Rasic Floatricity	
Basic Electricity	
EAS 199A Lecture Notes	
	1
Lagurina Obigativa	
Learning Objectives	
Successful completion of this module will enable	
students to	
Link the basic model of an atom to the flow of	
electricity	
 Apply the definitions of Amp, Volt, Coulomb, 	
Joule, Watt to unit conversions and basic	
problems involving current and voltage	
Apply Ohm's Law to simple DC circuits	
Definition	
Floatricity is a form of an army reculting	
Electricity is a form of energy resulting from the existence of charged particles	
(such as electrons or protons), either	
statically as an accumulation of	
charge or dynamically as a current.	
charge or dynamically us a carrent.	
Concise Oxford English Dictionary, revised 10 th edition	

Electricity is a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current.

Concise Oxford English Dictionary, revised 10^{th} edition

Definition

Conductor:

A conductor is a material that readily allows the flow of electricity. A good conductor has a high numerical value of a *conductivity*, and a low numerical value of *resistance*.

Definition

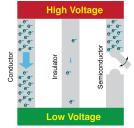
Conductivity:

All materials have a measurable property called electrical conductivity that indicates the ability of the material to either allow or impede the flow of electrons. Materials that easily conduct electricity have a high conductivity.

Definition

Insulator:

An insulator is a material that tends to impede the flow of electricity. A resistor has a low numerical value of conductivity and high numerical value of resistance.


Definition

Semiconductor:

A semiconductor is a material with conductivity between that of a conductor and insulator.

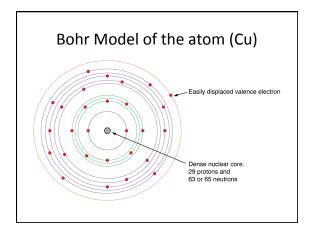
The conductivity of a semiconductor can be changed by exposing it to an electrical field, light, mechanical pressure, or heat.

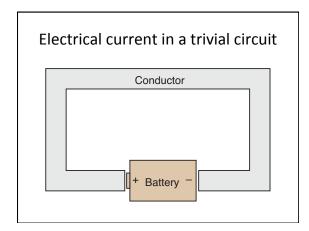
Simplified Functional Differences

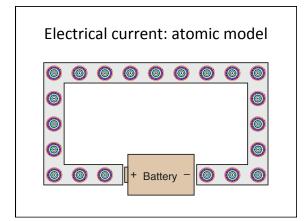
Semiconductors can be used in devices that act like a switch.

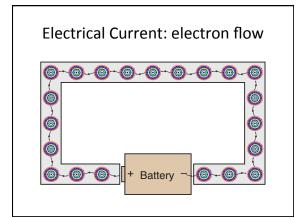
Elements

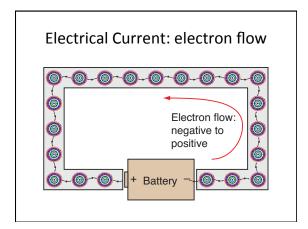
- Pure substances are made of elements.
- An element consists of atoms
- Atoms have a nucleus consisting of protons and neutrons
- Electrons move in shells around the nucleus

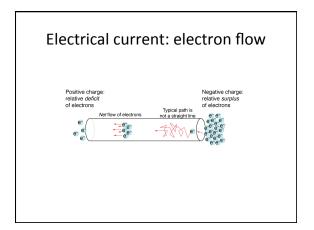

Elements

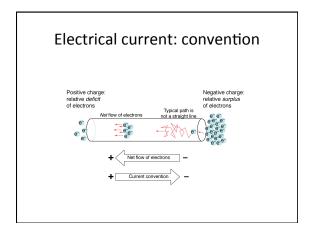

- Number of protons determines the element
- Number of electrons varies
 - State of electrical charge
 - Is the element in a chemical bond?
- Number of neutrons varies with isotope




GRO	CP		DE	-DI		NIC.	т.	ы	_ /	OF	ти		-1 6	- 6.41	= NI:	тс		
1 10	8		7	=KI	UL	JIC	IA	DL	.E (JF	ΙП	C (EIN eperiodo			18 VIII
1 H					GROUP?				PACAMETE BURACT III	macr.				u M	ıs W	16 VII	17 MM	He
	13014		1			MARKET -	13 10	(S. AZUNDC N				5 10.811	6 12311	7 14.007	\$ 15,000	9 18.000	
2 L		Be				ryance -		-	a archae. A	LOSS (1)			В	C	N	0	F	Ne
11 22	1990-1	2 24.305	ĺ				80804	HAND	T NAME				13 26.862	14 28.000	15 30.8TE	16 32.00h	17 35.463	15 38.80
3 Na		Mg	l _						- VIII	_	_	_	Al	Si	P	S	Cl	Ar
			21 46.106	22 07307	23 10.162	24 11.000	25 14 10	26 11.10	27 III. NO	28 15.612	29 12310	30 65.38			33 TE 822		35 79.100	
4 K		Ca	Se	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37 st.		GLOUN B ST 62	DOMOLIN 39 SERVE	1/500AM	4E 12.101	62 10.16	40 OF	800 E	65 102.91	66 105.62	47 totat	29C	69 116.82	59 118.71	ARRESC 51 121.70	52 127.60	\$3 126.00	54 121.2
s RI	ь	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55 13		manenus M. 11711	1778688 57,71	72 176.00	10 month	M 111 M	TE THE T	TE NOT	FINCOLNI TT. NO. TO	75.10.00	50/55 79, 100 57	GIERRA SE TOTAL	BE THE TE	TW 97 100 1	447340AV	TELLIFICAL SAL COST	500AE	3000 O
6 C		Ba	La-Lu	Hſ	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
92 .		autuu M. corr	Lambanide	HETHERE	teraus	neseres 196 gro	845 GTZ	00MAN	mous 169 cm	110 gm	00A	MERCURY	DOLLUM	LEAD	BIDNEY	POLONIUM	ASTATIVE	NIDON
7 E	~T	Ra	N9-103 Ac-Lr	TRE	TO:	Ser	IRSh	His	Mit	The	Re	Ca Ca						
PRINC		NEW	Activide	17-61/06U	DEBOUN	SUAGEOUS	BOHRUM	HALESAN	WEINERG	District to	COCCOUR	CONTRACTA	J					
				ST THE	Ton sect	Tan senan	68 10520	161 000	62 10.30	Y63 101 00	64 107.20	65 11111	66 101 10	67 101 07	68 107.20	60 1000		Thi General
Pure Appl. Che			or san poorly	La	Ce	Pr	Nd	Pm	Sm	En	Gd	ть	Dy	Ho	Er	Tm	Vb	Lu
significant Si stable mobile	liguen. ira, the v	For stome also reviews	dis bour no	LATHACIA	CERUM	91.00.00	MODYMUN	токтни	LUMBIA	EUROPEM	GIOCHER	TERRILIN	pramosus	номым	EMBLAN	DILLIN	YTTERBUM	LATETUR
nationer of the	ler elemen	ni Henry		ACTINIDE 99 GZD	100 111.00	Ter work	92 238.00	193 (227	TH 200	195 (20)	% gm	97 (20)	98 (211)	99 (212)	100 gar	Ht can	162 (200)	163 010
olements (3 observations) and the three	· terminal	tal batterie	ompolion.	Ac	Th	Pa	U	No	Pu	Am	Cm	Blk	Cf	Illa	Fm	Md	No	Le
				ACTIVAN	200000			MPTAKA	NUTOWAN	MERCUN	CURSON	BETWEEN	CALPONNA	ENITENA	remove	MDGGDAN	NOREUM	ANTENCS.

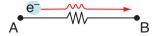

Atomic number = number of protons in the nucleus | Cu | Symbol | Element name

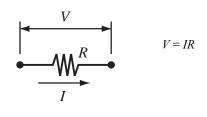



Electrical Current: current convention Current flow: Electron flow: positive to negative to positive Battery Battery

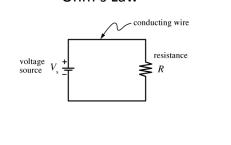
Example: How many valence electrons are in a 1cm cube of copper? Useful data: Atomic mass = 63.55 g/mol Density of pure copper = 8.94 g/cm³ Avogadro's number $N_d = 6.022 \times 10^{23}$ atoms/mol

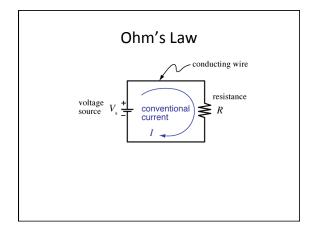
How many electrons? Example: How many valence electrons are in a 1cm cube of copper?							
Useful data: Atomic mass = 63.55 g/mol Density of pure copper = 8.94 g/cm ³ Avogadro's number $N_A = 6.022 \times 10^{23}$ atoms/mol							
First compute the number of atoms, N							
$N = 1 \text{ cm}^3 \times 8.93 \frac{\text{gm}}{\text{cm}^3} \times \frac{1 \text{ mol}}{63.55 \text{ g}} \times \frac{6.022 \times 10^{23} \text{ atoms}}{\text{mol}} = 8.5 \times 10^{22} \text{ atoms}$							
Since each copper atom has one valence electron, there are 8.5×10^{22} valence							
electrons in a 1 cm cube of copper.							
Note: N is greater than the number of grains of sand on the earth. Compute the number of sand grains by assuming that 10 cm of sand covers all 200 million square							
miles of the earth's surface. Assume that each grain is 1 mm in diameter and are the							
packing efficiency is 68 percent.							

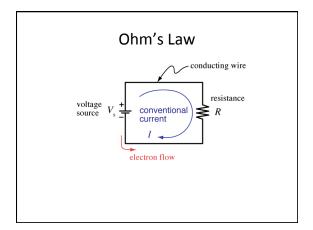

Positive charge: relative deficit of electrons Regative charge: relative surplus of electrons relative surplus of electrons

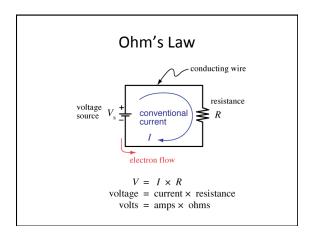

_ 6	
Definition: Charge	
Elementary charge 1 electron = 1.602×10^{-19} coulomb	
Coulomb	
1 coulomb= 6.24×10^{18} electrons	
Definition: Current	
$1A = 1 \frac{C}{}$	
S	
$1 C = 6.24 \times 10^{18} electrons$	
Definition: Voltage	
J. J.	
$1 \text{ V} = 1 \frac{\text{J}}{\text{coulomb}}$	-
Couloino	
	1

Voltage and electrical work

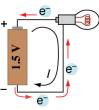



If the voltage between A and B is one volt, then one Joule of work is done when 6.28×10^{18} electrons move from A to B.


Ohm's Law

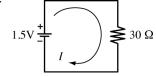


Ohm's Law


Example: Current through a light bulb

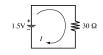
- A 1.5 volt AA battery is wired to a light bulb with a resistance of 30 $\Omega.\,$
- a. Sketch the components.
- b. Draw the circuit.
- c. Find the current flowing through the light bulb.

Example: Current through a light bulb


A 1.5 volt AA battery is wired to a light bulb with a resistance of 30 Ω_{\cdot}

a. Sketch the components.

Example: Current through a light bulb


- A 1.5 volt AA battery is wired to a light bulb with a resistance of 30 Ω_{\cdot}
- a. Sketch the components.
- b. Draw the circuit.

Example: Current through a light bulb

c. Find the current flowing through the bulb

Apply Ohm's Law to the loop V = IR

V and R and known, so solve for II = V/R

Substitute the known values and compute the value of $\it I$

$$I = \frac{1.5 \, \text{V}}{30 \, \Omega} = 0.05 \, \text{A} = 50 \, \text{mA}$$
 where 1 A = 1000 mA.