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(a) DMVN using a mouse (b) DMVN using a finger
Figure 1. Direct Manipulation Video Navigation (DMVN) using a mouse vs. a finger. With DMVN, a user can directly drag the car along its trajectory
to the target location using a mouse as shown in (a). While a touch screen can fit DMVN naturally and enhance the directness, the fat finger problem
with touch screens can make dragging the car difficult.

ABSTRACT
Direct Manipulation Video Navigation (DMVN) systems al-
low a user to directly drag an object of interest along its
motion trajectory and have been shown effective for space-
centric video browsing tasks. This paper designs touch-based
interface techniques to support DMVN on touchscreen de-
vices. While touch screens can suit DMVN systems naturally
and enhance the directness during video navigation, the fat
finger problems, such as precise selection and occlusion han-
dling, must be properly addressed. In this paper, we discuss
the effect of the fat finger problems on DMVN and develop
three touch-based object dragging techniques for DMVN on
touch screens, namely Offset Drag, Window Drag, and Drag
Anywhere. We conduct user studies to evaluate our tech-
niques as well as two baseline solutions on a smartphone and
a desktop touch screen. Our studies show that two of our
techniques can support DMVN on touch screen devices well
and perform better than the baseline solutions.
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INTRODUCTION
Capturing, sharing, and watching videos have now become
common daily activities. To better support video navigation
and browsing tasks, a variety of novel video browsing tech-
nologies have been developed [19, 21, 4, 15]. Among them,
Direct Manipulation Video Navigation (DMVN) systems al-
low a user to navigate a video by directly dragging an object
of interest along its motion trajectory, as shown in Figure 1
(a), and have been shown well suited for space-centric video
navigation tasks [5, 7, 11, 12, 13, 14, 17].

Meanwhile, many of video-capable devices are now equipped
with a touch screen, such as smart phones and tablets. DMVN
systems can suit these touch-screen devices naturally. As is
well known, touch-based interfaces allow a user to interact
with an object directly on the screen without any extra input
devices and thus reduce the gap between the user input and
the system output [22]. For a DMVN system, allowing a user
to directly interact with the object of interest can remove the
need to use an extra input device like a mouse and further
enhance the directness of the video navigation experience.

However, proper touch-based interfaces must be designed for
DMVN. The fat finger problem [25] can severely compro-
mise the performance of DMVN on touch screens, as shown
in Figure 1 (b). When a user’s finger occludes the content
behind the finger, it becomes difficult for a user to precisely
select an object of interest. A particularly unique challenge
with a DMVN system is that the occlusion problem will pre-
vent the user from receiving the feedback from the DMVN
system such as the object location and contextual trajectory
information, making it difficult to drag the object along its
trajectory and to the desired location. To our best knowledge,

1http://graphics.cs.pdx.edu/project/TouchDMVN/



while various DMVN systems have been developed and some
were experimented on touchscreen devices or provided an im-
plementation for touchscreen devices, no touch-based inter-
faces, which are intended for DMVN systems and handle the
fat finger problem, have been reported.

In this paper, we report our designs of touch-based interfaces
for DMVN systems. We build upon previous research on pre-
cise selection techniques for touchscreen, such as Shift [29]
and Offset Cursor [20, 23], and extend them to handle ob-
ject manipulation in a DMVN system on touchscreen devices.
Specifically, we design three object dragging techniques for
touch-based DMVN interaction, including Offset Drag, Win-
dow Drag, and Drag Anywhere, which allow a user to drag
an object of interest along its motion trajectory without suf-
fering from the fat finger problem. We evaluate these tech-
niques together with two baseline solutions in user studies on
both a large desktop touch screen and a small touch screen
on an Android smartphone. Our studies show that two of the
three touch-based interfaces that we developed enable signifi-
cantly better direct manipulation-based video navigation than
the baseline solutions.

DMVN on Touch Screen
In our work, we implemented a standard DMVN system sim-
ilar to what was discussed in [11]. To support direct object
manipulation, we first used computer vision techniques, in-
cluding optical flow [28] and feature tracking [24], to estimate
the motion trajectories of the objects in an input video. After
a user selects an object to manipulate, the object’s trajectory
is rendered on the screen to help a user drag the object spa-
tially. When a user drags her finger on the screen, the system
calculates and navigates to the video frame where the object is
spatio-temporally closest to the user’s pointer location. Thus
the object of interest always follows the user’s pointer, creat-
ing a feeling of direct manipulation during video navigation.
More detail about the DMVN system can be found in [11].

DMVN consists of two steps: object selection and object
dragging. On touchscreen devices, both steps can be difficult
due to the fat finger problem, which happens when the finger
is bigger than the object [25]. This leads to the precision and
occlusion problem, compromising the user experience in ma-
nipulating a video on a touch screen. Existing methods for
precise object selection on touch screens can be used to solve
the problem of object selection [20, 23, 1, 3, 18, 29]. They,
however, cannot handle object dragging. Below we discuss
the effect of the precision and occlusion problem on DMVN,
focusing on object dragging.

Precision
A large corpus of touch-based interface techniques have been
developed to facilitate the target acquisition task on touch
screens [1, 3, 18, 29]. Different from regular target selec-
tion tasks, interacting with a DMVN system requires a user
to interact with the motion trajectory. In a DMVN system,
the original finger contact point on the screen is mapped to
the closest point on the trajectory, progressing the video to
the corresponding frame in time. This mapping technique is
similar to the Bubble Cursor method [8] where the nearest
target around the cursor area is acquired.

(a) dragging (b) jumping

Figure 2. The effect of the fat finger problem on DMVN. DMVN maps
the finger touch point to its spatio-temporally nearest point. This works
well for a simple trajectory as shown in (a). For a complex trajectory,
the inaccuracy in dragging objects caused by the fat finger problem can
make DMVN map the finger touch points to different segments of the
trajectory and results in jumping.

Within this context, even if the finger contact point can be am-
biguous, a user can easily drag the object along its motion tra-
jectory without worrying about inaccurate selection. Figure 2
(a) illustrates this idea, even though it is difficult to select a
specific frame with his finger, the object can still be dragged
correctly until it reaches the desired frame. If the trajectory is
simple enough, a user can also move her finger away from the
object during dragging and still maintain a continuous video
navigation while being able to observe the occluded target.
This behavior is similar to MobileZoomSlider [10] which al-
lows a user to move the cursor away to adjust the dragging
speed. When the trajectory is complicated, such as when it
forms a loop or an intersection, the inexact selection point of
the finger may make the system accidentally map the touch
point to a wrong trajectory segment, as shown in Figure 2 (b).
While this problem can be alleviated with the temporal con-
tinuity constraint discussed in [11, 5], the same problem will
still occur for some complicated trajectories.

Occlusion
Compared to the precision selection issue, occlusion from the
fat finger problem downgrades the performance of DMVN
on touchscreen devices even more. For space-centric video
browsing tasks, a user needs to navigate to a frame with some
specific visual properties. This requires a user to pay atten-
tion to not only the object that she is dragging, but also the
motion trajectory and the video content as well. Due to oc-
clusion, it is difficult for a user to make micro-adjustment
for frame-accurate video navigation. When the local trajec-
tory segment is occluded by the finger, in combination of its
complex shape, and the ambiguity in selection points as men-
tioned above, the user is more likely to make an unexpected
jump between nearby trajectory segments. Finally, the oc-
cluded video content prevents a user from observing and ap-
preciating the video while navigating, compromising the user
experience of DMVN.

RELATED WORK
Our work is directly related to research on direct manipula-
tion video navigation and research to address the fat finger
problem on touch screens.

Direct Manipulation Video Navigation
Direct manipulation video navigation systems allows for ef-
fective space-centric video browsing [5, 7, 11, 12, 13, 14,
17]. These systems estimate motion information using com-
puter vision algorithms, such as optical flow [28], visualize
the motion trajectory in the video display window, and allow



a user to drag an object of interest along its motion trajec-
tory. Among existing DMVN systems, PocketDragon from
Karrer et al. was developed to run on Apple iPhone with
multi-touch capability [12]. PocketDragon allows a user to
navigate an object of interest by directly dragging the object
using a finger directly on the screen. To address the occlu-
sion problem when selecting the object of interest to drag,
PocketDragon allows a user to pick the most dominant mo-
tion trajectory around the finger contact point. While this
system provides a good attempt at developing a DMVN sys-
tem for touchscreen mobile devices, it did not address the
fat finger problem with touch screen. Recently, Karrer et al.
conducted a user study to evaluate their DMVN system in
handling spatial-temporal ambiguity problem using a touch
screen [13]. Their system does not address the fat finger
problem either. Instead, a stylus was provided for a user to
manipulate an object of interest.

Precise Selection on Touch Screens
Previous work have been done to improve the selection pre-
cision on touch screen devices. Zooming techniques mag-
nify the selection area when an object is very small [1, 3, 18]
and can effectively improve the selection precision. These
techniques, however, may not suit DMVN well. If we zoom
back after selection, the fat finger problem affects dragging.
If we do not zoom back and drag while scrolling/panning the
screen, video content will move outside the screen. If we
use fisheye view warping, the trajectory will be distorted and
mislead dragging.

The control-display ratio can also be manipulated to improve
the selection precision [1, 3]. These techniques allow a user
to modify the control-display ratio - a mapping between the
input movement and the system pointer movement. When the
control-display ratio is smaller than 1, the pointer will move
slower than the input finger. This has two advantages. First,
because the pointer moves slower than the finger, the user fin-
ger does not occlude the pointer anymore. Second, the slow
movement of the pointer allows a user to select a small object
more accurately. Although these techniques have been shown
effective for small target selection [1, 3], they were not de-
signed for video object dragging in a DMVN system. These
techniques either require additional widget manipulation, or
need a user to focus on controlling the system pointer to ac-
quire a fix target, which can be inconvenient for object drag-
ging. Our Drag Anywhere technique is inspired by the advan-
tages of the CD-ratio manipulation techniques. We map the
finger dragging direction and acceleration to the arc-length
distance of the motion trajectory. In this way, a user can con-
trol the object from anywhere on the screen by dragging her
finger according to the motion trajectory.

Occlusion Handling on Touchscreen Devices
Offset cursor by [20, 23] addresses the occlusion problem by
allowing a user to select an object without having to position
the finger on top of it. When a user touches the interaction
screen, this technique displays a cursor on top of the user fin-
ger. The orientation and distance between the cursor and the
finger contact point are fixed. By maintaining contact with
the touch screen, a user can navigate the cursor to the desired

location and select the target using the take-off technique: se-
lection is made after lifting the finger from the screen. Offset
cursor cannot be directly applied to the task of dragging an
object along its motion trajectory as the orientation and the
offset distance cannot be dynamically adjusted. This is prob-
lematic for DMVN as a fixed orientation can make the finger
occlude the motion trajectory when the cursor orientation is
similar to the local motion trajectory. We extended the Offset
Cursor technique and develop an Offset Drag technique for
touch-based DMVN. Offset Drag allows a user to adjust the
orientation and length of the offset cursor dynamically.

Shift addresses the occlusion problem by displaying the con-
tent occluded by the finger in a callout window in a non-
occluded area [29]. A dash-line connecting the user finger
to the center of the window indicates the current pointer loca-
tion. A user can observe the occluded content in this window
and adjust the selection. Shift also uses the take-off technique
to trigger selection. It also determines whether it is necessary
to escalate the window, allowing a user to use the direct touch
technique for a large object. While Shift works well for object
selection, it sometimes cannot support object dragging well.
During dragging, a user needs to constantly receive feedback
from the video content and the motion trajectory to decide
where to go next. When the callout window size is fixed,
it may not cover enough feedback information for a user to
maintain a fluent dragging experience; otherwise a user might
have to shift her/his attention from the callout window and the
real motion trajectory, causing unnecessary re-orientation ef-
fort. Simply increasing the size of the window does not help
but distracts the user even more. We design a Window Drag
technique that changes the callout window size adaptively ac-
cording to the current trajectory segment.

Specialized Hardware
Hardware-specific techniques have also been designed to ad-
dress the finger occlusion problem. Back-of-device interac-
tion techniques allow a user to interact with the content on
the back of the device, avoiding occlusion completely [27, 31,
32, 2, 9]. A variety of devices have been explored. Wigdor et
al. designed an interactive touch table that can receive touch
inputs from both top and bottom surface [31]. LucidTouch
and NanoTouch [30, 2] allow back-of-device interaction for
tablet-size and very small-size devices. Back-of-device in-
teraction has also been seen in commercial product such as
Sony PSP Vita which features a rear touch pad. The recent
developed NailDisplay [26] can show the visual content un-
derneath the finger on a small display mounted on the finger.
Although these techniques can handle the fat finger problem,
they all require specific hardware support. This work ad-
dresses the fat finger problem in object dragging during video
navigation on general-purpose touch screens.

DESIGN
DMVN consists of two steps: object selection and object
dragging. We can use any of the above mentioned state-of-
the-art precise selection techniques for the object selection
step in DMVN. Thus, we assume that an object of interest has
already been selected for manipulation. In this paper, we fo-
cus on object dragging and design Offset Drag, Window Drag,
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Figure 3. Offset Drag for DMVN. By default, Offset Drag works like direct dragging (a). To set up a cursor or change the cursor orientation/length, a
user keeps the primary finger touching the object, and uses the secondary finger to press a button to trigger the cursor (b). By holding the secondary
finger on the button on the screen, the user can move the primary finger away from the object to define the offset distance (c) and orientation (d). Once
the cursor is defined, the user lifts the second finger and uses the primary finger to drag the object using the cursor (e).

and Drag Anywhere for non-occluding direct object manipu-
lation/dragging for DMVN.

Design 1: Offset Drag
We first implemented the basic Offset Cursor technique [20,
23] to support our touch-based DMVN system. When a user
touches the screen, we provide a cursor at a fixed distance
above the finger’s contact point. When triggered, the system
takes the offset cursor location as input to find the next frame
in the video. In this way, we allow dragging while a user
maintains contact with the screen and moves the offset cur-
sor along the motion trajectory. Take-off selection technique
was not implemented since we did not need to perform object
selection during dragging.

Offset Cursor is good at handling the occlusion problem be-
cause the user’s finger does not need to be positioned on top
of the object. However, this technique still has several lim-
itations when it is applied to touch-based DMVN. First, as
discussed in [29], a problem with the Offset Cursor technique
is that the user is unable to aim for the actual target when
they first interact with the device. When the offset cursor is
triggered, it will point to the location above the user’s finger,
instead of the actual object location. This is problematic for
DMVN when the motion trajectory is cluttered. If the cursor
is triggered on a different trajectory segment nearby, the ob-
ject may jump to that part, causing an unexpected scene jump.
Second, for DMVN, precise dragging is not always required.
Then the effort to trigger the offset cursor can delay navi-
gation. Third, Offset Cursor does not allow a user to access
some parts of the screen like the edges as discussed in in [29].
This is because the orientation and length of the offset cursor
is fixed. As a result, edge and corner areas become difficult
to reach. Moreover, when the cursor orientation is similar to
the neighboring motion trajectory segment, only a very short
segment ahead of the current position is shown and the rest is
occluded by the finger, as shown in Figure 4 (b). This makes
it difficult for a user to drag quickly.

To address these issues, we designed an extension of Offset
Cursor that satisfies the following requirements,

1. A user should be able to offset the finger selection point to
avoid occluding the object of interest.

2. A user should be able to adjust the orientation and length
of the offset pointer dynamically.

3. A user needs to trigger the offset cursor only when needed.

(a) Edge problem (b) Occlusion

Figure 4. Problem with Offset Cursor in a DMVN system.

We followed the design guidelines of Benko et al. [3] to de-
sign a bi-manual interaction technique for dragging object in
DMVN using an offset cursor. We call it Offset Drag. Off-
set Drag allows a user to trigger the offset cursor only when
needed. A user can also interactively adjust the offset cursor’s
orientation and length during video navigation to allow access
to all screen regions and avoid occlusion with the neighboring
trajectory segment.

Compared with Offset Cursor, Offset Drag has an extra trig-
ger button, located at the bottom left corner of the screen, for
a user to trigger and adjust the cursor. With Offset Drag, a
user’s primary finger is used as the main finger for dragging.
By default, Offset Drag works like direct dragging. While
the primary finger is on contact with the object, placing the
secondary finger onto the trigger button will trigger a cursor.
By holding the secondary finger on the screen, moving the
primary finger away from the object will not move the object.
Instead, by moving it away from the object, a user will be
able to define the offset distance and orientation as illustrated
in Figure 3. The cursor is always located at the current ob-
ject location, and the system renders an arrow to depict the
current offset distance. Offset Cursor rendered the cursor as a
crosshair. We used an arrow instead to better depict the orien-
tation of the cursor. To continue dragging, a user lifts her sec-
ondary finger from the screen. The dragging movement now
will be offset with the newly defined offset cursor. Then Off-
set Drag works in the same way as Offset Cursor. Similarly,
a user can dynamically adjust the cursor during navigation.

Design 2: Window Drag
Our next technique, Window Drag, is inspired by the Shift
technique [29], which places a callout window near the finger



(a) Default size (b) New size (c) Default size

Figure 5. Adaptive window size for Window Drag. Two windows with the
same size can cover different trajectory lengths. The trajectory segment
in (a) is shorter than (c). We adaptively change the window size to main-
tain a consistent amount of information in the window. For example, we
increase the window size from (a) to (b) so more information about the
trajectory can be included.

to show a copy of the occluded area underneath the finger.
The position of the callout window is calculated to prevent
clipping by the screen edges. When a user places a finger on
the touch screen, a callout window appears on top of the fin-
ger, showing the occluded area under the finger. A crosshair
in the center of the window represents the current selection
point. The window is displayed as long as a user finger is in
contact with the screen. It follows the user’s finger to pro-
vide additional support for the occluded content. With this
window, a user is able to avoid the occlusion problem by ob-
serving the content underneath and adjust the current selec-
tion during navigation. When a user releases the finger from
the touch screen, the window disappears. Note that we made
the content inside the callout window fully opaque so that it
does not blend into the background and distract the user.

By default, we picked the window size to be slightly larger
than the average fingertip size so that it can cover a part of the
object and the motion trajectory segment around the object at
the current position. For example, the default window size
for Google Nexus 4 is 20mm× 20mm. The user only needs
to observe a part of the motion trajectory around the object to
decide where to move next.

Our pilot study showed that this technique allows a user to
navigate along the motion trajectory very accurately. How-
ever, Shift was originally designed to address the occlusion
problem for target acquisition, where the fixed target is usu-
ally the main concern of a user. In a DMVN system, in order
to drag an object along its motion trajectory, a user needs to
pay attention to the shape of the trajectory to follow it. While
Shift can display a part of the trajectory in its callout window,
due to the fixed window size, there is no guarantee that it
can display a consistent amount of motion trajectory segment
for a user to navigate the video. Figure 5 shows an exam-
ple where two trajectory segments with different length are
displayed in the same-size windows. Increasing the window
size can increase the amount of motion trajectory inside the
window and thus reduce the reorientation cost. But a large
window is distracting as it occludes too much video content.

We developed a Window Drag technique to address this prob-
lem by adaptively changing the window size based on the lo-
cal motion trajectory information. Window Drag finds such a
callout window that contains a trajectory segment that covers
at least 20 frames. If the default window does not cover such
a trajectory segment, we expand the window to cover it.

(a) Start (b) End

Figure 6. Drag Anywhere for DMVN. Drag Anywhere allows a user to
drag on any location and maps the user drag to the object trajectory.

Design 3: Drag Anywhere
When interacting with a touchscreen device, there are two dif-
ferent mapping modes: direct and indirect [16]. Direct map-
ping requires the pointer to be positioned directly under the
finger, which leads to the fat finger problem. The indirect
mapping, in contrast, does not require the pointer to be under
the finger. Although not as intuitive as direct mapping, in-
direct touch clearly does not suffer from the occlusion prob-
lem. Previous research on touchscreen interaction [1, 3, 6]
has already explored indirect mapping interaction techniques
that adjust the control-display ratio to increase or decrease the
pointer speed. This has been shown to improve precision in
target acquisition tasks.

Inspired by Moscovich and Hughes [16], we designed an
indirect mapping navigation technique for our touch-based
DMVN system. Moscovich and Hughes argued that design-
ing indirect mapping techniques needs to ensure the percep-
tuomotor compatibility of the interaction task, which is the
degree to which the user’s physical actions are similar to the
system’s visual feedback. Interestingly, this is also the case
for designing the DMVN interface. As Dragicevic et al. men-
tioned, the directness of a DMVN interface also depends on
the perceptuomotor compatibility [5].

Thus, when a user drags on the touch screen, we map the
finger dragging motion to the object trajectory, as shown in
Figure 6. Specifically, we compare the finger dragging di-
rection to the tangent of the motion trajectory at the object’s
position to determine whether the object should be moving
forward or backward in time. Then we map the dragging dis-
tance to the arc-length of the trajectory to determine how far
the object should move along the trajectory. By using the ori-
entation and distance as the mapping parameters, we ensure
that the dragging movement closely matches the object move-
ment, thus resulting in a smooth dragging experience without
having to put the finger on top of the object.

One drawback of this technique is that a user is unable to
quickly skim through the video, a common task in video
browsing. This is because the object moves exactly the same
distance as the user pointer. We overcome this problem by
adaptively adjusting the CD ratio between the finger and the
object of interest. This is similar to the classic “mouse ac-
celeration” interface seen in Apple Mac Operating System.
When a user moves the finger more quickly, the dragging
distance is made larger so that the object can travel quicker
along the motion trajectory. Our system keeps track of the
finger dragging speed and uses this speed to compute a mag-
nification coefficient to modulate the dragging distance. Our



Figure 7. Sample frames of testing videos with trajectories.

system uses the following function to compute the magnifica-
tion coefficient

m =
√
s ∗ a+ 1, (1)

where m is the magnification coefficient for the dragging dis-
tance, s is the dragging speed, and a is a parameter that be
adjusted by a user to control the scaling factor. Our pilot
study shows that for the smartphone (Google Nexus 4) and
the desktop touch-screen, good values for a are 0.25 and 6.67
respectively.

EXPERIMENTAL EVALUATION
We conducted a user study to evaluate our touch-based
DMVN techniques: Offset Drag, Window Drag, and Drag
Anywhere on both a large and small touch screen. Our study
asked participants to perform spatial video navigation tasks:
locate a frame with some specific visual event in a video.

For the baseline techniques, we used the basic DMVN sys-
tem and the standard timeline slider. For simplicity, we use
DMVN and Timeline to denote these two techniques, re-
spectively. DMVN interprets the finger contact point as the
pointer location and thus provides no additional support to
handle the fat finger problem. Timeline is similar to the
timeline interface used in YouTube Video Player on iPhone.
It allows a user to offset the cursor on the timeline to ad-
dress the occlusion problem. We want to understand the per-
formance of DMVN-based techniques against Timeline for
space-centric video navigation tasks on touchscreen devices.
Early studies have shown that DMVN performs better than
the standard timeline slider for space-centric tasks using a
mouse or stylus as input; however, no study between them
has been reported that directly uses a finger as input on touch-
screen devices.

Note, the first step of direct manipulation video navigation is
to select an object of interest to manipulate. As precise ob-
ject selection has been well studied in previous research, we
focus on dynamic object dragging during video navigation.
Accordingly, an object of interest has already been selected
for a user to manipulate beforehand. In the study, we only
show the trajectory of the selected object and map the pointer
movement to the nearest position on the trajectory.

We hypothesized that:

1. Techniques that can handle the occlusion problem (Time-
line, Offset Drag, Window Drag, and Drag Anywhere)
would outperform the basic DMVN for small-size objects.

2. The basic DMVN system would perform similarly to the
DMVN systems supported by fat finger problem-handling
techniques (Offset Drag, Window Drag, and Drag Any-
where) for big objects.

Screen Car videos (V1, V2, V3) Ball videos(V4, V5, V6)
Small 1.4× 3.2 5.8× 12.8 9.7× 21.3 1.5× 1.5 9.6× 9.6 15.5× 15.5
Large 3.1× 7.3 9.4× 20.8 18.7× 41.6 2.5× 2.5 11.3× 11.3 50.2× 50.2

Table 1. Summary of object sizes (in mm) in the testing videos.

3. Enhanced DMVN techniques (Offset Drag, Window Drag,
and Drag Anywhere) will be faster for dragging than Time-
line for space-centric tasks on touch screen devices.

Apparatus
We used a large touchscreen display and a smartphone
equipped with a touch screen. For the large display, we used
a 23-inch Acer T232HL bmidz capacitive touch screen mon-
itor. The monitor has a 1920 × 1080 resolution (95.8 pixels
per inch). The size of each pixel is about 0.26 mm. We take
a regular finger size to be 15 mm wide [3], which is about
58 pixels on this monitor. For the small display, we used
a Google Nexus 4 smartphone running Android 4.3.3. This
smartphone comes with a capacitive touch screen. Its active
display area resolution is 1280 × 768 (320 pixels per inch).
The size of a pixel is roughly 0.08 mm. The width of a regular
finger on this small display is about 188 pixels.

Task and Stimuli
For each touch screen, we ask a participant to perform six
tasks, each involving a different video. We then have six
videos for each display. These six videos cover three object
sizes (small, medium, large) and two types of scene content
(parking lot and pool ball). The object motion for the parking
lot videos is complex and that for the ball videos is simple,
as shown in Figure 7. Since the two touch screens have dif-
ferent resolutions, the six videos used for the big screen are
different from those for the small screen. We report the ob-
ject sizes of these videos for each screen in Table 1. The
videos range from 305 to 900 frames (10.2 to 30.0 seconds)
and were shown at a display window of 1280× 768 pixels on
both screens. In each task, a participant was asked to use each
of the five techniques to navigate a given video and locate a
target frame with specific visual content as fast and as accu-
rate as possible. Like the previous research [5], the starting
frame in each task is the first frame.

Experimental Setup
There were 15 participants in our study, including 6 female
and 9 male current or former students in our university. These
participants come from a range of academic departments, in-
cluding Computer Science, Business, Arts, Architecture, etc.
The ages of these participants range from 20 to 30 years.
All of them were familiar with touchscreen devices and were
right handed. One participant was left handed but preferred
to use his right hand for everyday work. We conducted a
within-subject study with these users. We tested 5 techniques
(Timeline, DMVN, Offset Drag, Window Drag, Drag Any-
where), 2 devices (large and small display), and 6 tasks. This
resulted in a total of 60 data points per user.

Our study consisted of two stages. Each participant first per-
formed all the tasks on one screen and then performed the
tasks on the other screen. To reduce the carry over effect,
after a participant finished studies on one screen, we let the
participant rest for around 10 minutes. We used a 2× 2 latin



square to counterbalance the study order of the large screen
and small screen. At each stage, a participant performed the
same task using the above mentioned five techniques. In order
to reduce the learning effect, we counterbalanced the order of
the techniques using a 5× 5 latin square.

For each task, a participant watched the video twice and was
shown the target frame together with the textual instruction
to understand the task beforehand. The participant was given
a maximal navigation time to finish the task. This maximal
navigation time was set to be 2 times of the video length.
The task session terminated if the participant successfully
achieved the goal or ran out of time. We added a button in our
testing interface to allow the participant to submit the naviga-
tion result. If the right frame was not reached, the partici-
pant was alerted to refine the navigation result by the system.
The timer started counting when the participant first touched
the screen and stopped counting when the submit button got
hit and the right frame was reached. If a participant could
not finish the task within the given time, we took the given
maximal navigation time as the actual navigation time. We
recorded not only the overall navigation time, but also the
time a user took to reach the pre-defined neighborhood of the
target frame, and the micro-navigation time a user spent in-
side the neighborhood around the target frame. The target
neighborhood was defined to be slightly larger than a typical
finger size. Specifically, the neighborhood radii for the small
screen and big screen were 8 mm and 13 mm, respectively.

Results
In our studies, all the participants successfully finished the
navigation tasks on the large screen. On the small screen, 4
participants failed to reach the target frame within the given
time on Video 1 using DMVN, 1 participant failed on Video
2 using DMVN, 1 participant failed on Video 3 using Time-
line, and 2 participants failed on Video 4 using DMVN. We
analyzed the temporal measurements with repeated measures
ANOVA analysis and pairwise comparisons using t-tests with
Bonferroni correction for post-hoc analysis.

Overall Navigation Time
We conducted one-way ANOVA analysis to test whether dif-
ferent methods result in different overall navigation times on
both the large and small screen and found a significant ef-
fect of method on overall navigation time on both the large
screen (F (4, 56) = 94.13, p < 0.001) and small screen
(F (4, 56) = 16.74, p < 0.001). Figure 8 provides a sum-
mary of the performance analysis with respect to the over-
all navigation time for each of the five techniques. Accord-
ing to the navigation time, the relative performance between
(basic) DMVN and Timeline method depends on the object
size. On the small screen, DMVN actually took participants
longer than Timeline on the small touch screen when the ob-
ject was significantly smaller than the finger. According to
the feedback from the participants, occlusion from the fat fin-
ger problem made it difficult for them to navigate to the exact
location. When the object was big, DMVN then performed
better than Timeline on the small screen. For all the videos
on the large screen, they were longer than those on the small
screen. At the same time, their objects are larger, as reported
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Figure 8. Navigation time summary (seconds). Left: the average naviga-
tion time and 95% confidence interval on each video. Right: the sum of
the navigation time on all the six videos for each technique.

in Table 1. As we will discuss in detail in the next subsection,
the performance of DMVN, particularly considering the time
to reach the neighborhood of the target location, depends less
on the video length than Timeline. Then for all the videos
on the large screen, DMVN was consistently faster. Look-
ing at the sum of the navigation time on the large screen,
the mean times for DMVN and Timeline were 47.1 seconds
(SD=9.0) and 110.1 seconds (SD=32.5), respectively. The
difference between DMVN and Timeline was strongly sig-
nificant (p < 0.001).

The relative performance between two of our extended
DMVN methods (Offset Drag and Window Drag) and
DMVN also depended on the object size. When the ob-
ject was small, Offset Drag and Window Drag could im-
prove DMVN. For example, the average navigation times
for DMVN, Offset Drag, and Window Drag for the small
object size video (Video 1 on the small screen) were 12.0
seconds (SD=5.5), 6.3 seconds (SD=2.1), and 4.2 seconds
(SD=1.8). The difference between DMVN and Offset Drag
were strongly significant (p < 0.001), so was the difference
between DMVN and Window Drag. When the object sizes
were comparable to or bigger than the finger size, such as
those in Video 3 and 6 on both screens, these three methods
performed similarly and their differences were not significant.

On both the small and large screen, Offset Drag was slower
than Window Drag when the object was small. We observe
that when the object was small, participants tended to use the
cursor, which took some time to first set up the cursor. In con-
trast, Window Drag did not have this cost. When the object
became large, Offset Drag was faster. The differences be-
tween these two techniques were insignificant in both cases.

According to the sum of the navigation time, Drag Anywhere
(M= 50.9, SD=11.3) performed consistently worse than both
Offset Drag (M=31.7, SD=10.2) and Window Drag (M=28.3,



SD=9.1) on the small screen. The differences were strongly
significant (p < 0.001). On the big screen, Drag Anywhere
was also significantly slower than Offset Drag and Window
Drag. We observed that using Drag Anywhere, participants
needed to drag the object all along the trajectory carefully,
while Offset Drag and Window Drag could both enable par-
ticipants to quickly move the object through the trajectory or
even jump to the neighborhood of the target location. The
performance difference between Drag Anywhere and Time-
line was insignificantly small. This is reasonable in that both
techniques required participants to move through the trajec-
tory until the neighborhood of the target location was reached.

Time Needed to Reach the Target Neighborhood
It is interesting to look into how each technique supports two
navigation tasks: quickly reaching the target frame neighbor-
hood and carefully navigating in the neighborhood to reach
the target frame. Figure 9 provides a summary of the perfor-
mance analysis with respect to the time needed to reach the
neighborhood of the target frame for all the five techniques.
The neighborhood size is 100 pixels (8 mm) and 50 pixels (13
mm) for the tasks on the small screen and the large screen, re-
spectively. The ANOVA analysis found a significant effect of
method on the time needed to reach the target neighborhood
on both the large screen (F (4, 56) = 111.2, p < 0.001) and
small screen (F (4, 56) = 45.58, p < 0.001).

The three variations of the DMVN techniques, including
DMVN, Offset Drag, and Window Drag, enabled a partici-
pant to quickly navigate to the neighborhood of the target lo-
cation. For all the videos on both the small and large screen,
these three techniques consistently took a participant around
one second to reach the target neighborhood. This clearly
showed the advantage of DMVN that allows for quickly drag-
ging an object of interest to the target neighborhood.

The performance of Timeline depended on the temporal lo-
cation of the target. If the target was temporally close to the
starting point, such as those in Video 2 and 4 on the small
screen, it took comparable time to the three DMVN methods,
as shown in Figure 9. Otherwise, it took much longer to reach
the neighborhood. For example, the time differences between
Timeline and any DMVN methods were strongly significant
on Video 1, 5, 6 on the small screen and Video 5 and 6 on the
large screen (p < 0.001).

Drag Anywhere required a participant to literally go through
the trajectory from the starting point until the target neighbor-
hood was reached. When the spatial arc distance along the
trajectory between the target location and the starting point
was large, it took Drag Anywhere a long time to reach the
target neighborhood. The time differences between each of
the three other DMVN techniques (DMVN, Offset Drag, and
Window Drag) and Drag Anywhere were all strongly signifi-
cant with p < 0.001 according to the sum of the time needed
to reach the target neighborhood, as shown in Figure 9. Dur-
ing the study, we also observed that when the trajectory was
straight, participants could quickly move along the trajectory
using Drag Anywhere by either flicking on the touch screen
very frequently or using a quick long-range dragging action.
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Figure 9. Time needed to reach the target neighborhood (seconds). Left:
the average time and 95% confidence interval on each video. Right: the
sum of the time on all the six videos for each technique.

But around the sharp corners, the participants often got stuck
and sometimes even navigated in the opposite direction.

Micro-navigation Time in the Target Neighborhood
We are also interested in how each technique supports a user
to perform micro-navigation in the neighborhood of the target
frame. Figure 10 provides a summary of the performance
analysis with respect to the time needed for micro-navigation
in the target neighborhood. The ANOVA analysis found a
significant effect of method on the micro-navigation time in
the target neighborhood on both the large screen (F (4, 56) =
50.6, p < 0.001) and small screen (F (4, 56) = 7.367, p <
0.001).

When the object was small, it took participants longer to nav-
igate to the final target location using DMVN than Timeline.
For example, the object in Video 1 on the small screen was
very small (1.4 × 3.2mm2), DMVN (M=11.0, SD=5.7) was
significantly slower than Timeline (M=7.0, SD=3.2). The dif-
ference was significant (p = 0.02). Participants complained
that it was difficult to use DMVN for micro-navigation due
to the finger occlusion. For videos with big objects, such as
V3, V5 and V6 on the small screen, DMVN performed better
than Timeline. According to the sum of the micro-navigation
time in the target neighborhood, DMVN (M=41.5, SD=8.2)
was faster than Timeline (M=88.4, SD=29.7) with p < 0.001
on the large screen. While the objects in V1 and V4 on the
large screen were smaller than the finger and the occlusion
still compromised the user performance using DMVN, Time-
line on the big screen caused participants to switch their atten-
tion frequently between the timeline and the object they were
dragging according to their feedback after the study. This
re-orientation cost compromised the user performance with
Timeline. Besides, participants also reported that when they
were dragging the timeline slowly and carefully, the friction
between their fingers and the (big) touch screen often pre-



vented them from smoothly and continuously navigating the
video at small steps. On the small touch screen on the smart-
phone, the friction was less an issue.

As shown in Figure 10, Offset Drag and Window Drag could
both improve DMVN on videos with small objects, such
as V1 and V4 on the small screen and V1 on the large
screen. The time differences between these two techniques
and DMVN on these videos were significant (p < 0.05). For
videos with big objects that are comparable or larger than the
finger, such as V3 and V6 on both screens, these three tech-
niques performed similarly.

According to the sum of the micro-navigation time as shown
in Figure 10, Drag Anywhere took less time than DMVN and
Timeline, and took more time than Offset Drag and Window
Drag on both screens. The time differences between Drag
Anywhere and the others were not significant except that be-
tween Drag Anywhere and Timeline on the big screen. Look-
ing at the data on each video, the performance of Drag Any-
where for micro-navigation varied and was highly dependent
on individual video property. If the trajectory in the target
neighborhood was smooth, users actually reported Drag Any-
where was very helpful as it did not have the occlusion prob-
lem, required no extra widget, and allowed users to drag on
any location that they felt comfortable. In practice, a user
can drag in an area which is close to the object, having the
feeling of directness without any occlusion, distraction from
extra widgets, or the re-orientation cost. However, when the
trajectory has a sharp angle or a high curvature, Drag Any-
where often confused participants by accidently moving to
the wrong direction. In many of the testing videos, the object
trajectories were very complex, which contributed to the rela-
tive poor performance of Drag Anywhere compared to Offset
Drag and Window Drag.

Summary
DMVN and two of our enhanced DMVN techniques (Offset
Drag and Window Drag) can quickly navigate to the neigh-
borhood of the target location without regarding to the ob-
ject size. When the object is small, the occlusion problem
compromises the performance of the basic DMVN for micro-
navigation tasks. Offset Drag and Window Drag can effec-
tively handle the occlusion problem. Overall, Offset Drag and
Window Drag can better support space-centric video naviga-
tion tasks than Timeline for both small and big objects. In
contrast, the basic DMVN method is helpful to the space-
centric tasks only for videos with big objects. A common
concern with Window Drag from participants is that the call-
out window is sometimes distracting.

The performance of Drag Anywhere depends on the trajec-
tory shape and the distance between the target location and
the starting point. Around the trajectory segment that has a
high curvature or sharp angle, Drag Anywhere is not conve-
nient for users to drag an object. Accordingly, when the tar-
get is faraway from the starting point, Drag Anywhere cannot
well support quick navigation to the target neighborhood as
a user needs to literally move the object through the trajec-
tory until reaching the target location. For a simple trajectory,
Drag Anywhere can support quick navigation well. Partici-
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Figure 10. Micro-navigation time in the target neighborhood (seconds).
Left: the average time and 95% confidence interval on each video.
Right: the sum of the time on all the six videos for each technique.

pants also reported that Drag Anywhere has advantages, such
as handling occlusion without any extra widget and allowing
for dragging at any location on the screen.

Discussion
We would like to note that this paper only studied the perfor-
mance of each method for object dragging, although DMVN
consists of two steps, object selection and dragging. As ob-
ject selection on touch screens has been well studied, our
study omitted this step. Although it will be certainly help-
ful to involve the object selection step in our studies, we feel
that skipping this selection step will not severely jeopardize
our study as all the DMVN methods covered in this paper re-
quire this step, which can be achieved using any of the state of
the art precise selection methods. Thus our conclusion from
this study can be applied to the complete DMVN procedures.
Meanwhile, we need to clarify that the comparisons between
DMVN and Timeline are affected by this omission, as Time-
line does not require an object to be selected at all for naviga-
tion. We considered this affect during our design of this study
and chosen our current design for the following reasons. First,
object dragging is a unique problem of DMVN. Therefore, we
wanted to focus on this step and make this already complex
study controllable. We can borrow from the previous research
for object selection performance analysis if needed. Second,
this omission will not affect the comparison between different
DMVN methods at all. Third, object dragging typically con-
tributes to the majority of time cost of a DMVN task. So in
general, our conclusion is still valid between the comparison
between DMVN and Timeline although for some particular
videos, the results for object dragging may have to be revised
to apply to the whole DMVN procedure.

It could also have been nice that we could provide a perfor-
mance curve that shows the effect of the object size on each
individual technique in our study, like those in previous work
on precise selection techniques. However, we found that this



is a very challenging task for our work on DMVN. Besides
the object size, many factors of a video, such as the target
location and the trajectory shape, can affect the performance
of a video navigation technique. We could have designed a
set of videos that differ from each other only in object sizes
while keeping others the same. But it will introduce a very
strong learning effect, which is difficult to eliminate as we
need to use each of the video in the set to test five different
methods and other similar videos in the set will be used to test
these five techniques again by the same participant. We there-
fore only discuss the effect of the object size mostly in the
context of comparing the relative performance between dif-
ferent methods and we feel that our findings from the current
study is still interesting, and is helpful for us to understand
the challenges of designing DMVN for touchscreen devices
and evaluate our techniques.

Finally, when the object is small, all the DMVN methods in
this paper require an object selection step, which typically in-
volves a take-off action to indicate the selection of the object.
This breaks DMVN into two separate steps and comprises the
directness of DMVN. In future, we plan to eliminate this take-
off action and combine object selection and dragging into a
single continuous procedure to make DMVN smoother.

CONCLUSION
This paper discussed the effects of the fat finger problem on
DMVN systems for touchscreen devices and developed three
touch-based interface techniques to support DMVN, includ-
ing Offset Drag, Window Drag, and Drag Anywhere. Our
study showed that Offset Drag and Window Drag could ef-
fectively support DMVN on touchscreen devices and enable
DMVN to outperform the traditional timeline based video
navigation method for space-centric video browsing tasks.
While Drag Anywhere did not perform as well as the other
two techniques, it offered a few encouraging features.
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