
Content-Preserving Warps for 3D Video Stabilization

Feng Liu
Michael Gleicher

University of Wisconsin-Madison

Hailin Jin
Aseem Agarwala

Adobe Systems, Inc.

Abstract

We describe a technique that transforms a video from a hand-held
video camera so that it appears as if it were taken with a directed
camera motion. Our method adjusts the video to appear as if it were
taken from nearby viewpoints, allowing 3D camera movements to
be simulated. By aiming only for perceptual plausibility, rather than
accurate reconstruction, we are able to develop algorithms that can
effectively recreate dynamic scenes from a single source video. Our
technique first recovers the original 3D camera motion and a sparse
set of 3D, static scene points using an off-the-shelf structure-from-
motion system. Then, a desired camera path is computed either
automatically (e.g., by fitting a linear or quadratic path) or inter-
actively. Finally, our technique performs a least-squares optimiza-
tion that computes a spatially-varying warp from each input video
frame into an output frame. The warp is computed to both follow the
sparse displacements suggested by the recovered 3D structure, and
avoid deforming the content in the video frame. Our experiments
on stabilizing challenging videos of dynamic scenes demonstrate
the effectiveness of our technique.

1 Introduction

While digital still photography has progressed to the point where
most amateurs can easily capture high-quality images, the quality
gap between professional and amateur-level video remains remark-
ably wide. One of the biggest components of this gap is camera
motion. Most camera motions in casual video are shot hand-held,
yielding videos that are difficult to watch, even if video stabiliza-
tion is used to remove high-frequency jitters. In contrast, some
of the most striking camera movements in professional produc-
tions are “tracking shots” [Kawin 1992], where cameras are moved
along smooth, simple paths. Professionals achieve such motion
with sophisticated equipment, such as cameras mounted on rails
or steadicams, that are too cumbersome or expensive for amateurs.

In this paper, we describe a technique that allows a user to trans-
form their hand-held videos to have the appearance of an idealized
camera motion, such as a tracking shot, as a post-processing step.
Given a video sequence from a single video camera, our algorithm
can simulate any camera motion that is reasonably close to the cap-
tured one. We focus on creating canonical camera motions, such as
linear or parabolic paths, because such paths have a striking effect
and are difficult to create without extensive equipment. Our method
can also perform stabilization using low-pass filtering of the origi-
nal camera motion to give the appearance of a steadicam. Given a

1
http://www.cs.wisc.edu/graphics/Gallery/WarpFor3DStabilization/

desired output camera path, our method then automatically warps
the input sequence so that it appears to have been captured along
the specified path.

While existing video stabilization algorithms are successful at re-
moving small camera jitters, they typically cannot produce the more
aggressive changes required to synthesize idealized camera mo-
tions. Most existing methods operate purely in 2D; they apply full-
frame 2D warps (e.g., affine or projective) to each image that best
remove jitter from the trajectory of features in the video. These 2D
methods are fundamentally limited in two ways: first, a full-frame
warp cannot model the parallax that is induced by a translational
shift in viewpoint; second, there is no connection between the 2D
warp and a 3D camera motion, making it impossible to describe
desired camera paths in 3D. We therefore consider a 3D approach.
Image-based rendering methods can be used to perform video sta-
bilization in 3D by rendering what a camera would have seen along
the desired camera path [Buehler et al. 2001a]. However, these tech-
niques are currently limited to static scenes, since they render a
novel viewpoint by combining content from multiple video frames,
and therefore multiple moments in time.

Our work is the first technique that can perform 3D video stabi-
lization for dynamic scenes. In our method, dynamic content and
other temporal properties of video are preserved because each out-
put frame is rendered as a warp of a single input frame. This con-
straint implies that we must perform accurate novel view interpo-
lation from a single image, which is extremely challenging [Hoiem
et al. 2005]. Performing this task for a non-rigid dynamic scene
captured by a single camera while maintaining temporal coherence
is even harder; in fact, to the best of our knowledge it has never
been attempted. An accurate solution would require solving several
challenging computer vision problems, such as video layer separa-
tion [Chuang et al. 2002], non-rigid 3D tracking [Torresani et al.
2008], and video hole-filling [Wexler et al. 2004]. In this paper
we provide a technique for novel view interpolation that avoids
these challenging vision problems by relaxing the constraint of a
physically-correct reconstruction. For our application, a perceptu-
ally plausible result is sufficient: we simply want to provide the
illusion that the camera moves along a new but nearby path. In prac-
tice, we find our technique is effective for video stabilization even
though our novel views are not physically accurate and would not
match the ground truth.

Our method takes advantage of recent advances in two areas of re-
search: shape-preserving image deformation [Igarashi et al. 2005],
which deforms images according to user-specified handles while
minimizing the distortion of local shape; and content-aware im-
age resizing [Avidan and Shamir 2007; Wolf et al. 2007], which
changes the size of images while preserving salient image content.
Both of these methods minimize perceivable image distortion by
optimally distributing the deformation induced by user-controlled
edits across the 2D domain. We apply this same principle to image
warps for 3D video stabilization, though in our case we optimally
distribute the distortion induced by a 3D viewpoint change rather
than user-controlled deformation. Since the change in viewpoint re-
quired by video stabilization is typically small, we have found that
this not-physically-correct approach to novel view interpolation is
sufficient even for challenging videos of dynamic scenes.

Our method consists of three stages. First, it recovers the 3D camera
motion and a sparse set of 3D, static scene points using an off-the-
shelf structure-from-motion (SFM) system. Second, the user inter-
actively specifies a desired camera path, or chooses one of three
camera path options: linear, parabolic, or a smoothed version of
the original; our algorithm then automatically fits a camera path to
the input. Finally, our technique performs a least-squares optimiza-
tion that computes a spatially-varying warp from each input video
frame into an output frame. The warp is computed to both follow the
sparse displacements suggested by the recovered 3D structure, and
minimize distortion of local shape and content in the video frames.
The result is not accurate, in the sense that it will not reveal the dis-
occlusions or non-Lambertian effects that an actual viewpoint shift
should yield; however, for the purposes of video stabilization, we
have found that these inaccuracies are difficult to notice in casual
viewing. As we show in our results, our method is able to con-
vincingly render a range of output camera paths that are reasonably
close to the input path, even for highly dynamic scenes.

2 Related Work

Two-dimensional video stabilization techniques have reached a
level of maturity that they are commonly implemented in on-camera
hardware and run in real time [Morimoto and Chellappa 1997]. This
approach can be sufficient if the user only wishes to damp unde-
sired camera shake, if the input camera motion consists mostly of
rotation with very little translation, or if the scene is planar or very
distant. However, in the common case of a camera moving through
a three-dimensional scene, there is typically a large gap between 2D
video stabilization and professional-quality camera paths.

The idea of transforming hand-held videos to appear as if they were
taken as a proper tracking shot was first realized by Gleicher and
Liu [2008]. Their approach segments videos and applies idealized
camera movements to each. However, this approach is based on
full-frame 2D warping, and therefore suffers (as all 2D approaches)
from two fundamental limitations: it cannot reason about the move-
ment of the physical camera in 3D, and it is limited in the amount
of viewpoint change for scenes with non-trivial depth complexity.

The 3D approach to video stabilization was first described by
Buehler et al. [2001a]. In 3D video stabilization, the 3D camera
motion is tracked using structure-from-motion [Hartley and Zisser-
man 2000], and a desired 3D camera path is fit to the hand-held
input path. With this setup, video stabilization can be reduced to
the classic image-based rendering (IBR) problem of novel view in-
terpolation: given a collection of input video frames, synthesize the
images which would have been seen from viewpoints along the de-
sired camera path. Though the novel viewpoint interpolation prob-
lem is challenging and ill-posed, recent sophisticated techniques
have demonstrated high-quality video stabilization results [Fitzgib-
bon et al. 2005; Bhat et al. 2007]. However, the limitation to static
scenes renders these approaches impractical, since most of us shoot
video of dynamic content, e.g., people.

Image warping and deformation techniques have a long his-
tory [Gomes et al. 1998]. Recent efforts have focused on defor-
mation controlled by a user who pulls on various handles [Igarashi
et al. 2005; Schaefer et al. 2006] while minimizing distortion of
local shape, as measured by the local deviation from conformal or
rigid transformations. These methods, which build on earlier work
in as-rigid-as-possible shape interpolation [Alexa et al. 2000], are
able to minimize perceivable distortion much more effectively than
traditional space-warp methods [Beier and Neely 1992] or standard
scattered data interpolation [Bookstein 1989]. Our method applies
this principle in computing spatially-varying warps induced by the
recovered 3D scene structure. A related image deformation problem

is to change the size or aspect ratio of an image without distorting
salient image structure. Seam Carving [Avidan and Shamir 2007]
exploited the fact that less perceptually salient regions in an image
can be deformed more freely than salient regions, and was later ex-
tended to video [Rubinstein et al. 2008]. However, the discrete algo-
rithm behind Seam Carving requires removing one pixel from each
image row or column, which limits its application to general image
warping. Others have explored more continuous formulations [Gal
et al. 2006; Wolf et al. 2007; Wang et al. 2008], which deform a
quad mesh placed on the image according to the salience (or user-
marked importance) found within each quad; we take this approach
in designing our deformation technique.

A limitation of our approach is that it requires successful computa-
tion of video structure-from-motion. However, this step has become
commonplace in the visual effects industry, and commercial 3D
camera trackers like Boujou2 and Syntheyes3 are widely used. We
use the free and publicly available Voodoo camera tracker4, which
has been used in a number of recent research systems [van den Hen-
gel et al. 2007; Thormählen and Seidel 2008]. Finally, there are a
number of orthogonal issues in video stabilization that we do not
address [Matsushita et al. 2006], such as removing motion blur, and
full-frame video stabilization that avoids the loss of information at
the video boundaries via hole-filling (we simply crop our output).
These techniques could be combined with our method to yield a
complete video stabilization solution.

3 Traditional video stabilization

We begin by describing the current technical approaches to video
stabilization in more detail, and showing their results on the exam-
ple sequence in Video Figure 1 (since many of the issues we discuss
can only be understood in an animated form, we will refer to a set
of video figures that are included as supplemental materials and on
the project web site1).

3.1 2D stabilization

Traditional 2D video stabilization proceeds in three steps. First, a
2D motion model, such as an affine or projective transformation,
is estimated between consecutive frames. Second, the parameters
of this motion model are low-pass filtered across time. Third, full-
frame warps computed between the original and filtered motion
models are applied to remove high-frequency camera shake. Video
Figures 2 and 3 show two results of this approach, created using our
implementation of Matsushita et al. [2006] (we do not perform the
inpainting or deblurring steps, and the two videos contain different
degrees of motion smoothing).

While 2D stabilization can significantly reduce camera shake, it
cannot simulate an idealized camera path similar to what can be
found in professional tracking shots. Since the 2D method has no
knowledge of the 3D trajectory of the input camera, it cannot rea-
son in 3D about what the output camera path should be, and what
the scene would have looked like from this path. Instead, it must
make do with fitting projective transformations (which are poor ap-
proximations for motion through a 3D scene) and low-pass filtering
them. Strong low-pass filtering (Video Figure 3) can lead to visible
distortions of the video content, while weak filtering (Video Figure
2) only damps shake; neither can simulate directed camera motions.

2http://www.2d3.com
3http://ssontech.com
4http://www.digilab.uni-hannover.de

Figure 1: A crop of a video frame created using novel view inter-
polation. While the static portions of the scene appear normal, the
moving people suffer from ghosting.

Figure 2: A crop of a video frame created using generic sparse
data interpolation. The result does not contain ghosting, but distorts
structures such as the window and pole highlighted with red arrows.

3.2 3D stabilization

The 3D approach to video stabilization is more powerful, though
also more computationally complex. Here, the actual 3D trajectory
of the original camera is first estimated using standard structure-
from-motion [Hartley and Zisserman 2000]; this step also results in
a sparse 3D point cloud describing the 3D geometry of the scene.
Second, a desired camera path is fit to the original trajectory (we de-
scribe several approaches to computing such a path in Section 4.3).
Finally, an output video is created by rendering the scene as it would
have been seen from the new, desired camera trajectory.

There are a number of techniques for rendering novel views of a
scene; in Video Figure 4 we show a video stabilization result cre-
ated using the well-known unstructured lumigraph rendering algo-
rithm [Buehler et al. 2001b]. The result is remarkably stable. How-
ever, like all novel view interpolation algorithms, each output frame
is rendered as a blend of multiple input video frames. Therefore, dy-
namic scene content suffers from ghosting (we show a still frame
example of this ghosting in Figure 1).

One approach to handling dynamic scene content would be to iden-
tify the dynamic objects, matte them out, use novel view interpo-
lation to synthesize the background, re-composite, and fill any re-
maining holes. However, each of these steps is a challenging prob-
lem, and the probability that all would complete successfully is low.
Therefore, in the next section we introduce the constraint that each
output video frame be rendered only from the content in its corre-
sponding input video frame.

4 Our approach

Our approach begins similarly to the 3D stabilization technique just
described; we recover the original 3D camera motion and sparse

3D point cloud using structure-from-motion, and specify a desired
output camera motion in 3D (in this section we assume the output
path is given; our approach for computing one is described in Sec-
tion 4.3). Then, rather than synthesize novel views using multiple
input video frames, we use both the sparse 3D point cloud and the
content of the video frames as a guide in warping each input video
frame into its corresponding output video frame.

More specifically, we compute an output video sequence from the
input video such that each output video frame It is a warp of its
corresponding input frame Ît (since we treat each frame indepen-
dently, we will omit the t subscript from now on). As guidance we
have a sparse 3D point cloud which we can project into both the
input and output cameras, yielding two sets of corresponding 2D
points: P in the output, and P̂ in the input. Each k’th pair of pro-
jected points yields a 2D displacement Pk − P̂k that can guide the
warp from input to output. The problem remaining is to create a
dense warp guided by this sparse set of displacements. This warp,
which can use the displacements as either soft or hard constraints,
should maintain the illusion of a natural video by maintaining tem-
poral coherence and not distorting scene content. We first consider
two simple warping solutions, the first of which is not successful,
and the second of which is moderately successful.

The first solution is to use generic sparse data interpolation to yield
a dense warp from the sparse input. In Video Figure 5 we show a
result computed by simply triangulating the sparse points and us-
ing barycentric coordinates to interpolate the displacements inside
the triangles; the displacements are therefore treated as hard con-
straints. The result has a number of problems. Most significantly,
important scene structures are distorted (we show a still example in
Figure 2). These distortions typically occur near occlusions, which
are the most challenging areas for novel view interpolation. Also,
problems occur near the frame boundaries because extrapolation
outside the hull of the points is challenging (for this example, we
do not perform extrapolation). Finally, treating the displacements
as hard constraints leads to temporal incoherence since the recon-
structed 3D points are not typically visible for the entire video. Pop-
ping and jittering occur when the corresponding displacements ap-
pear and disappear over time. In this example, we use a very short
segment of video and only include points that last over the entire du-
ration of the video; however, the problem is unavoidable in longer
sequences. Our approach for preserving temporal coherence, which
is only applicable if displacements are used as soft constraints, is
described in Section 4.1.4.

The second alternative is to fit a full-frame warp to the sparse dis-
placements, such as a homography (thereby treating the displace-
ments as a soft constraint). We show a somewhat successful result
of this technique in Video Figure 6. This method can achieve good
results if the depth variation in the scene is not large, or if the de-
sired camera path is very close to the original. We show a less suc-
cessful result of this technique in Video Figure 7. In the general
case, a homography is too constrained a model to sufficiently fit
the desired displacements. This deficiency can result in undesired
distortion (we show an individual frame example in Figure 3), and
temporal wobbling. However, this novel approach is the best of the
alternatives we have considered up to now.

The first solution described above is too flexible; it exactly sat-
isfies the sparse displacements, but does not respect structures in
the image and therefore introduces local distortion near occlusions
(among other problems). The second solution is too stiff, and cannot
model the sparse displacements well enough to simulate the desired
camera position. Can we design an in-between solution that is more
flexible than a full-frame warp, but avoids visible distortion of the
video frame content? As we show with our result in Video Figure 8,
the answer is yes; we now describe the method.

Figure 3: A crop of an input video frame, followed by an output
video frame created using a full-frame homography fit to the set
of sparse displacements. Since the homography cannot model the
displacements well, distortion is introduced; while the person and
structures on the right side of the frame are upright, the wall and
window frames on the building on the left (and, to a lesser degree,
on the building in the back) shear towards the right.

4.1 Content-preserving warps

Our content-preserving warps are designed with several principles
in mind. First, the sparse displacements should be treated as soft
constraints, since hard constraints will lead to distortions near oc-
clusions and temporal incoherence. Instead, we wish to spread the
error near occlusions slowly across the rest of the image and into
areas where the eye will notice them less (even if this answer will
not be physically accurate). Second, the warp should attempt to pre-
serve the content of the image. This second goal is met in two ways.

First, we make the observation that since the desired camera will
not be very far from the original camera, the local content in the
original image should not need to be distorted significantly. So,
we would like to avoid local shearing or non-uniform scaling. We
therefore prefer warps that locally resemble a similarity transfor-
mation. (Recent work in image warping [Alexa et al. 2000; Igarashi
et al. 2005; Schaefer et al. 2006] explore both as-similar-as-possible
and as-rigid-as-possible warps, and generally reach the conclusion
that rigid transformations are better. However, for our application,
uniform scaling is acceptable since objects may need to move closer
or farther from the camera.) Second, we observe that violations of
this constraint will be less noticeable in less salient regions of the
image (e.g., sky), while the shape of strong edges should be better
preserved.

A solution best satisfying the above principles in a least-squares
sense can be computed by discretizing the warp into a grid and min-
imizing an energy function of two weighted energy terms: a data
term for each sparse displacement, and a similarity transformation
term that measures the deviation of each grid cell from a similarity
transformation, weighted by the salience of the grid cell.

We divide the original video frame Î into an n × m uniform grid
mesh, where V̂i,j is the grid vertex at position (i, j). We compute a
warped version of this grid for the output video frame, where each
Vi,j is a 2D unknown to be computed.

1V1V̂

3V̂

4V̂

2V̂

1V̂

3V̂2V̂

2V

3V

u

v

Figure 4: A triangle vertex can be expressed in the local coordinate
system (u, v) of its opposite edge. The deviation from a similarity
transformation of a warp can be measured as the distance between
the vertex and the location it would have had under a similarity
transformation (dashed lines).

4.1.1 Data term

Each projected point P̂k in the input frame is typically not coinci-
dent with a vertex V̂i,j , so we must represent each constraint with a
bilinear interpolation of the four corners of the enclosing grid cell.
We define V̂k as a vector of the four vertices enclosing the grid
cell that P̂k projects to; Vk represents the same four vertices in the
output grid. The vector wk contains the four bilinear interpolation
coefficients that sum to 1, so that P̂k = wT

k V̂k represents a bilin-
ear interpolation operation for a projected point. We compute wk

by finding the grid cell that P̂k projects to and inverting its bilinear
interpolation [Heckbert 1989]. Then, the data term is

Ed =
X

k

‖wT
k Vk − Pk‖2, (1)

where Vk contains four unknowns, and wk and Pk are known. This
term minimizes the distance between the output projected point Pk

and the interpolated location in the grid cell in the output that cor-
responds to the input grid cell containing P̂k.

4.1.2 Similarity transformation term

The similarity transformation term measures the deviation of each
output grid cell from a similarity transformation of its correspond-
ing input grid cell. We split each grid cell into two triangles and
then apply the method of Igarashi et al. [2005]. As shown in Fig-
ure 4, each vertex can be represented in a local coordinate system
formed by the vector between the other two vertices, and the 90 de-
gree rotation of that vector. For example, V1 can be defined using
V2 and V3 as

V1 = V2+u(V3−V2)+vR90(V3−V2), R90 =

»
0 1
−1 0

–
(2)

where u, v are the known coordinates within the local coordinate
system.5 However, if the output triangle has not undergone a sim-
ilarity transformation from its input, V1 will not coincide with the
location calculated from V2 and V3. We therefore minimize the dis-
tance between V1 and its desired location under a similarity trans-
formation.

Es(V1) = ws‖V1− (V2 +u(V3−V2)+ vR90(V3−V2))‖2, (3)

where ws is a weight described in Section 4.1.3. Notice that there
are two such triangles for each of the four quads cornered by V1.
The full energy term Es(V) is formed by summing Equation 3
over all eight triangles of each vertex. Using all eight triangles is
redundant, but avoids special handling along the grid boundaries.

5Note that if the grid cell is square u = 0 and v = 1. However, in Sec-
tion 4.2 we add an initial warping stage that can yield non-square grid cells.

tta te

T T

l

0

1

Figure 5: The weight of a reconstructed scene point fades-in and
fades-out over time in the optimization to preserve temporal coher-
ence.

4.1.3 Salience

The above energy term Es(V) is successful in preserving the lo-
cal shape in the image. However, it is not as important to preserve
the shape of quads of low perceptual salience, such as a uniform
region. High salience quads, such as those containing a strong im-
age edge, should maintain their shape more strongly. Therefore, we
compute the weight ws in Equation 3 of each triangle constraint by
the salience of its enclosing grid cell.

There are a number of sophisticated techniques for measuring per-
ceptual salience [Itti et al. 1998; Wang et al. 2008]. For our appli-
cation, we found that simply setting ws to the L2 norm of the color
variance inside a grid cell is a sufficient measure of salience. We
also add an epsilon of 0.5 to ws to make sure that each variable in
the optimization is subject to a constraint, even if the variance is 0.

4.1.4 Temporal coherence

Our stabilization results are guided by the set of reconstructed
3D scene points. However, the points estimated by structure-from-
motion do not typically last the entire video; each reconstructed
point only projects to a subset of the video frames, so points will ap-
pear and disappear over time instantly, leading to very visible tem-
poral artifacts. We solve this problem in two simple ways. First, we
only use scene points that last for at least N = 20 video frames; this
requirement helps to avoid incorrectly reconstructed scene points,
and scene points that might correspond to moving objects. Second,
and most importantly, we fade-in and fade-out the influence of each
sparse displacement over time. We use the simple piecewise-linear
function l(t) shown in Figure 5, where ta and tb are the begin-
ning and ending frames of a feature point, and T is set to 50. If
tb− ta < 2T , we also scale the peak value of l(t) by (tb− ta)/2T .
This function l(t) is then used to weight the data term in Equation 1.
The result of our method with and without l(t) can be seen in Video
Figures 9 and 10.

4.1.5 Dynamic scene content

Surprisingly, our method requires no special handling of moving
objects in the scene. Structure-from-motion should not reconstruct
any 3D scene points corresponding to moving objects, since their
motion will not be consistent with the motion of the static 3D scene
structure (this property is reinforced by our elimination of recon-
structed points that do not last more than a minimum number of
frames). Therefore, our stabilization method will warp a moving
scene object according to some interpolation of the displacements
of the background scene points behind the object. This warp may
not be accurate if there is a large depth difference between the ob-
ject and its surrounding background, but this inaccuracy tends to be
masked perceptually by the fact that the object is moving to begin
with.

4.1.6 Optimization and result

The sum of the above weighted energy terms Ed and Es is a linear
least-squares problem in the set of unknown grid vertices Vi,j . The
final energy equation is

E = Ed + αEs,

where α is the relative weight of the data and smoothness terms.
This energy equation is quadratic and can be minimized by solving
a sparse linear system, where the matrix is narrow-banded since
each vertex only shares constraints with its eight neighbors. We
solve it efficiently using a standard sparse linear system solver
(specifically, the Matlab backslash operator). The target video can
then be rendered using a standard texture mapping algorithm ac-
cording to the warped mesh.

This approach alone can generate good results for many sequences;
we show a successful result in Video Figure 8. However, its suc-
cess strongly depends on the density and distribution of the sparse
displacements. Figure 11 shows a result that is mostly successful.
However, if one watches the buildings on the upper left, they clearly
wobble. This artifact occurs because there are few or no recon-
structed scene points in that area; in this case, the data term has
little effect and the region remains similar to the input, which is
shaky.

There is, however, a degree of freedom that we are not yet exploit-
ing: the rotation of the input camera. The effect of a 3D rotation
of the input camera can be accurately simulated by applying a pro-
jective transformation. What if the user had rotated the camera in
a slightly different direction when shooting an input video frame?
In areas with few reconstructed scene points, a rotation of the in-
put camera could easily yield a different output, since the data term
here is weak. This sensitivity to camera rotation implies that there
are some rotations of the camera that could lead to better results
than other rotations in areas with few scene points. Can we exploit
this degree of freedom by pre-warping the input with a carefully
chosen projective transformation? In the next section we show that
we can.

4.2 Pre-warping

We now show how to improve results by applying a full-frame warp
to each input video frame before our spatially-varying content-
preserving warp is applied. We explored two options for pre-
warping the input video with a full-frame warp; both are successful
and typically yield similar results, though the second approach is
slightly more robust and is therefore used in all our final results.

4.2.1 Infinite homographies

The first option is to apply a rotation to the input camera so that it
points in the same direction as the desired output camera. In this
way, any rotational jitter is removed, and the output and input cam-
eras only differ by a translation. Specifically, a projective transfor-
mation that corresponds to a rigid rotation of a camera is called
an infinite homography [Hartley and Zisserman 2000], and can be
computed as H = KR̃(KR)−1, where K is the shared intrinsic
camera matrix, and R and R̃ are the camera orientation matrices of
the input and output cameras. This approach is successful for the
vast majority of our videos. However, we found this pre-warping
technique to be less successful when the translation of the output
camera from the input is large.

4.2.2 General homographies

Another option is to exploit the full warping power of a homogra-
phy, rather than an infinite homography that is limited to the three
degrees of freedom of rigid rotation. In this case, we simply com-
pute the best-fit homography in a least-squares sense to the set
of sparse displacements. Notice that this pre-warping approach is
identical to the second alternative we considered at the beginning
of Section 4, where we noted that this full-frame warp can some-
times provide good results. On the other hand, a full-frame warp of-
ten yields distortion and wobbling, since it is not sufficient to fully
model the desired displacements. Nonetheless, it is useful as an ini-
tialization. It can be considered a first-order approximation of the
desired warp, to which we then apply our content-preserving warp.
In the regions where our 3D reconstruction has a sufficient num-
ber of reconstructed points, the data term described in Section 4.1.1
will take over and this initialization will have little influence. Where
there is a paucity of reconstructed scene points, the initialization
provided by the homography will have stronger influence and pro-
vide a more stable starting point than the initial, shaky video. We
use this pre-warping technique to produce the final results. The fi-
nal result for the example just shown is given in Video Figure 12;
the wobbling of the buildings is greatly reduced.

4.3 Camera path planning

Our content-preserving warping method allows us to re-create a
frame of video from a different viewpoint than it was originally
taken. This capability allows us to cast the stabilization problem as
one of finding a new camera trajectory (position and orientation).
Our method must find a camera trajectory that satisfies two goals:

1. The trajectory should be a “good” camera movement, in the cin-
ematographic sense. For example, it should be free of the high-
frequency jitters that stabilization attempts to remove.

2. The trajectory should have maximal overlap with the original
video frame. Our approach can only synthesize images for portions
of the scene that were seen in the original video. We choose to crop
the resulting video to the overlapping region, rather than including
empty areas in the frame or hallucinating edge regions [Matsushita
et al. 2006].

These goals may conflict: the original trajectory has maximal over-
lap with the video, but may not be a desirable camera motion (other-
wise, we would not need to stabilize it). Conversely, a good camera
motion may be so far from the original video that it must be cropped
significantly to avoid empty regions. There is often a tradeoff be-
tween better motion (which often requires larger changes to the
original path), and greater overlap (which requires smaller changes
to the path).

To find camera trajectories, we apply three approaches. First, we al-
low a user to specify new camera trajectories interactively. Second,
we use low-pass filtering to create an analog of conventional, jitter-
reducing, video stabilization. Finally, we consider methods that au-
tomatically construct idealized camera paths.

While the art of cinematography provides a literature and tradition
for defining “good” camera movements, these discussions tend to
be subjective, content-dependent, and difficult to translate into a
computational model (see [Gleicher and Liu 2008] for a recent at-
tempt and discussion). Rather than attempting to automate aesthetic
judgements, we instead provide the user with a set of tools that
mimic those used by professionals. Effectively, our approach simu-
lates the mechanical camera supports (such as steadicams, damped
cranes and dollies) used by professionals as a post-process that can
be applied to casually captured video.

In this section we detail the three approaches for determining the
new camera trajectories using the following notation. A camera tra-
jectory, C(t) specifies the external camera parameters (position and
orientation) as a function of time t. Cp(t) and Cr(t) refer to the po-
sition and orientation components respectively, and Ĉ(t) refers to
the camera trajectory of the source video. Since we treat the camera
as a rigid body, C(t) ∈ SE(3) (rigid transformation group) and
Cr(t) ∈ SO(3) (rotation group). The need to find trajectories in
these non-Euclidean spaces complicates our algorithms.

4.3.1 Interactive camera path creation

Our system provides the user with tools for specifying camera paths
manually. This allows the user to use their judgement as to what
constitutes a good camera motion, and to control the tradeoff be-
tween motion quality and overlap.

Video Figure 13 shows an example. The user specifies a circular
arc path for the camera position, and specifies several keyframes
for the camera orientations that are then interpolated. Because the
source camera movement is not circular, orientation keyframing is
necessary to keep the statue in view throughout the video. Note that
this example is extremely challenging for structure-from-motion, as
there are few rigid scene features. The lack of trackable features on
the fountain yields a small amount of wobbling in our result.

4.3.2 Low-pass filtering

Traditional video stabilization seeks to remove high-frequency ar-
tifacts from the apparent camera motion. This is realized by apply-
ing a low-pass filter to the apparent camera motion, most typically
in 2D. In our approach, we are able to apply filtering to the cam-
era trajectory directly. This 3D filtering effectively simulates the
smoothing effect of mechanical stabilization devices used by pro-
fessionals, such as a steadicam. Filtering in the camera trajectory
space also has the advantages that it can consider all parameters of
the motion, and can provide distortion-free viewpoints even with
aggressive filtering.

Filtering the initial camera trajectory, Ĉ(t), is complicated by the
fact that it is in a non-Euclidean space. We perform the filtering
by treating its components separately. Cp(t) is filtered component-
wise using standard signal processing operations. The rotation com-
ponent Cr(t) is filtered using the method of Lee and Shin [2002].
Briefly, the method linearizes the rotation space by differentiating
it in time to obtain angular velocities. An adapted version of the fil-
ter kernel is applied at each time step by summing over the angular
velocities in the local coordinate frame of the time step.

Filtering does not explicitly consider the second goal of maximizing
coverage. However, in practice, the filtered path is usually close to
the source, so that the coverage loss is sufficiently small.

Like traditional 2D stabilization, our 3D filtering approach is ca-
pable of removing jitters in the camera motion. However, it can
provide more aggressive smoothing before distortion is introduced.
Also, because filtering is done on the camera position and orienta-
tion, our 3D approach more closely mimics a steadicam.

4.3.3 Path fitting

We observe that some of the most dramatic cinematographic effects
come from very deliberate camera movements where a complex
support (like a track or crane) is used to move along a very simple
path. To create such movements as a post-process, we provide a
tool where the user selects a simple motion model for the camera,
and the system computes a new camera motion with this model that
approximates the original video and optimizes the frame coverage.

We allow the user to select a motion model for both the camera po-
sition and orientation separately. At present, we support constant,
linear, and quadratic motion models, allowing the simulation of de-
vices such as a damped tripod (constant position, linear orientation)
or a rigid truck (linear position, constant orientation). We parame-
terize the orientation as a rotation vector (i.e., exponential coordi-
nates [Murray et al. 1994]), so that linear trajectories correspond to
(nearly) constant angular velocity motions, and the resulting equa-
tions have sufficiently simple forms for efficient computation. This
use of a single linearization of the rotation space for the entire mo-
tion may be problematic if we consider ranges greater than 180 de-
grees. However, such movements rarely occur in practice, and can
be handled by segmentation or a local linearization approach.

The system computes the new positional motion (Cp(t)) by using
least-squares fitting to source camera path Ĉp(t). Selection of the
rotational motion is complicated by two factors: first, we must con-
sider the frame overlap, and second, we must work in the non-linear
space of rotations. Note that we only need to consider frame over-
lap for rotations as small amounts of rotation can cause large dif-
ferences in overlap, whereas positional movements have smaller ef-
fects. To maximize overlap, we choose to minimize the distance be-
tween the apparent (projected) positions of the feature points, rather
than trying to match the initial rotations. That is, the rotational tra-
jectory Cr(t) is chosen to minimizeX

1≤t≤T

X
Pk∈F (t)

‖Pk − P̂k‖22, (4)

the sum over each frame (t) and each feature (Pk) of the image posi-
tion disparity of the feature in the result and source videos. Finding
Cr(t) requires solving a non-linear least-squares minimization of
Equation 4 over the motion parameters. Our system uses an imple-
mentation of the Levenberg-Marquardt algorithm6. The supplemen-
tal video gives several examples of our fitting approach.

5 Results

We show a number of results of our technique in the supplemental
video and the project web site. Each input video was shot hand-
held, with in-camera stabilization turned off. We also show com-
parisons to other methods, such as our implementation of 2D sta-
bilization [Matsushita et al. 2006], the 2D stabilization features in
iMovie ’097 and the free Deshaker8 plugin, and our own imple-
mentation of 3D stabilization via novel view interpolation [Buehler
et al. 2001a; Buehler et al. 2001b].

As the results show, our method is able to achieve more stable and
more directed camera motions than the 2D techniques while avoid-
ing the ghosting of moving scene objects found in previous 3D
techniques. Our method can also simulate a range of 3D camera
motions, from simple low-pass filtering to linear camera paths with
constant speed, depending on whether the user desires a more hand-
held or rail-mounted camera feel. Our results are only marginally
better than the 2D stabilization alternatives when the output cam-
era path is close to the original, such as camera paths created from
low-pass filtering. However, when we specify more significantly
different output paths such as linear or parabolic motions, the im-
provements over 2D stabilization are very clear.

One artifact that can be seen in our results is that we are some-
times not able to remove all vestiges of the original camera motion.
The most noticeable manifestation of this artifact is a subtle low-
frequency bouncing of scene geometry very near to the camera;

6http://www.ics.forth.gr/∼lourakis/levmar/
7http://www.apple.com/ilife/imovie/
8http://www.guthspot.se/video/deshaker.htm

this bouncing is a smoothed version of the original up-and-down
walking motion. We believe this bouncing arises for two reasons:
first, because of small inaccuracies in the 3D reconstruction that is
magnified for near-camera geometry, and second, because of a lack
of reconstructed scene points in those areas. We still consider these
results successful, however, since this walking motion can also be
seen in the results of other methods (and usually to a larger degree).

More extreme failures of our method can also happen, such as sud-
den glitches. In all the examples we have seen, these errors can be
traced to outliers in the 3D scene reconstruction that cause large,
transient warping errors.

One interesting application of our method is to stabilize videos cap-
tured by a camera with a “rolling shutter.” Many new consumer-
level cameras have a CMOS sensor which cannot be read in its en-
tirety at once, but rather in a rolling fashion from top to bottom.
The result is that each video frame is not captured at an instant
but rather across a short range of time. Researchers are attempt-
ing to incorporate rolling shutter effects into structure-from-motion
algorithms [Meingast et al. 2005]. We found that 2D stabilization
software fails dramatically on rolling shutter sequences, while our
method performs reasonably well if the SFM stage completes. We
include a comparison in the supplemental video.

Most of our results were computed with a default smoothness
weight of α = 20 (Section 4.1.6). However, this parameter has
a natural meaning: it represents the trade-off between following the
desired camera motion and avoiding distortion. Since our warping
scheme is fast (about 2fps), experimenting with this slider is easy,
and we expose it to the user and tweak it for a few examples. Finally,
the parameter N (Section 4.1.4) is the minimum number of frames
from which a 3D point must be visible to be included. The default
value N = 20 is almost always effective; however, there were a few
sequences with extremely slow-moving objects, for which longer
values of N were necessary to avoid reconstructing their geometry.

Our results were computed on a 64 × 36 grid. The time bottle-
neck of our method is the computation of structure-from-motion;
the Voodoo tracker can take many hours for a short sequence. How-
ever, there are commercial SFM alternatives that are much faster,
and researchers have even described real-time SFM systems [Nis-
ter 2003]. Once this stage is pre-computed, our warping technique
only takes about half a second per frame.

5.1 Evaluation

To informally evaluate the robustness of our method, we ran a com-
plete testing set of 32 short videos (5-20 seconds) that we captured
over two days. We found that 14 of these were completely success-
ful, 15 were moderately successful with some noticeable bouncing,
and 3 were not successful due to large 3D reconstruction errors.
Note that the structure-from-motion step was completely automatic
for all of our results; although the Voodoo system allows interactive
editing, we did not exploit this option.

Another evaluation question for our method is: how far can the out-
put camera diverge from the input before artifacts occur? Unfor-
tunately, the answer to this question is hard to quantify. The 3D
reconstruction is only defined up to a similarity transformation, and
therefore any distances between cameras are unit-less. There are six
degrees of freedom in which the camera can diverge from the input.
And, finally, the acceptable variation will depend on the nature of
the scene and the quality of the 3D reconstruction. In lieu of a quan-
titative answer, we provide several examples. In Figure 6 we show
a sequence of warps of a single input video frame at increasing dis-
tances from the input camera, along with their respective grids; for
small distances the warps look reasonable while for larger ones visi-

Figure 6: Each row shows a sequence of warps of a single input video frame created by pulling the camera away from its original location.
The top row shows the final cropped result; the middle shows the entire warp result; the bottom shows the corresponding grids and the points
that guide the warp. For small camera motions the warps look reasonable, but they become visibly distorted at larger camera displacements.

ble distortions appear. In the supplemental video we show an exam-
ple of spiraling the output camera away from its input for a single
video frame, while always looking at the centroid of the scene. Seen
in this way, the result is clearly not an accurate novel view interpola-
tion, even for small output camera displacements. However, if this
video is paused, for small displacements each output frame looks
entirely reasonable. This perceptual tolerance of inaccurate novel
view interpolation in the context of video stabilization is, perhaps,
the most surprising outcome of our technique.

Finally, it is worth noting that salience weighting (Section 4.1.3)
has a more subtle effect on the results than we originally expected.
We use it for all our examples, but in most cases the subtle im-
provement provided by salience weighting can only be noticed after
watching both results several times. Since our viewpoint shifts are
small, the local deformations induced by the sparse displacements
are smaller than for resizing applications [Avidan and Shamir 2007;
Wolf et al. 2007], and therefore a local deformation that is nearly
a similarity transformation can usually be found without exploiting
low-salience regions.

5.2 Limitations

A major limitation of our method compared to 2D video stabiliza-
tion is that it first requires running structure-from-motion. Though
SFM techniques have recently reached a high level of maturity, the
process is still more brittle and heavyweight than 2D tracking. Also,
SFM is limited to videos of scenes with some static regions; oth-
erwise, the motion of the camera is ambiguous. Finally, traditional
SFM requires constantly translating cameras, though there has been
research on techniques that switch automatically between full and
rotation-only motion models [Torr et al. 1999]; a full video stabi-
lization solution must contain this capability, in order to handle both
types of motions. Our method also depends on the quality of the 3D
scene reconstruction, and the distribution of the scene points across
each video frame.

Like most stabilization methods, our results exhibit a smaller field
of view than the input because of cropping; however, since our sta-
bilization is more aggressive, the loss of content might be even more
severe for our technique. Also, motion blur and other temporal arti-
facts become more obvious in a stabilized video. Our technique can
be combined with methods [Matsushita et al. 2006] that address
these specific issues.

5.3 Future work

Since our method allows rendering of any 3D camera motion that
is reasonably close to the original, one exciting area for future work
is to better support interactive output camera manipulation. Such
a system could support keyframing of camera motions, as well as
interactive exploration of the range of camera positions and orien-
tations that yield good results. Beyond keyframing, however, com-
bining our method with through-the-lens camera control [Gleicher
and Witkin 1992] could allow users to create camera paths more in-
tuitively by controlling the motion of individual objects rather than
the camera itself. A different direction would be to provide automa-
tion that selects appropriate camera motion models for various seg-
ments within each video shot, as introduced by Gleicher and Liu
for their 2D system [2008].

Finally, our notion of “perceptual plausibility” is ad hoc. Further
study may quantify the degree and types of distortions that may be
added to videos before they become objectionable.

6 Conclusion

In this paper we described a technique for simulating the appear-
ance of an idealized camera motion, such as a tracking shot, from
the input of a single hand-held video sequence. We build upon ex-
isting approaches to 3D stabilization, but are able to avoid ghosting
of moving scene objects by adding the constraint that each output
frame be rendered as a warp of a single input frame. The key insight
of our method is that for the purposes of video stabilization, small
shifts in viewpoint can be faked by a carefully constructed content-
preserving warp, even though the result is not physically accurate.
Human vision seems to be surprisingly tolerant of the inaccuracies
of content-preserving warps, and we believe this tolerance can be
exploited to solve a number of problems in computer graphics.

Acknowledgements

We would like to thank the authors of the Voodoo Camera Tracker,
Xue Bai and the other Adobe interns for appearing in several of our
videos, and funding from Adobe and NSF grant IIS-0416284.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-
as-possible shape interpolation. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, 157–164.

AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for content-
aware image resizing. ACM Transactions on Graphics 26, 3
(July), 10:1–10:9.

BEIER, T., AND NEELY, S. 1992. Feature-based image metamor-
phosis. In Computer Graphics (Proceedings of SIGGRAPH 92),
35–42.

BHAT, P., ZITNICK, C. L., SNAVELY, N., AGARWALA, A.,
AGRAWALA, M., COHEN, M., CURLESS, B., AND KANG,
S. B. 2007. Using photographs to enhance videos of a static
scene. In Rendering Techniques 2007: 18th Eurographics Work-
shop on Rendering, 327–338.

BOOKSTEIN, F. L. 1989. Principal warps: Thin-plate splines and
the decomposition of deformations. IEEE Trans. Pattern Anal.
Mach. Intell. 11, 6, 567–585.

BUEHLER, C., BOSSE, M., AND MCMILLAN, L. 2001. Non-
metric image-based rendering for video stabilization. In 2001
Conference on Computer Vision and Pattern Recognition (CVPR
2001), 609–614.

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S. J.,
AND COHEN, M. F. 2001. Unstructured lumigraph rendering.
In Proceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, 425–432.

CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN,
D. H., AND SZELISKI, R. 2002. Video matting of complex
scenes. ACM Transactions on Graphics 21, 3 (July), 243–248.

FITZGIBBON, A., WEXLER, Y., AND ZISSERMAN, A. 2005.
Image-based rendering using image-based priors. International
Journal of Computer Vision 63, 2 (July), 141–151.

GAL, R., SORKINE, O., AND COHEN-OR, D. 2006. Feature-
aware texturing. In Rendering Techniques 2006: 17th Euro-
graphics Workshop on Rendering, 297–304.

GLEICHER, M. L., AND LIU, F. 2008. Re-cinematography: Im-
proving the camerawork of casual video. ACM Transactions on
Multimed. 5, 1, 1–28.

GLEICHER, M., AND WITKIN, A. 1992. Through-the-lens camera
control. In Computer Graphics (Proceedings of SIGGRAPH 92),
331–340.

GOMES, J., DARSA, L., COSTA, B., AND VELHO, L. 1998. Warp-
ing and morphing of graphical objects. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA.

HARTLEY, R. I., AND ZISSERMAN, A. 2000. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press.

HECKBERT, P. S. 1989. Fundamentals of texture mapping and im-
age warping. Tech. Rep. UCB/CSD-89-516, EECS Department,
University of California, Berkeley, Jun.

HOIEM, D., EFROS, A. A., AND HEBERT, M. 2005. Automatic
photo pop-up. ACM Transactions on Graphics 24, 3 (Aug.),
577–584.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Transactions on
Graphics 24, 3 (Aug.), 1134–1141.

ITTI, L., KOCH, C., AND NIEBUR, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 20, 11 (Nov),
1254–1259.

KAWIN, B. 1992. How Movies Work. Univ. of California Press.

LEE, J., AND SHIN, S. Y. 2002. General construction of time-
domain filters for orientation data. IEEE Transactions on Visu-
alization and Computer Graphics 8, 2 (April–June), 119–128.

MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-
Y. 2006. Full-frame video stabilization with motion inpainting.
IEEE Transactions on Pattern Analysis and Machine Intelligence
28, 7, 1150–1163.

MEINGAST, M., GEYER, C., AND SASTRY, S. 2005. Geometric
models of rolling-shutter cameras. In 6th Int. workshop on Om-
nidirectional vision, Camera networks, and non-classical cam-
eras.

MORIMOTO, C., AND CHELLAPPA, R. 1997. Evaluation of im-
age stabilization algorithms. In DARPA Image Understanding
Workshop DARPA97, 295–302.

MURRAY, R. M., SASTRY, S. S., AND ZEXIANG, L. 1994. A
Mathematical Introduction to Robotic Manipulation. CRC Press,
Inc., Boca Raton, FL, USA.

NISTER, D. 2003. Preemptive RANSAC for live structure and
motion estimation. IEEE International Conference on Computer
Vision 1, 199–206.

RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2008. Im-
proved seam carving for video retargeting. ACM Transactions
on Graphics 27, 3 (Aug.), 16:1–16:9.

SCHAEFER, S., MCPHAIL, T., AND WARREN, J. 2006. Image
deformation using moving least squares. ACM Transactions on
Graphics 25, 3 (July), 533–540.

THORMÄHLEN, T., AND SEIDEL, H.-P. 2008. 3D-modeling by
ortho-image generation from image sequences. ACM Transac-
tions on Graphics 27, 3 (Aug.), 86:1–86:5.

TORR, P. H. S., FITZGIBBON, A. W., AND ZISSERMAN, A. 1999.
The problem of degeneracy in structure and motion recovery
from uncalibrated image sequences. International Journal of
Computer Vision 32, 1, 27–44.

TORRESANI, L., HERTZMANN, A., AND BREGLER, C. 2008.
Nonrigid structure-from-motion: Estimating shape and motion
with hierarchical priors. IEEE Transactions on Pattern Analysis
and Machine Intelligence 30, 5, 878–892.

VAN DEN HENGEL, A., DICK, A., THORMÄHLEN, T., WARD, B.,
AND TORR, P. H. S. 2007. Videotrace: Rapid interactive scene
modelling from video. ACM Transactions on Graphics 26, 3
(July), 86:1–86:5.

WANG, Y.-S., TAI, C.-L., SORKINE, O., AND LEE, T.-Y. 2008.
Optimized scale-and-stretch for image resizing. ACM Transac-
tions on Graphics 27, 5 (Dec.), 118:1–118:8.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2004. Space-
time video completion. In 2004 Conference on Computer Vision
and Pattern Recognition (CVPR 2004), 120–127.

WOLF, L., GUTTMANN, M., AND COHEN-OR, D. 2007. Non-
homogeneous content-driven video-retargeting. In IEEE Inter-
national Conference on Computer Vision, 1–6.

