissipation for one resistor in a circuit (2)

Solution Step 1: Replace the resistor network with a single equivalent resistor.

Example: Power dissipation for one resistor in a circuit (3)

Solution Step 2: Substitute the known values to compute $R_{\rm eq}$.

$$R_{\text{eq}} = R_1 + \frac{1}{\frac{1}{R_2 + R_3} + \frac{1}{R_4}} + R_5$$

$$= 470 \Omega + \frac{1}{\frac{1}{330 + 330 \Omega} + \frac{1}{470 \Omega}} + 330 \Omega$$

$$= 1074.5 \Omega$$

Solution Step 3: Apply Ohm's law to the equivalent circuit to compute the total current, I.

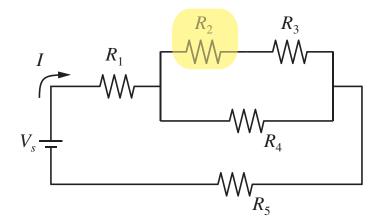
$$V_s = IR_{\rm eq} \implies I = \frac{V_s}{R_{\rm eq}} = \frac{10 \text{ V}}{1074.5 \,\Omega} = 0.00931 \,\text{A}$$

Example: Power dissipation for one resistor in a circuit (4)

Solution Step 4: Now that I is known, it is easy to calculate the power dissipated by R_5

$$P_5 = I_5^2 R_5 = (0.00931 \,\text{A})^2 (330 \,\Omega) = 0.0286 \,\text{W} = 28.6 \,\text{mW}$$

Solution Step 5: The total power dissipated in the entire circuit is


$$P_{\text{total}} = V_s I = (10 \text{ V}) (0.00931 \text{ A}) = 0.0931 \text{ W} = 93.1 \text{ mW}.$$

Of course, the power dissipated at R_5 must be less than the total power dissipated in the circuit.

$$P_5 = 28.6 \,\mathrm{mW}, \quad P_{\mathrm{total}} = 93.1 \,\mathrm{mW}, \quad \text{and} \quad P_5 < P_{\mathrm{total}} \quad \text{(as expected)}.$$

Example: Power dissipation for one resistor in a circuit (5)

Practice: What is the power dissipated by R_2 ? Answer: 4.9 mW.

