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Figure 1: Stereoscopic image warping. Applying the same warping to the left and right image of a stereoscopic image often introduces
vertical disparities, as shown in (b). Our method enables existing image warping algorithms on stereoscopic images. (c) shows that our
warping result is free from vertical disparities. In this paper, we show stereoscopic images using the red-cyan anaglyph representation.

Abstract

Warping is one of the basic image processing techniques. Directly
applying existing monocular image warping techniques to stereo-
scopic images is problematic as it often introduces vertical dispar-
ities and damages the original disparity distribution. In this paper,
we show that these problems can be solved by appropriately warp-
ing both the disparity map and the two images of a stereoscopic im-
age. We accordingly develop a technique for extending existing im-
age warping algorithms to stereoscopic images. This technique di-
vides stereoscopic image warping into three steps. Our method first
applies the user-specified warping to one of the two images. Our
method then computes the target disparity map according to the user
specified warping. The target disparity map is optimized to pre-
serve the perceived 3D shape of image content after image warping.
Our method finally warps the other image using a spatially-varying
warping method guided by the target disparity map. Our experi-
ments show that our technique enables existing warping methods
to be effectively applied to stereoscopic images, ranging from para-
metric global warping to non-parametric spatially-varying warping.
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1 Introduction

These years we have been observing a tremendous resurgence of
interest in stereoscopic 3D. A variety of stereoscopic displays and
cameras are available. This brings in the demand for tools for au-
thoring and processing stereoscopic content. However, extending
existing tools to stereoscopic content is often non-trivial as stereo-
scopic content has an extra dimension of disparity that needs to be
correctly taken care of to deliver a pleasant viewing experience.

This paper focuses on stereoscopic image warping. Warping is one
of the basic image processing techniques and a wide range of image
warping methods have been developed [Wolberg 1990]. Applying
the same warping to the left and right image of a stereoscopic im-
age can transform them consistently; however this straightforward
solution is often problematic. Figure 1 shows a simple 2D image
transformation: rotation. If we rotate the left and right image with
the same rotation matrix, we introduce vertical disparities, which
often bring “3D fatigue” to viewers [Mendiburu 2009]. Moreover,
the original horizontal disparity distribution is changed.

This paper presents a technique that extends existing image warp-
ing algorithms to stereoscopic images. Our idea is to warp one
of the two images of a stereoscopic image using the user-specified
warping and warp the other to both follow the user-specified warp-
ing and meet the disparity requirement. Our technique consists
of three steps. We first apply the user-specified warping to one
of the two images. Without loss of generality, we always warp
the left image using the user-specified warping. We then compute
the target disparity map according to the user-specified warping.
We consider that a good target disparity map should be consistent
with the warping applied to the input image and maintain the per-
ceived roundness of the image objects. For example, if an object is
stretched in the image space, it should also be stretched in depth. If
the disparity remains the same, the warped image may suffer from
the cardboarding artifacts where the perceived object becomes flat-
tened [Mendiburu 2009]. Based on this observation, we develop an
automatic disparity mapping technique that scales the local dispar-
ity range according to how this region is warped. Thus, the target
disparity map is optimized to preserve the perceived 3D shape of
image content after warping.

http://doi.acm.org/10.1145/2366145.2366194
http://portal.acm.org/ft_gateway.cfm?id=2366194&type=pdf


(a) Input left image/disparity (b) Output left image/disparity (c) Scaling map (d) Warping result

Figure 2: Workflow of stereoscopic image warping. Our method pre-processes the input stereoscopic image and estimates a sparse set of
disparities (a). Our method applies the user-specified warping to the left image (b), computes a scaling map that captures the local image
stretching (c), and computes the target disparity map (imposed on the left warping result (b)). We use the warm and cool color to encode the
large and small scaling factor in (c), respectively. Our method finally warps the right image guided by the target disparity map (d).

The final step is to warp the right image guided by the target dis-
parity map. This is very similar to the warping step in previous
disparity editing research [Lang et al. 2010]. Our warping step,
however, is more challenging as the right image needs to be trans-
formed more drastically when the user-specified warping becomes
complex. Directly applying the spatially-varying mesh-based warp-
ing method from the previous research often cannot follow the user-
specified complex warping. We introduce a critical pre-warping
step that transforms the warping of the right image into the stan-
dard disparity-guided image warping problem which can then be
solved using the mesh-based warping method.

The main contribution of this paper is a technique that enables
existing monocular image warping methods for stereoscopic im-
ages. Our technique is simple and does not change existing warping
methods. It is applicable to a variety of image warping techniques,
ranging from parametric global warping to non-parametric warp-
ing. This paper provides a novel automatic method to compute a
good disparity map for the warped image as a key component of our
technique. We also introduce a critical pre-warping step to trans-
form the warping of the right image to follow the user-specified
complex warping into a disparity-guided warping problem.

2 Related Work

An overview on image warping techniques for 2D images is be-
yond the scope of this paper. Good surveys on image warping are
available [Wolberg 1990; Gomes et al. 1999; Szeliski 2010]. This
section focuses on stereoscopic image authoring and processing.

Disparity control is important for creating high-quality stereo-
scopic images and videos. The disparity needs to be properly dis-
tributed so that the scene content exists in the stereoscopic comfort
zone [Howard and Rogers 2002; Hoffman et al. 2008]. Algorithms
have been developed to determine the camera parameters [Jones
et al. 2001; Mueller et al. 2008; Koppal et al. 2011; Zilly et al.
2010] before capture. Recently, Heinzle et al. [2011] built a com-
putational stereo camera system that closes the control loop from
capture and analysis to automatic setting of these parameters. Os-
kam et al. [2011] developed a system for stereoscopic camera con-
trol in interactive 3D applications.

Disparity editing tools have also been developed for post-
production. Wang and Sawchuk [2008] presented a framework for
disparity editing that either directly works on the dense disparity
map or assumes known camera parameters and applies image-based
rendering methods to novel view synthesis. Lang et al. developed a
set of disparity mapping tools to control the disparity distribution in
a nonlinear and locally adaptive fashion [Lang et al. 2010; Smolic
et al. 2011]. Koppal et al. [2011] developed a viewer-centric editor
for stereoscopic movies that provides tools for both shot planning
and disparity editing. Didyk et al. [2011] introduced a perceptual
model of disparity for computer graphics and applied to a number

of applications. Disparity editing software is also available123. Our
work builds on these efforts, as the last step of our method even-
tually reduces the warping of the right image into the warping of a
pre-warped image, and then applies a similar mesh-based warping
method to Lang et al. [2010].

Some 2D image editing tools have been extended to stereoscopic
images. Wang et al. [2008a] presented an algorithm for simultane-
ous color and depth in-painting for stereoscopic images. Lo et al.
[2010] extended 2D object copy and paste to stereoscopic images.
Chang et al. [2011], Basha et al. [2011], and Lee et al. [2012]
developed methods for stereoscopic image retargeting. Liu et al.
[2011] developed a stereoscopic video stabilization technique.

Interesting methods have also been developed for 2D to 3D im-
age and video conversion [Moustakas et al. 2008; Knorr and Sikora
2007; Saxena et al. 2009; Guttmann et al. 2009]. These methods
recover depth from the input images and videos and generate stereo
content by image-based rendering methods or warping-based meth-
ods. Kim et al. [2011] recently presented a method to generate
stereoscopic views from light fields.

3 Stereoscopic Image Warping

Warping for monocular images can be defined as a function that
maps pixel positions from the input to the output. It only works on
pixel coordinates in 2D. A stereoscopic image has a third dimension
of disparity (depth). One straightforward solution to stereoscopic
image warping is to apply the same warping function to both the
left and right image. The disparity is implicitly determined. This
solution has an advantage that the left and right image are consis-
tently warped, but at the same time has two major limitations. First,
vertical disparities can be introduced as the corresponding feature
points in the left and right image have different coordinates and are
mapped to different locations although the same warping function
is used. Second, the disparity map is arbitrarily changed, damaging
critical depth perception for viewing.

Our technique allows existing image warping methods to be applied
to stereoscopic images. Instead of warping the left and right image
directly, our technique works on both the images and the dispar-
ity map to properly handle the disparity problems. As shown in
Figure 2, our technique for stereoscopic image warping consists of
three steps after a pre-processing step of disparity estimation.

1. Warp the left image using the user-specified warping method.

2. Compute the target disparity map.

3. Warp the right image using a spatially-varying warping
method guided by the disparity map.

1http://stereo.jpn.org/eng/stphmkr/
2http://www.thefoundry.co.uk/products/nuke/
3http://www.thefoundry.co.uk/products/ocula/
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Figure 3: Disparity and perceived object roundness. Left: an input
image with a ball. Middle: when the image size is doubled and the
disparity remains the same, the ball is perceived flattened. Right:
when the disparity range is doubled (the disparity is doubled in this
particular case), the roundness of the ball is roughly preserved.

Our technique pre-processes the input stereoscopic image to com-
pute its disparity map. Per-pixel disparities can be estimated us-
ing dense stereo matching, which is still a challenging computer
vision problem [Scharstein and Szeliski 2002; Hirschmuller and
Scharstein 2009]. Our method estimates and uses the disparities
of a sparse set of feature points using a SIFT-based method [Lowe
2004]. The problem with using the sparse set of feature correspon-
dences is the lack of feature points in textureless regions. Like
Lang et al. [2010], we estimate dense correspondences from the
downsampled version of the input images using an optical flow
method [Sun et al. 2010]. We then scale up the optical flow of
each pixel in the downsampled image as the disparity of the corre-
sponding pixel in the original image. Since optical flow is typically
not as accurate as SIFT feature matches, we weigh SIFT feature
matches more than optical flow, as described in Section 3.2. We re-
move outliers using the fundamental matrix constraint [Hartley and
Zisserman 2004].

Our method starts by applying the user-specified image warping
method to the left image Il and creating the warped left image
Îl. This step also applies the user-specified warping to the fea-
ture points in the left image and computes their output feature point
positions p̂l in Îl, which will be combined with the target dispari-
ties to compute the output feature positions p̂r in the right image.
Below we describe how our method computes the target disparities
as the second step and warps the right image as the third step.

3.1 Optimal Target Disparity Estimation

Warping a stereoscopic image requires to transform its 2D geomet-
ric shape and handle its disparity map. While it is typically clear
how a user wants to change the image shape, it is less clear for the
disparity map. A simple solution is to keep the original disparity
map, which often cannot work. As shown in Figure 3, when an
image is uniformly stretched, the ball will be perceived as flattened
relative to the original if the disparities remain the same. To main-
tain the roundness of the ball, the perceived depth range of the ball
needs to be stretched accordingly. For simple image transformation
like scaling, we could use the stereoscopic viewing geometry de-
scribed in [Guttmann et al. 2009; Oskam et al. 2011] to compute
the “correct” target disparity distribution for all the objects in the
image and to optimize the target disparity map that best maintains
the roundness of these objects. However, this requires the viewing
parameters, which are often unknown.

We seek a solution that works well with a wide variety of image
warpings and best preserves the perceived 3D shape of image con-
tent after warping. In general, the perceived depth does not linearly
depend on the depth. But when objects are close to the screen (with

small disparities) or the screen size is small, the perceived depth
nearly linearly depends on the disparity. These are two common
scenarios. To avoid the vergence-accommodation conflict, profes-
sional film-makers often give content of interest small disparities.
The increasing availability of small consumer stereoscopic devices
enables viewing stereoscopic content on small screens. Our idea
is then to estimate an optimal target disparity map where the local
disparity range changes according to the corresponding local image
warping. We estimate this optimal disparity map by minimizing
the following energy function that aims to match the scaling of the
disparity range with that of the local image warping.

∑

di

∑

dj∈N(di)

‖(d̂i − d̂j)− si(di − dj)‖2, (1)

where di and d̂i are the original disparity and target disparity of
feature (pixel) i, respectively. dj is the disparity of feature j in
N(di), the neighborhood of feature i. N(di) includes all the fea-
ture points that are within a small square centered at feature i (typ-
ically of size 30× 30). si is the disparity scaling coefficient, com-
puted according to how the neighborhood around feature i is scaled,
as described later on. This energy minimization problem alone is
under-determined and requires a boundary condition. To keep the
objects with small disparities in the comfort zone after warping, we
apply the boundary condition that the disparity with the minimal
magnitude is scaled by the corresponding s.

d̂min = sdmin, (2)

where dmin is the input disparity that has the minimal magnitude
and s is the scaling coefficient computed around this point. The
energy minimization problem together with this boundary condition
is solved using a sparse linear solver.

We now describe how the scaling factor si is computed. Our
method defines the neighborhood of a feature as a small square cen-
tered at the feature position (typically of size 3 × 3). Our method
computes the output positions of the four corner points using the
user-specified warping and estimates an optimal similarity transfor-
mation H̄s that best fits the mapping of the corner points.

H̄s = argmin
Hs

∑

c

‖Hsc− ĉ‖2, (3)

where Hs is a similarity transformation, c is one of the four corner
points, and ĉ is its corresponding output point after applying the
user-specified warping. The scaling factor of the best fitting simi-
larity transformation H̄s is used to set the scaling coefficient si. We
show an example of this scaling factor map in Figure 2 (c).

When an image is aggressively stretched, our method can create
excessive disparities, which can often bring 3D fatigue to view-
ers [Mendiburu 2009]. This problem can be solved by linearly
scaling the disparity map when the disparity range exceeds a pre-
defined threshold. More sophisticated disparity range mapping
methods can be further applied [Lang et al. 2010].

3.2 Disparity Guided Right Image Warping

Classic novel view synthesis methods can be used to create the out-
put right image using the input right image and the target dispar-
ity map. These methods, however, require a dense disparity map
and are sensitive to the disparity accuracy. Inspired by previous re-
search [Krähenbühl et al. 2009; Liu et al. 2009; Lang et al. 2010],
we use a spatially-varying warping method instead. Our method
divides the input right image into a m × n uniform grid mesh and
formulates the image warping problem as a mesh warping prob-
lem. The unknowns are the coordinates of mesh vertices. The mesh



(a) Left warping result (b) Right warping result without pre-warping (c) Right warping result with pre-warping (d) Stereo warping result

Figure 4: Disparity guided image warping. For this example, a perspective transformation is applied to the left image (a). The spatially
varying warping method guided by the disparity map alone cannot warp the right image to be consistent with the left image (b). (c) shows
that pre-warping the right image using the same warping applied to the left image solves this problem.

warping problem is defined as a linear least squares problem that
enforces the target disparities on the feature points and minimizes
visual distortion. We describe the energy terms below.

Disparity term. Our method encourages each feature point pair
(p̂l

i, p̂
r
i ) at the warped left and right image to be separated with

the target disparity vector d̂i, where d̂i = [d̂i 0]T . Because a fea-
ture point is not usually coincident with one of the mesh vertices,
our method finds the mesh cell that pr

i belongs to and represents pr
i

with a linear combination of the four vertices of the cell in the origi-
nal image. The linear combination coefficients are computed using
the inverse bilinear interpolation method [Heckbert 1989]. These
coefficients are then used to combine the vertices in the output im-
age to compute p̂r

i . We then define the disparity term as follows.

Ed =
∑

pri

κiwi(
∑

αj v̂i,j − p̂l
i − d̂i)

2, (4)

where v̂i,j are the vertices that enclose p̂r
i in the right warped im-

age, αj is the bilinear coefficient, and p̂l
i is the feature point’s po-

sition in the left warped image. κi is a parameter that weighs cor-
respondences from SIFT feature matching more than those from
optical flow as SIFT feature matching is more robust than optical
flow. Our system sets κi=1.0 for SIFT feature matches and 0.1 for
optical flow matches. wi is the saliency value of feature i, com-
puted using the graph-based saliency method [Harel et al. 2007].
Our method encourages salient feature points to meet the disparity
requirement more than those less salient ones.

Smoothness term. To avoid geometric distortion, our method en-
courages each cell to undergo a similarity transformation. A sim-
ilarity transformation that maps (x, y) to (u, v) must satisfy the
Cauchy-Riemann equations, namely ∂u

∂x
= ∂v

∂y
and ∂u

∂y
+ ∂v

∂x
= 0.

We use finite differences to compute the partial derivatives and ap-
ply this constraint to each vertex v̂i,j = (ui,j , vi,j) in each cell.

Es =
∑

v̂i,j

wi,j(ui+1,j − ui,j − vi,j+1 + vi,j)
2

+wi,j(ui,j+1 − ui,j + vi+1,j − vi,j)
2, (5)

where wi,j is the average saliency value of the cell whose top-left
corner is vertex v̂i,j .

We combine the above disparity term and smoothness term and ob-
tain the following linear least squares problem:

E = Es + λEd, (6)

where λ is weight with a default value 10. We solve this energy
minimization problem using a sparse linear solver.

3.2.1 Pre-warping

This approach can generate good results for simple stereoscopic
image warping. When the warping becomes complex and the fea-

ture points are not evenly distributed, the spatially-varying warp-
ing applied to the right image is often not consistent with the user-
specified warping applied to the left image. We solve this problem
by pre-warping the right image with the same user-specified warp-
ing applied to the left image. As the left and right image in a stereo-
scopic image are similar, this pre-warping result gives a good ap-
proximation. We then apply the spatially-varying warping upon the
pre-warping result and enforce the target disparities. Pre-warping
is critical for our method to handle complex warping. It effectively
reduces the warping of the right image into the warping of a pre-
warped image according to a disparity map, which is much easier
than directly warping the right image to follow the complex user-
specified warping. In addition, as the required amount of warping
is small after pre-warping, the fold-over artifacts rarely appear. In
implementation, the right image is only re-sampled once to create
the final result using texturing mapping after the final mesh is esti-
mated. Figure 4 shows an example where pre-warping significantly
improves the stereoscopic image warping result.

4 Results

This section shows a variety of stereoscopic image warping exam-
ples. All the stereoscopic images are rendered in red-cyan anaglyph
and better viewed electronically. The disparity can be perceived by
estimating the offset between the red and cyan channels. We also
provide the left and right view of each image in our project website4

for viewing on 3D displays to better assess our results.

4.1 Parametric warping

Similarity transformation. A similarity transformation allows
translation, rotation, and uniform scaling. For uniform scaling, our
method uniformly scales the disparity map and produces the same
result as simultaneously scaling the left and right image of an input
stereoscopic image. For rotation, the target disparity map from our
method is the same as the input disparity map. We can consider
that the scene rotates around the optical axis of the left camera.
Since the scene depth distribution does not change, the (horizontal)
disparity map remains the same (if the input image is taken by a
rectified stereo camera). Figure 6 shows an example of rotating an
input image with 30, 60, and 90 degrees. For a general similarity
transformation, our method uniformly scales the disparity map with
the scaling coefficient in the similarity transformation. We show a
similarity transformation result in Figure 5 (a).

Affine transformation. As the local image warping introduced by
an affine transformation is location-invariant, the disparity range
scaling coefficient computed by Equation 3 is the same across the
whole image. Figure 5 (b) shows an affine transformation example.

Perspective transformation. The local image warping introduced
by a perspective transformation is location-dependent. Figure 5 (c)

4http://graphics.cs.pdx.edu/project/stereo-warp



(a) Similarity transformation (b) Affine transformation (c) Perspective transformation (middle: scaling map)

Figure 5: Parametric stereoscopic image warping. In each example, the left is the input and the right is the output.

Figure 6: Rotation. The input image (top left) is rotated 30, 60,
and 90 degrees.

shows a scaling coefficient map of a perspective transformation.
This transformation significantly increases the perspective effect of
the scene by warping the image and increasing the depth range for
the image content near the viewer.

We show more complex parametric warping examples in Figure 7.

4.2 Non-parametric warping

Content-aware image retargeting. Content-aware image retarget-
ing changes the image size while preserving the important image
content [Wang et al. 2008b; Krähenbühl et al. 2009]. Figure 8 (b)
shows such a retargeting result where the whole image is squished
while the man is free from anisotropic distortion. The scaling map
from our method captures this non-uniform warping well, as shown
in (c). Our technique enables these retargeting techniques to be
applied to stereoscopic images. Our technique warps the right im-
age as shown in (d) and produces a retargetted stereoscopic image
shown in (e).

Object resizing. Mesh-based image warping methods, such as
feature-aware texturing [Gal et al. 2006], allow objects to be re-
sized differently in an image. Our method extends these methods to
stereoscopic images. Figure 8 (f) shows an example where the size
of the dog is decreased while the size of the flying disk is increased.

Image shape manipulation. Mesh-based image warping methods
can also be used to change the image shape while preserving im-
portant image content. Figure 8 (g) shows such an example where
the rectangular image is transformed into a fan while the important

objects, goats, are not distorted. Our method enables image shape
manipulation on stereoscopic images.

4.3 User study

We performed user studies to further evaluate our results. In the
user studies, stereoscopic images were displayed on an ASUS
VG236H 120 Hz 3D monitor with shuttered glasses. 11 users with
normal stereopsis perception participated in the studies and they
have no knowledge of the methods used to create the results. We
did not record their identities and took notes on their comments on
the images for analysis. The first study was to verify whether view-
ers can easily perceive the roundness distortion illustrated in Fig-
ure 3. We tested on four images. For each image, we scale an input
stereoscopic image and create two results using the input disparity
map and the disparity map estimated using our method described in
Section 3.1, respectively. Two images are scaled to half of the orig-
inal size and the other two are scaled to double of the original size.
In each trial, we put the input image in the middle, the two scaled
results to the left and right of the input image. The placement of the
images is randomized. We asked the participants “which image has
an object whose shape is more similar to the original one, left or
right?”. On average participants correctly identified the roundness
distortion at a rate of 84.09%.

The second study directly evaluated our warping results. This study
included 30 results that cover all the warping cases discussed in
Section 4.1 and 4.2. To acquaint the participant with the intended
warping, we first showed the left image and its regular 2D warping
result side by side. We then showed the input stereoscopic image
and our warping result side by side. We asked each participant
to rate the viewing experience from 1 to 3, with 3 being the best,
according to the following two questions.

1. Can you comfortably obtain the stereopsis perception?

2. Do you like the warping result?

On average, participants rated our results with 2.63/3.0 in the com-
fort test, which shows that participants can comfortably view our
warping results and obtain the stereopsis perception. Participants
rated our results 2.65/3.0 in the second test.

4.4 Discussions

Our method produces physically plausible disparity maps for some
special cases, such as uniform scaling and rotation. For more gen-
eral warping, the disparity map in a warped stereoscopic image is
often not geometrically valid. This is similar to the warping of
image shape, which is often not physically plausible. Our exper-
iments, however, show that viewers can still have robust depth per-
ception. This is consistent with research in stereopsis perception as
well as practice in stereoscopic photography and cinematography.
An important reason is that other depth cues, such as perspective,
relative object size, and occlusion, contribute to the human depth



Figure 7: More parametric stereoscopic image warping. In each example, the left is the input and the right is the output.

perception [Lang et al. 2010; Mendiburu 2009; Cutting and Vish-
ton 1995].

One problem with our results is that the boundary of the right im-
age is often not consistent with the left image. We need to slightly
crop off some boundaries to create a final stereoscopic image. This
is generally a difficult problem to solve especially when an aggres-
sive warping is applied by users. Enforcing the boundary constraint
often conflicts with the disparity constraints.

Our experiments also reveal that when a complex warping is ap-
plied and a big region in an image does not have feature points, the
right image cannot be consistently warped as the left image. Our
pre-warping scheme can significantly improve the result; however,
occasionally, our result is still not satisfactory. Our method also
depends on the feature matching accuracy. A better disparity map
will help solve this problem.

Our method tries to match the perceived 3D object size change with
the size change in 2D. Our experiments show that our method pro-
duces disparity maps that generally lead to comfortable 3D viewing
experience. Meanwhile, we emphasize that disparity composition,
like image warping, often involves artistic decisions. Experienced
users can start from our disparity map and deliberately edit it with
the support of disparity mapping tools, such as [Lang et al. 2010].

Finally, we pre-process a stereoscopic image to estimate the sparse
disparity map. The cost of transforming the left image using a user-
specified warping is independent of our method. The cost for target
disparity map estimation depends on the number of feature points.
For an image with around 2000 feature points, our method achieves
around 60 fps on a desktop machine with Intel Duo Core 3.06GHz
CPU and 4GB memory. The warping cost for the right image de-
pends on the mesh size. For a mesh with size 64× 36, our method
achieves 10 fps.

5 Conclusion

In this paper, we present a technique for extending existing image
warping algorithms to stereoscopic images. Our technique consists
of three steps. We first warp the left image using the user-specified
warping, then compute an optimal target disparity map, and finally
warp the right image using a spatially-varying mesh-based warp-
ing technique guided by the target disparity map. Our experiments
demonstrate a variety of popular image warping methods enabled
by our technique. In the future, we will extend our method to stereo-
scopic video warping.
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