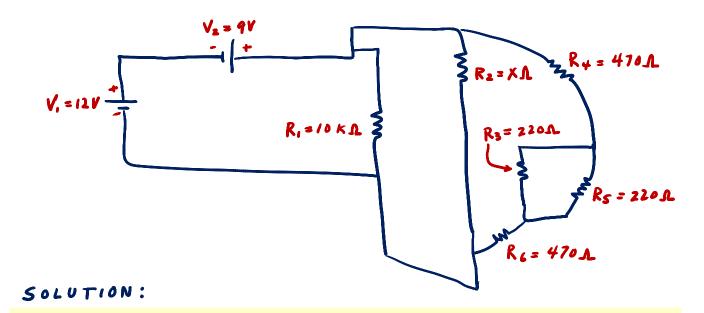

Implications of Kirchoff's Voltage Law (KVL):

We can redraw the circuit in Various ways . . .


R3 is between nodes 1 and 3 R7 is between nodes 2 and 3

Due to KVL, sets of circuit elements between two nodes are in **PARALLEL** and have **EQUAL** voltage drops:

$$\Delta V_{R3} = \Delta V_{R2} \quad and \quad \Delta V_{R4} = \Delta V_{R5} + \Delta V_{R6}$$
between nodes 1 and 3 between nodes 1 and 2
$$\Delta V_{R5} + \Delta V_{R6} + \Delta V_{R7} = \Delta V_{R2}$$
between nodes 1 and 3

CLASS PROBLEM: Consider the circuit below where R_2 is a variable resistor (a resistor whose value can be changed by turning a knob). We would like to understand the variation of the total current leaving the power sources as a function of R_2 .

- a. Redraw the circuit so it is easier to tell which resistors are in parallel.
- b. Develop a function for the current I in terms of the resistance R_2 , and embed this function into Mathcad.
- c. Plot the current versus the value of R2, where R2 varies from 100 Ω to 10,000 Ω .
- d. Find the current when R₂ is equal to 220 Ω , 470 Ω , 1 k Ω , and 10 k Ω .

