
A Multi-Lens Stereoscopic Synthetic Video Dataset
Fan Zhang, Wu-chi Feng, Feng Liu

Intel Systems and Networking Lab
Portland State University
Portland, Oregon, USA

{zhangfan, wuchi, fliu}@cs.pdx.edu

ABSTRACT

This paper describes a synthetically-generated, multi-lens

stereoscopic video dataset and associated 3D models. Creating a

multi-lens video stream requires small inter-lens spacing. While

such cameras can be built out of off-the-shelf parts, they are not

“professional” enough to allow for necessary requirements such as

zoom-lens control or synchronization between cameras. Other

dedicated devices exist but do not have sufficient resolution per

image. This dataset provides 20 synthetic models, each with an

associated multi-lens walkthrough, and the uncompressed video

from its generation. This dataset can be used for multi-view

compression, multi-view streaming, view-interpolation, or other

computer graphics related research.

General Terms

Measurement, Documentation, Performance

Keywords

Stereoscopic video, multi-view compression

1. INTRODUCTION
As the number of megapixels continues to grow in imaging

hardware, the use of such higher resolution can be applied to

enable a host of alternative applications. These applications will

allow for creating a better user experience, rather than just adding

more pixels. Fields like stereoscopic imaging, light-field cameras,

camera arrays and the like promise to allow users to have better

experiences with their imaging data.

For multi-lens camera systems, where lenses are placed very near

to each other allow for a number of scenarios. Linear arrays of

lenses can be used for stereoscopic imaging applications where

the additional lenses can allow for better disparity management of

the viewing scenario (environment), allowing for a more pleasant

3D user experience. Camera arrays such as the Point Gray

ProFusion 25 capture a two-dimensional array of synchronized

video streams which can allow for better video stabilization [8].

Two such examples are shown in Figure 1.

There are several limitations to today’s multi-lens video capture

hardware. In order to tailor stereoscopic videos to a variety of

display scenarios, various small inter-lens distances are required.

For example, the standard inter-ocular distance is 2.5”. If we want

to arrange multiple lenses into a linear array in order to obtain

multiple inter-ocular distances simultaneously with a distance

difference like 0.5”, we will require a lens spacing of less than

0.5”. Unfortunately, very few cameras meet such a requirement.

Point-of-view (POV) cameras are a possibility but have very

limited ability to synchronize their streams. Furthermore, such

POV cameras, like the ones on the left side of Figure 1, are

usually very wide-angle with radial distortion. Other cameras like

the 5x5 lens ProFusion 25, while having the hardware array, have

images of only VGA quality. This impacts the ability to study

systems issues such as compression and adaptation.

To begin the multimedia systems work before the hardware is

readily available, we have created a synthetically-generated,

multi-lens video dataset that can be used to explore research such

as multi-lens video compression algorithms for streaming, the

effect of non-linearly placed synchronized video lenses, and other

multi-lens systems problems such as view interpolation. This

dataset paper describes the creation of the models and the

rendered video frames for a multi-lens video system. This will

allow researchers to study problems brought about by real-world

multi-lens systems in isolation or in groups including: registration

between lenses, synchronization, camera noise, and camera

distortion. At a higher-layer, the dataset will support multi-view

compression, multi-view streaming, or some computer graphics

related research.

Contributions of our work: We have taken 20 publicly available

3D models and added textures and walkthroughs (panning and

zooming shots) with multiple-lens. Researchers can then modify

the models as well as the camera placement and movements as

they require. Additionally, for each of the 20 scenes, we have

generated 300 frames for each lens in an 8-camera array.

2. CREATING THE DATASET
Starting with a number of 3D modelled scenes, we created the

dataset through a number of steps including: shading and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ACM MMSys ‘15, March 18-20, 2015, Portland, OR, USA

Copyright 2015 ACM 978-1-4503-3351-1/15/03…$15.00

http://dx.doi.org/10.1145/2713168.2713199

Figure 1: Multi-lens Camera Systems

texturing; lighting; animation and camera control; and rendering.

We will describe these steps in the remainder of this section.

2.1 Modeling
Creating models of realistic scenes is quite difficult and time

consuming. To get the models for the scenes, we used the

Autodesk Maya 2014 software. We leveraged other artists’ Maya

models to serve as the basis of our work so that we did not need to

build the 3D scenes from scratch. The models can be downloaded

from 3Drender [3]. The data files downloaded are 3D models

either with no shaders, textures, or videography. An example of a

single scene is shown in Figure 2. The Maya models can serve as

the base scene for which realism needs to be added.

For the 20 models downloaded, we edited the source files to add

shaders, textures, and lighting properties. We spent a significant

amount of time providing the right textures to be mapped onto

each of the 3D models within the scene. For example, the blanket

has a more realistic texture to provide for more realism. For

shading, Maya provides different shader types such as the

Lambert shader and Phong shader. The Lambert shader is an

evenly diffused shading type that creates dull or matte surfaces.

The Phong shader allows surfaces to have specular highlights and

reflectivity. Depending upon the reflexivity requirement of each

object we assigned either a Lambert shader or Phong shader to

each object. For example, the leaves on the plant use the Phong

shader, while the blanket uses the Lambert shader. This creates

the appropriate matteness or reflectivity for each object within the

scene. To do advanced texturing, we can also set up UV mappings

and assign advanced textures, such as a real wood floor material

to the ground.

To create a sense of depth and the perception of color and

materials, we need to set up CG lighting for the 3D scenes. Maya

provides several light types including spot lights and point lights.

Spot lights place light in specific areas. Point lights cast light

from a single specific point in space. In addition to these light

types, Maya also has the advanced mental ray lighting option

which can simulate an open-air sunlight effect for the entire scene.

This is the easiest way to create a nice-looking view, which we

used for most of our scene rendering. An example of the scene

from Figure 2 after we have added shaders, textures, and lighting

is shown in Figure 3. Please refer to the Maya tutorial for a more

detailed introduction [4].

2.2 Camera Placement and Movement
To make dynamic videos, we need to add object animation or

camera movement to the static scenes. Each of our videos has 300

frames. Among the frames, we set several keyframes to establish a

movement scheme for an object or the camera. Maya can then

create the animation curves automatically between keyframes.

For each scene, we created several keyframes to make the

resultant video stream more interesting and to introduce some

motion for any compression research that might use the dataset.

In order to create 8 view videos, we used the stereo camera rig

provided by Maya to simulate the parallel multi-camera setting.

Maya provides a stereo camera rig that contains three cameras: a

left camera, a center camera, and a right camera. The center

camera is used solely for positioning of the camera, while the left

and right cameras are used for the actual generation of frames. To

create 8 linearly-aligned lenses, we needed 4 synchronized

streoescopic camera rigs for our videos. To align all cameras

 Cameras 4/5 Cameras 3/6 Cameras 2/7 Cameras 1/8

Figure 4: Relationship and Placement of Cameras for 8-lens Stereoscopic Video

Figure 2: Base Maya Model Example Figure 3: A Final Scene Example

parallel with each other with the same interaxial separation, the

positions of the center cameras of all 4 stereo camera rigs are set

to be exactly same. With 8 cameras (numbered 1 to 8 from left to

right), if we assume cameras 4 and 5 have a baseline of x, then

cameras 3 and 6 should have a baseline of 3x. Furthermore,

cameras 2 and 7 have a baseline of 5x, and cameras 1 and 8 have a

baseline of 7x. The baseline value can then be adjusted according

to the required spacing of the cameras for a particular application.

An example of this for the example scene is shown in Figure 4.

The last step is to render the 8 view videos for each scene. To

accomplish this, we need 8 Maya binary files each containing one

camera setting to render one camera view. Instead of rendering the

videos to video files, we rendered each video frame into PNG

format so that there are no pre-biased DCT artifacts in the video

dataset. An example of a rendered scene is shown in Figure 5.

3. DESCRIPTION OF THE DATASET
The contributed dataset consists of twenty different scenes, each

consisting of two primary components: additions to publicly

available 3D Maya data models to make them look realistic

(including camera videography) and a rendered set of multi-view

imaging data. The scenes will provide a breadth of different

scenes for use in experimental evaluation. In the remainder of this

section, we describe the specific details of the datasets.

The Maya modeling data includes a number of components

including, the 3D models for the actual scenes, the lighting and

shader information, the camera rigs, and the animation path.

Figure 5: An Example Multi-lens Camera Array: This figure shows an example of the 8 linear camera array views. The individual

camera views are arranged from left to right.

Maya data files contain MEL scriptings language code [1]. MEL

is a scripting language similar to the style of PERL or TCL. This

makes the format fairly easy to modify. The dataset contains the

original files so that users can then try out different camera angles,

camera placements, and other options. While data files can be

either ASCII or binary, our files are in ASCII to maximize the

extensibility and usability of the data. One ASCII Maya scene

saved with all components mentioned above (shaders, textures,

lighting, animation, cameras) is approximately 100 Mbytes. The

entire Maya 3D dataset is approximately 2 GBytes in size.

For each of the scenes we have rendered an animation with a

camera panning and zooming. For each video, we used the Maya

software to generate 300 frames with resolution 1280x720 (i.e.,

720p). While the dataset could have been generated with more

frames and/or higher image quality (e.g., full HD @ 1920x1080

or 4K), this has a significant impact on the ability to store the

dataset. The dataset including the 20 scenes, 8 linearly-aligned

views, and 300 frames per camera array yields a dataset that is

approximate 45 GBytes in size. Each of the frames is numbered

by view and frame number, with each scene consisting of 2400

frames. We have compressed the data using PNG in order to

minimize the artifacts in the dataset. Researchers that do not need

to adjust the number of frames or the placement of cameras can

just use the video frames in the set. The 20 scenes that are in the

dataset are shown in Figure 8 at the end of this paper.

3.1 Dataset Discussion
Synthetically generated datasets are a bit different than their real-

world counterparts for a number of reasons. In the remainder of

this subsection, we briefly describe the impact of this choice.

First, using a synthetically generated set of video frames means

that the frames are perfectly synchronized. For our stereoscopic

video compression work, we require both a very small inter-lens

spacing as well as accurate synchronization. Unfortunately, it is

very difficult to build such hardware. Without fine

synchronization, the disparity calculation (distance between the

“same” points of two views in the camera array) and the motion

vector calculation will be impacted. Using the synthesized dataset

allows us to remove synchronization issues and to study the

effects of synchronization in isolation if so required.

Second, the video frames are devoid of noise, have no lens

distortion, and are perfectly aligned. Without noise or lens

distortion, compression, computer vision algorithm, and motion

compensation all become easier. We believe this makes it easier

to understand the impact of using multiple video lenses in

isolation. Real-world issues like lens distortion and noise can

independently be added in through CCD noise and lens distortion

can also be added [7][12].

Third, the video frames are not truly realistic. We have made the

shaders, textures, and lighting as realistic as possible; however,

they are still computer generated. We expect that even though

they are computer generated that it will not negatively impact or

bias compression performance.

For the 20 scenes generated, we have taken the 300 frames from

the leftmost lens and compressed them into H.264 format to see

how the synthetically generated videos compress. For this, we

used the reference H.264/AVC reference encoder to compress the

data [2][11]. We then compressed it at a number of quantization

values and calculated the resulting PSNR values. The resulting

rate distortion curves are shown in Figure 6. As shown in the

figure, the rate distortion curves are similar to traditional rate

distortion curves. In particular, there is a comparison paper that

shows the differences in using different H.264 encoders. Our

compression results are within the range of their published results

[13]. As a result, we expect that the proposed dataset can be used

for experimentation and have it at least be representative of results

compared to real-world videos. The one outlier is the video scene

that achieves 52 dB PSNR at 2.5 Mbps. This scene is the

relatively simple scene with the plate of fruits sitting on a blanket.

4. APPLICATIONS OF THE DATASET
There are a number of uses of the dataset that we envision for the

multimedia systems community. We will describe some of these

in the remainder of this section.

4.1 Multi-view Compression and Streaming
Multi-view video coding is an important problem for the

multimedia systems community. Multi-view video can come in a

number of flavors. It can mean an array of linearly aligned

cameras or a grouped set of cameras that are roughly pointed to

the same area. In such cases, the ability to take advantage of

inter-camera redundancy for use in compression is useful

[10][14]. Multi-view compression, while great for compression

efficiency, makes it not so amenable to streaming. If a particular

view is required by the user, the entire multi-view set needs to be

transmitted. Obviously, this can place a tremendous overhead to

view just a single stream. Unfortunately, most multi-view codecs

are set-up to maximize inter-lens compression. A standard

example given in the MVC reference coder is shown in Figure 7.

This dataset will allow for the exploration of the inter-dependency

between compression and streaming [5]. There are several such

threads of research that could be pursued with this dataset. First,

for stereoscopic multi-lens video, understanding the relationship

between motion estimation and disparity calculation (the

difference in pixels of a single point between the left and right

eyes) is unknown. Motion estimation typically finds the best

visual color (luminance) match, whereas disparity calculations for

stereo video are object matching. Still, the underlying algorithms

may benefit from each other to improve compression speed.

Second, in the adaptation and streaming of multi-view video

streams (either stereoscopic or not), understanding the overhead

Figure 6: Rate Distortion Curves: This figure shows the

rate distortion curves for the 20 videos compressed with the

H.264 reference code. The Y channel PSNR value is shown.

of using inter-lens compression and adaptation is still not well

understood. For example, should all lenses be kept separate for

streaming purposes or are there efficient mechanisms to limit the

amount of data needing to be transmitted when only a sub-set is

required? Third, with the synthetic dataset, we can begin to

explore how important camera placement is for the capture and

compression of depth images (e.g. [6]). This requires a scene that

is readily repeatable which means that synthetic is most like the

best prospect for such research.

4.2 View Interpolation
This multi-view video dataset will provide a useful benchmark for

view interpolation research. View interpolation is a classic topic

in computer graphics and computer vision. It is useful for a wide

variety of applications, such as multi-view video synthesis and

editing, video stabilization, high frame-rate video synthesis, and

virtual reality. View interpolation takes images taken at multiple

viewpoints and synthesizes a new image from as if it were viewed

by the camera from a new viewpoint. A large amount of view

interpolation algorithms have been developed over the past

decades [9]. However, view interpolation is still a challenging

task and faces a few challenges. First, it is still difficult to

“correctly” or visually plausibly handle occlusion and dis-

occlusion especially in the region with significant depth

discontinuity that some region visible from the new viewpoint is

occluded from existing viewpoints. Second, non-Lambertian

reflection and semi-transparent surfaces are difficult to render

correctly. Third, while novel views can be interpolated sometimes

in a visually plausible way, it is challenging to create a novel

video as it requires interpolating frames in a temporally coherent

way. This large multi-view video dataset will be useful to

evaluate existing and forthcoming view interpolation methods,

and identify new problems and research opportunities on this

topic.

5. CONCLUSION
In this dataset paper, we have introduced a Maya 3D model data

set that includes realistic shaders, textures, lighting, animation,

and a linear array of cameras, creating a set of 20 synthetically

generated video streams. We have also, for each model, generated

a set of 300 frame x 8 camera video data set. This dataset can be

used to study compression of multi-view videos and can also be

used for computer vision work.

6. ACKNOWLEDGMENTS
This material is based upon work supported by NSF IIS-1321119,

CNS-1205746 and CNS-1218589. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the National Science Foundation.

Credits for models in Figure 8 (left to right, top to bottom): Row 1:

model - Giorgio Luciano, paintings - Craig Deakin; model - David

Vacek, design - David Tousek; model – A. Kin Fun Chan, Dan

Konieczka; Row 2: model - Giorgio Luciano; model - Jeremy Bim;

model - Christophe Desse, Matthew Thain; Row 3: model - Dan

Konieczka; model - Andrew Kin Fun Chan, Dan Konieczka,

Senthil Kumar; model - David Vacek, design - David Tousek;

Row 4: model - Dan Wade; model - Dan Konieczka, Juan Carlos

Silva; model - Jeremy Birn; Row 5: model, texture, lighting -

Jeremy Birn; model - Ted Channing; model - Juan Carlos Silva;

Row 6: model, texture, lighting -Jeremy Birn, model - Christophe

Desse, Matthew Thain; model - Jeremy Birn. Rig or Material

"Squirrel" used with permission (© Animation Mentor 2014). No

endorsement or sponsorship by Animation Mentor. Downloaded

at www.animationmentor.com/ free-maya-rig/; Row 7: model -

Alvaro Luna Bautista; model - Serguei Kalentchouk.

7. REFERENCES
[1] http://download.autodesk.com/global/docs/maya2014/en_us/

[2] http://iphome.hhi.de/suehring/tml/

[3] http://www.3drender.com/challenges/

[4] D. Derakhshani, Introducing Autodesk Maya 2014: Autodesk

Official Press, May 2013, ISBM-13 978-1118574904.

[5] Wu-chi Feng, Feng Liu, “Understanding the Impact of Inter-

Lens and Temporal Stereoscopic Video Compression”, in

Proc. of NOSSDAV 2012, Toronto, Canada, June 2012.

[6] Sang-Uok Kum, and Ketan Mayer-Patel, “Real-Time

Multidepth Stream Compression”, ACM Trans. on

Multimedia Computing, Communications, and Applications,

Vol. 1, No. 2, pp. 128 – 150, May, 2005.

[7] Kodak Appl. Notes, “CCD Image Sensor Noise Sources”,

Image Sensor Solution Application Notes, Jan. 2005.

[8] B. Smith, L. Zhang, H. Jin, A. Agarwala. “Light Field Video

Stabilization” in IEEE International Conference on

Computer Vision (ICCV), Sept 29-Oct 2, 2009.

[9] R. Szeliski, Computer Vision: Algorithms and Applications,

Springer, 2010.

[10] G. Toffetti, M. Tagliasacchi, M. Marcon, A. Sarti, S. Tubaro,

K.Ramchandran, “Image Compression in a Multi-Camera

System Based on a Distributed Source Coding Approach,” in

Proc. Euro. Signal Process.Conf., Antalya, Turkey, 2005.

[11] A. Tourapis, K. Suhring, G. Sullivan, “H.264/AVC

Reference Software Manual”, Joint Video Team (JVT) of

ISO/IEC MPEG & ITU-T VCEG, July 2009.

[12] G. Vass, T. Perlaki, “Applying and Removing Lens

Distortion in Post Production”, Colorfront Ltd., 2003.

[13] D. Vatolin, D. Kulikov, A. Parhin, M. Arsaev, “MPEG-4

AVC / H.264 Video Codecs Comparison”, CS MSU

Graphics & Media Lab Technical Report, Moskow State

University, May 2011.

[14] C. Yeo, K. Ramchandran, “Robust Distributed Multi-view

Video Compression for Wireless Camera Networks”, IEEE

Transactions on Image Processing, May 2010.

…

...
Figure 7: Typical Multi-view Frame Dependencies

I0 P1 P2 P3 P4 P5 P6 P9 P8 P7

B0 B1 B2 B3 B4 B5 B6 B9 B8 B7

B0 B1 B2 B3 B4 B5 B6 B9 B8 B7

Image_set0

Image_set1

Image_set2

Image_set3

Image_set4

...

B0 B1 B2 B3 B4 B5 B6 B9 B8 B7

I0 P1 P2 P3 P4 P5 P6 P9 P8 P7

Figure 8: The 20 scenes created for the dataset

