
Vis Comput (2010) 26: 543–553
DOI 10.1007/s00371-010-0503-5

O R I G I NA L A RT I C L E

Animation rendering with Population Monte Carlo image-plane
sampler

Yu-Chi Lai · Stephen Chenney · Feng Liu · Yuzhen Niu ·
Shaohua Fan

Published online: 17 April 2010
© Springer-Verlag 2010

Abstract Except for the first frame, a population Monte
Carlo image plane (PMC-IP) sampler renders with a start-
up kernel function learned from previous results by using
motion analysis techniques in the vision community to ex-
plore the temporal coherence existing among kernel func-
tions. The predicted kernel function can shift part of the
uniformly distributed samples from regions with low visual
variance to regions with high visual variance at the start-
up iteration and reduce the temporal noise by considering
the temporal relation of sample distributions among frames.
In the following iterations, the PMC-IP sampler adapts the
kernel function to select pixels for refinement according to

Y.-C. Lai funded by: NSC 99-2218-E-011-005-, Taiwan.

Y.-C. Lai
National Taiwan University of Science and Technology, Taipei,
ROC
e-mail: yu-chi@mail.ntust.edu.tw

S. Chenney
Emergent Game Technology, Chapel Hill, USA
e-mail: schenney@gmail.com

F. Liu
University of Wisconsin-Madison, Madison, USA
e-mail: fliu@cs.wisc.edu

Y. Niu
Shandong University, Jinan, China
e-mail: yuzhen@cs.wisc.edu

S. Fan (�)
Suzhou University Financial Engineering Research Center,
Suzhou, China
e-mail: shaohua@cs.wisc.edu

S. Fan
NYU Courant Institute of Mathematical Sciences, New York,
USA

a perceptually-weighted variance criterion. Our results im-
prove the rendering efficiency by a factor between 2 to 5
over existing techniques in single frame rendering. The ren-
dered animations are perceptually more pleasant.

Keywords Ray-tracing · PMC · Monte Carlo · Global
illumination

1 Introduction

Global illumination based on Monte Carlo integration pro-
vides the most general solution for photorealistic render-
ing problems. To reduce image noise (variance) at practi-
cal computation times is the core of research in the global
illumination community. To render an animation the tempo-
ral variance at each pixel among consecutive frames must
also be considered because our eyes are good at noticing
temporal inconsistency among consecutive frames for sur-
vival purposes; our algorithm is derived from the Population
Monte Carlo (PMC) sampling framework, which is a tech-
nique that adapts sampling distributions over iterations, all
with theoretical guarantees on error and little computational
overhead. Our algorithm generates a start-up kernel function
from previous rendered frames by considering the temporal
correlation among the kernel functions. In addition, our al-
gorithm evenly distributes the variance over the image plane
in each frame to remove noisy spikes on the image and in
turn, reduce the temporal inconsistency generally existing
in a frame-by-frame ray-tracing-based algorithm.

PMC algorithms iterate on a population of samples. For
our sampler, image-plane sampling (PMC-IP), the popula-
tion is a set of image-plane locations. To render each frame,
the population is initialized with a sample distribution whose
predictions are based on the previous rendering results, and

mailto:yu-chi@mail.ntust.edu.tw
mailto:schenney@gmail.com
mailto:fliu@cs.wisc.edu
mailto:yuzhen@cs.wisc.edu
mailto:shaohua@cs.wisc.edu

544 Y.-C. Lai et al.

then PMC-IP generates an intermediate image to start the it-
eration. Any information available at this stage can then be
used to adapt a kernel function that produces a new popu-
lation. The initial prediction of the kernel function is based
on the result of the current frame rendered with a few sam-
ples in each pixel, the result of previous frames, and the
sample distribution of previous frames. We can explore the
temporal coherence of sample distributions among consec-
utive frames by using computer vision techniques to gener-
ate a good start-up kernel function. This prediction prevents
the redundant probed samples on smooth regions of the im-
age. In addition, the prediction takes the temporal variance
into account: perceptually high variance regions in previ-
ous frames have higher probability to be perceptually high
variance regions in current frame, and as a result, the algo-
rithm puts more samples at these regions to reduce the noisy
spikes. In image-plane sampling, the perceptually-weighted
variance in the intermediate images is used to construct the
kernel function, resulting in more image-plane samples in
regions of high variance. The procedure is then iterated:
sample, adapt, sample, The result is an unbiased adap-
tive algorithm. This can achieve an evenly-distributed vari-
ance over the image plane.

Photon mapping and path tracing have been the indus-
trial rendering algorithms for global illumination. Our sam-
pler can be easily incorporated into ray-tracing-based global
illumination with minimal modifications to improve the ef-
ficiency of these algorithms. We demonstrate the ease of in-
corporation into the current rendering framework by modi-
fying the ray-starting pixel positions.

Our contribution is a specific tool for rendering that uses
the Population Monte Carlo framework: An image-plane
sampler, PMC-IP, that adapts to guide samples to percep-
tually high variance image regions, is cheap to compute,
maintains stratification, and is unbiased. In addition, we in-
corporate motion analysis techniques from the vision com-
munity into global illumination algorithms to explore the
temporal coherence of sample distributions among consec-
utive frames to improve the sample usage and enhance the
temporal consistency among consecutive frames.

We include results comparing each algorithm to existing
approaches. We find that PMC-based algorithms improve
the efficiency in a factor of 2 to 5 over existing methods
when rendering a single frame. In addition, our algorithm
can generate a more perceptually pleasant animation than
others.

2 Related work

Here we focus on the adaptive image-plane sampling and
algorithms using sequential Monte Carlo algorithm. For an
overview of Monte Carlo rendering in general, see Pharr and
Humphreys [22].

Typically, adaptive image-plane algorithms perform a
first pass with a small number of samples per pixel and use
the resulting values to label pixels as adequately sampled or
in need of further refinement. The algorithm then iterates on
the pixels requiring more samples [3, 11, 20, 21, 23, 24].

A common property of these existing algorithms is that
they stop sampling a given pixel when some image-derived
metric is satisfied. As Kirk and Arvo [13] point out, the
evaluation of the image metric relies on random samples,
so there is some non-zero probability that the threshold is
incorrectly detected and that sampling stops too soon. This
introduces bias in the final image, which is a problem when
physically accurate renderings are required. Our algorithm
never uses a threshold to stop sampling a pixel and is statis-
tically unbiased.

Many metrics have been proposed for the test to trigger
additional sampling. Lee et al. [16] used a sample variance-
based metric. Dippé and Wold [5] estimated the change
in error as sample counts increase. Painter and Sloan [21]
and Purgathofer [23] used a confidence interval test, which
Tamstorf and Jensen [30] extended to account for the tone
operator. Mitchell [20] proposed a contrast-based criterion
because humans are more sensitive to contrast than to ab-
solute brightness, and Schlick [27] included stratification
into an algorithm that used contrast as its metric. Bolin and
Meyer [3], Ramasubramanian et al. [24] and Farrugia and
Péroche [7] used models for human visual perception, of
which we use a variant. Rigau et al. [25, 26] introduced
entropy-based metrics. References [1, 19] introduced met-
rics utilizing a model of the human visual system from the
visible distortion based on the detection and classification of
visible changes in the image structures.

Our algorithm views the image plane as a single sam-
ple space for the purposes of sampling. Dayal et al. [4]
used a variance-based metric to control a kD-tree subdivi-
sion where samples are drawn uniformly within each adap-
tively sized cell of the subdivision. Stokes et al. [28] also
took a global approach with their perceptual metric.

A Sequential Monte Carlo algorithm, similar in spirit
to Population Monte Carlo, has recently been applied by
Ghosh, Doucet and Heidrich [10] to the problem of sam-
pling environment maps in animated sequences. Their work
exploits another property of iterated importance sampling
algorithms—the ability to re-use samples from one iteration
to the next—and is complementary to our approach.

Lai et al. [14, 15] adapted the Population Monte Carlo
algorithm into the energy redistribution framework to adapt
the extent of energy redistribution. Their method focuses on
the global rendering algorithm but our algorithm focuses on
the first step of sample distributions. Our algorithm can be
easily adapted to incorporate the algorithm by adjusting the
energy of each path according to the kernel function of the
pixel-position distribution.

Animation rendering with Population Monte Carlo image-plane sampler 545

3 PMC-IP: image-plane sampling

To render a frame in a sequence of animation is to compute
the intensity, I (i, j, t), of each pixel (i, j) for each frame t ,
by estimating the integrals:

Ii,j,t =
∫

I
Wi,j,t (u)L(x,ω, t) du, (1)

where I is the image plane, Wi,j,t (u) is the measurement
function for pixel (i, j) of t th frame—non-zero if u is
within the support of the reconstruction filter at (i, j) of t th
frame—and L(x,ω, t) is the radiance leaving the point, x,
seen through u in the direction −ω at t th frame, determined
by the projection function of the camera. We are ignoring,
for discussion purposes, depth of field effects, which would
necessitate integration over directions out of the pixel, and
motion blur, which would require integration over time. In
the following discussion, we will neglect the denotation of t

for the simplification of description. And all the adaptation
of the sample distribution happens in the process of render-
ing a single frame.

An image-plane sampler selects the image-plane loca-
tions, x in (1) for a specific frame. For simplicity, assume we
are working with a ray-tracing-style algorithm that shoots
from the eye out into the scene. Adaptive sampling aims
to send more rays through image locations that have high
noise, while avoiding bias in the final result.

Taking an importance sampling view, given a set of sam-
ples, {X1, . . . ,XN } from an importance function p(x) for a
single frame, each pixel is estimated using

Îi,j = 1

n

N∑
k=1

Wi,j (Xk)L(Xk,ω)

p(Xk)
. (2)

The source of bias in most existing adaptive image-plane
samplers is revealed here. Adaptive sampling without bias
must avoid decisions to terminate sampling at an individual
pixel, and instead look at the entire image plane to decide
where a certain number of new samples will be cast. Every
pixel with non-zero brightness must have non-zero probabil-
ity of being chosen for a sample, regardless of its estimated
error. This guarantee that all pixels will have chance to re-
ceive samples to achieve unbiasedness.

We also note the (2) can be broken into many integrals,
one for the support of each pixel. Provided p(x) is known in
each sub-domain, the global nature of p(x) is not important.

Figure 1 summarizes the final PMC-IP algorithm for a
single frame:

3.1 Integrating the sampler into a global rendering system

The PMC-IP is easily incorporated into a single rendering
pipeline and allows us to improve the rendering efficiency

1 Estimate the start-up kernel function α
(0)
k from previous frames

2 for s = 0, . . . , S

4 Use DMS to allocate samples according to α
(s)
k

5 Generate samples from K
(s)
IP (x) and accumulate to image

6 Compute the perceptually-weighted variance image
7 Compute α

(s+1)
k for each pixel k

Fig. 1 The PMC-IP Algorithm for rendering a single frame

for ray-tracing-based algorithms such as path tracing, pho-
ton mapping. Figure 2 shows a modern plug-in style Monte
Carlo rendering framework. The only core framework modi-
fication required to support adaptive sampling is the addition
of a feedback path from the output image generator back to
the samplers, required to pass information from one sam-
pling iteration back to the samplers for the next iteration.
The PMC-IP sampler also contains a tracking algorithm, de-
scribed in Sect. 3.2, to guess the sample distribution from
the previous rendering frames and sample distributions.

The kernel function is the starting point in creating a
PMC algorithm for adaptive image-plane sampling. We
need a function that has adaptable parameters, is cheap
to sample from, and supports stratification. This can be
achieved with a mixture model of component distributions,
hIP(i,j)(x), one for each pixel:

K
(s)
IP (x) =

∑
(i,j)∈P

α
(s)
(i,j)

hIP(i,j)(x),
∑

(i,j)∈P
α

(s)
(i,j)

= 1,

where (i, j) is the pixel coordinate and P is the set of all
pixels in this image. Each component is uniform over the
domain of a single pixel integral. The parameters to the dis-
tribution are all the α

(s)
(i,j)

values, and these change for each

iteration, s. We achieve an unbiased result if every α
(s)
(i,j) ≥ ε,

where ε is a small positive constant (we use 0.01). We en-
force this through the adaptive process, and the use of ε,
rather than 0, provides some assurance that we will not over-
look important contributions (referred to as defensive sam-
pling [12]).

The use of a mixture as the kernel results in a D-kernel
PMC [6] algorithm. Sampling from such a distribution is
achieved by choosing a pixel, (i, j) according to the α

(s)
(i,j)

,
and then sampling from hIP(i,j)(x). The latter can be done
with a low-discrepancy sampler within each pixel, giving
sub-pixel stratification. Stratification across the entire image
plane can be achieved through deterministic mixture sam-
pling, which we describe shortly. The importance function
p(x) in estimating contribution of a path for a given pixel
must be modified as psample(x) = ppath(x)puniform/α

(s)
(i,j)

where ppath is the probability to generate the path start-
ing from that pixel position and puniform is the probabil-
ity to choose that pixel uniformly for guaranteeing un-
biasedness. Notice that this kernel function is not condi-
tional, in other words, KIP(x(s)|x(s−1)) = KIP(x(s)). Hence,

546 Y.-C. Lai et al.

Fig. 2 A block diagram of a
plug-in style Monte Carlo
rendering system, following
Pharr and Humphreys [22]. The
PMC-IP sampler replaces a
uniform sample generator with
the addition of a feedback path
from the sample accumulator in
order to calculate the perceptual
variance. The PMC-IP sampler
also contains a predictor to
estimate the start-up sample
distribution for rendering a
single frame

for image-plane sampling we do not include a resampling
step in the PMC algorithm because no samples are re-used.
The knowledge gained from prior samples is instead used to
adapt the kernel function.

3.2 Predict a good initial start-up kernel

When observing the kernel function for each frame by us-
ing PMC-IP algorithm, we realize that the high-probability
regions should be temporally correlated among consecutive
frames. Thus, if we can use motion analysis techniques to
predict the movement of these regions, we can save the ex-
tra cost of probing the entire image plane to estimate the
α(i,j). In addition, since the high-probability regions should
also be regions with high variance in general Monte Carlo
methods, to use the prediction can also reduce the tempo-
ral inconsistency between noise by putting more samples in
these regions.

For the current frame t , we first obtain a coarse rendering
result Î t using a small amount of initial samples per pixel
such as 4 in our implementation. Then we predict the kernel
function of the current frame αt

(i,j) from that of the previ-

ous frame αt−1
(i,j) by exploring the correspondence between

Î t and I t−1 as follows:

αt
(i,j) = αt−1

Mt
t−1(i,j)

, (3)

where Mt
t−1 describes the correspondence between αt and

αt−1.
We approximate Mt

t−1 by estimating the correspondence

between images Î t and I t−1. Optical flow [2, 18] algo-
rithms in computer vision community provide natural so-
lutions to estimate this correspondence. However, since the

coarse rendering result Î t is noisy, optical flow estimation
is not reliable. We regularize the optical flow using a ho-
mography between Î t and I t−1. A homography is a 2D per-
spective matrix described by 8 parameters. It describes the
correspondence between Î t and I t−1 as follows:

⎡
⎣ sit

sj t

s

⎤
⎦ =

⎡
⎣h11 h12 h13

h21 h22 h23

h31 h32 1

⎤
⎦

⎡
⎣ it−1

j t−1

1

⎤
⎦ (4)

Vision research has provided rich literatures for estimating
the homography [29]. We adopt a feature-based method.
SIFT features [17] are used due to their robustness to noise.
Ideally, 4 pairs of correctly matched feature points are
enough to estimate the homography. In practice, to get a
robust estimation, we extract from each image a dense set
of SIFT features. (Î t is pre-processed using a median filter
to reduce the noise before estimating the homography.) We
use a RANSAC [9] algorithm to obtain a robust estimation
of the homography.

When the scene is a plane, or the camera only rotates
along its optical center, the homography perfectly describes
the correspondence between two images. In practice, when
the difference between two consecutive frames are small, the
homography can be a good approximation. However, when
the camera motion or object motion is significant, the ho-
mography is not accurate enough. To relieve this problem,
we first detect the high-density regions of the kernel αt−1;
then we estimate the homography within these regions be-
tween two images, and use this new homography to describe
the correspondence between the high-density regions. The
insight of this strategy is two-fold: first, a homography is
likely to be successful when modeling the correspondence
between small regions; second, the high-density region is

Animation rendering with Population Monte Carlo image-plane sampler 547

Fig. 3 This is the prediction of the kernel function at frame 4. The
images from left are result at frame 3, rough result at frame 4, the
final kernel function at frame 3, the final predicted kernel function

at frame 4, and the final kernel function at frame 4. We analyze the
deviation by using the root mean square error which is 9.02 × 10−07

Fig. 4 A comparison between adaptive and uniform image-plane sam-
pling on a direct-lighting example. Leftmost is the initial image for
PMC-IP sampling, and the α

(0)
k image. The initial image used 2 sam-

ples per pixel. The next image is the result of PMC-IP sampling with
two iterations at 4 SPPs on average. Center is a 10 SPPs image uni-

formly distributed. The zooms show the shadow near the Buddha’s
base (PMC-IP top, uniform bottom). To the right are the corresponding
variance images. Note that the variance image for the PMC-IP sampler
has few high variance regions, and has a lower contrast in general, rep-
resenting a more even distribution of error

more important than the other region, thus deserving accu-
rate prediction. An example of the kernel predication is il-
lustrated in Fig. 3.

3.3 Adapting the PMC-IP kernel

The adaption method is responsible for determining the
value of each α

(s)
(i,j)

given the populations from previous iter-
ations and any information available from them, such as the
image computed so far. We need to define an α

(s)
(i,j) for every

pixel, with pixels that require more samples having higher
high α

(s)
(i,j) for the component that covers the pixel.

An appropriate criterion assigns α
(s)
(i,j) proportional to the

perceptually-weighted variance at each pixel. The algorithm
tracks the sample variance in power seen among samples
that contribute to each pixel. To account for perception, the
result is divided by the threshold-versus-intensity function
tvi(L) introduced by Ferweda et al. [8]. Normalization also
accounts for ε.

α′
i,j = σ 2

(i,j)

tvi(L(i,j))
,

α
(s)
i,j = ε + (1 − ε)α′

(i,j)∑
(i′,j ′)∈P α′

(i′,j ′)
,

where σ 2 is the variance of radiance carried by samples
dropped at that pixel.

The first iteration for the first frame of the algorithm sam-
ples uniformly over the image plane, so this criterion can
always be computed. The first iteration for the following
frames predict the kernel function according to the result
of previous frame and the current rendering algorithm. The

left images in Fig. 4 show an example of an α
(0)
(i,j) map for a

given initial image. The perceptual term in the error image
prevents very high errors in both bright regions (a problem
with unweighted variance) and dark areas (a problem with
luminance-weighted variance).

Note that α
(s)
(i,j)

≥ ε, so there is a non-zero probabil-
ity of generating a sample at any given image-plane loca-
tion. This meets the requirement for importance sampling
that the importance function is non-zero everywhere where
the integrand is non-zero. Furthermore, as the total sample
count approaches infinity, the count at any pixel also ap-
proaches infinity. Hence, with the correctly computed im-
portance weights (2), the algorithm is unbiased.

3.4 Deterministic mixture sampling

Randomly sampling from the discrete distribution defined

by the α
(s)
(i,j) produces excess noise—some pixels get far

548 Y.-C. Lai et al.

more or fewer samples than their expected value. This prob-
lem is solved with deterministic mixture sampling, DMS,
which is designed to give each component (pixel) a num-

ber of samples roughly proportional to its α
(s)
(i,j). Determin-

istic mixture sampling is unbiased and always gives lower
variance when compared to random mixture sampling, as
proven by Hesterberg [12].

The number of samples per iteration, N (the population
size) is fixed at a small multiple of the number of pixels. We
typically use 4 samples per pixel, which balances between
spending too much effort on any one iteration and the over-
head of computing a new set of kernel parameters. For each
pixel, the deterministic sampler computes n′

(i,j) = Nα(i,j),
the target number of samples for that pixel. It takes �n′

(i,j)�
samples from each pixel (i, j)’s component. The remaining
un-allocated samples are sampled from the residual distrib-
ution with probability n′

(i,j)
−�n′

(i,j)
� at each pixel (suitably

normalized).

4 Results

This section presents the rendering results when we apply
our PMC-IP algorithm to render a single frame of scenes
and animation scenes by plugging in our sampler into the
modern global illumination framework to demonstrate the
usefulness of our algorithm

4.1 Static image rendering

Adaptive image-plane sampling can be used in many situa-
tions where pixel samples are required and an iterative algo-
rithm can be employed. We have implemented it in the con-
texts of direct lighting using a Multiple Importance Sampler
(MIS) and global illumination with path tracing, and as part
of a complete photon mapping system.

Figure 4 shows the Buddha direct-lighting example. The
surface is diffuse with an area light source. Each pixel sam-
ple used 8 illumination samples, and the images were ren-
dered at 256×512, with statistics presented in Table 1.We
introduce the perceptually-based mean squared efficiency
(P-Eff) metric for comparing algorithms, computed as:

Err =
∑

pixels e2

tvi(L)
, P-Eff = 1

T × Err

where e is the difference in intensity between a pixel and
the ground truth value and T is the running time of the algo-
rithm on that image. P-Eff is a measure of how much longer
(or less) you would need to run one algorithm to reach the
perceptual quality of another [22].

The final adaptive image shown is the unweighted aver-
age of three sub-images (initial and two iterations). While

Table 1 Measurements comparing PMC-IP and uniform image-plane
sampling, for equal total sample counts. The P-Eff is perceptual effi-
ciency used in [14]. The Buddha image computed direct lighting with
the MIS method, with a total of 8 lighting samples for each pixel sam-
ple. PMC-IP sampling improves the perceptually-based RMS error by
a factor of 5.4 over uniform sampling with only 7.5% more computa-
tion time. It corresponds to an improvement in efficiency of 5.01. The
Cornell Box images use path tracing to compute global illumination
including caustics. Comparing with images of 16 SPPs, PMC-IP im-
proves the efficiency by a factor of 2.65

Image Method #SPP T (s) Err P-Eff

Buddha Uniform 10 58.1 0.625 0.027

PMC-IP 2 + 4 + 4 62.4 0.116 0.138

Box Uniform 16 163 0.545 0.011

Uniform 32 328 0.255 0.012

PMC-IP 4 + 6 + 6 169 0.182 0.033

weighting each sub-image may be helpful, in this context it
is not clear that the samples from one iteration are any bet-
ter than those from another because they all used the same
per-sample parameters. We obtained more samples in places
that needed it, but not better samples.

The path tracing algorithm differs from a standard ver-
sion only in how pixel locations are chosen. The improve-
ment due to PMC-IP sampling is more pronounced in this
situation because some areas of the image (the caustic, for
instance) have a much higher variance than others due to the
difficulty of sampling such paths. We compare the results
in two aspects. First, we compare them visually. Working
toward a target image quality, we would continue iterating
the PMC-IP sampler until we were satisfied with the over-
all variance. In Fig. 5, we show the final result of the Cor-
nell box and the comparison between a set of snapshots of
the caustic region between the general PT algorithm and our
adaptive algorithm. We can see that the result of 16th (equiv-
alent to 64 SPPs) is even better than the result of 256 SPPs.
We also notice that even at diffuse regions, our method con-
verges more quickly than the general PT algorithm.

Second, we compare the efficiencies of our algorithm and
the PT algorithm. In this Table 1, we see that PMC-IP sam-
pling with a total of 16 SPPs improves the efficiency by a
factor of 3 to the uniform sampling with 16 SPPs and 32
SPPs. In this result, we ran our examples for a fixed num-
ber of iterations (bounded by computation time). Note that
because the PMC-IP sampler evenly spreads variance over
the image, an overall image error bound is very unlikely to
leave any high-error pixels.

Photon mapping is an industry standard method for
global illumination, and we implemented the above method
for the gather portion of a photon mapping implementation.
Figure 6 shows a room scene computed with the system.
Looking at the blown-up images of right wall by the lamp, in
Fig. 6, we can see that our algorithm converges more rapidly

Animation rendering with Population Monte Carlo image-plane sampler 549

Fig. 5 A Cornell Box image computed using the PMC-IP algorithm.
The left image is the final result using PMC-IP algorithm with 64 it-
erations, with each iteration averaging 4 SPPs. It is easier to find con-
verged values in diffuse regions than in the caustic region. Thus, we
compare the results by focusing on this region. The images in the sec-
ond row on the top, from top to down, are the cropped images of the
caustic region computed using non-adaptive path tracing with 16, 32,

64 and 128 SPPs. The images in the third row on the top, from top
to down, are intermediate results from the adaptive algorithm at 4, 8,
16 and 32 iterations when computing the top image. The right bottom
demonstrates that our adaptive sampler produces better visual results
at lower sample counts: on the top is the result from 256 SPPs, un-
adapted, and on the bottom image is the result of 16 adapting iterations
at an average of 4 SPPs per iteration

Fig. 6 The top is a room scene with complex models computed using
photon mapping and the adaptive image plane sampler. The bottom
row are blown up images of the upper right portion of the room scene.
The image was generated with a standard photon shooting phase. On
the left is the result of a final gather with 4 PMC-IP iterations, with

each iteration averaging 4 samples per pixel. Right is the result of a
standard photon mapping gather using 16 SPPs and using 16 shadow
rays per light to estimate direct lighting. Note the significant reduction
in noise with our methods

550 Y.-C. Lai et al.

Fig. 7 A sequence of images animation of Cornell Box scene are ren-
dered using the PMC-IP algorithm. The top row of images are the final
results of the 1st, 31st, 61st, and 91st frame using PMC-IP algorithm
with 16 iterations, with each iteration averaging 16 SPPs. The second
row are the α(i,j) estimated after rendering at the 1st, 31st, 61st, and

91st frame. The third row are the prediction of α(i,j) using prediction
algorithm in Sect. 3.2 for the 1st, 31st, 61st, and 91st frame. The corre-
sponding root mean square error between the prediction and final value
of α(i,j) are 9.28 × 10−7, 1.26 × 10−6, 8.81 × 10−7, and 1.16 × 10−6

to a smooth image. This is because PMC-IP puts more sam-
ples in this region because of its high variance nature. Our
algorithm improves the efficiency of the final result.

4.2 Animation rendered with the adaptive image plane
sampler

We apply our frame-based PMC-IP animation rendering al-
gorithm to two animation scenes: Cornell Box and Room.
Each contains the movement of the camera, objects, and
lights. For the Cornell Box scene, we render each frame with
16 iterations and with each iteration averaging 16 samples
per pixel by plugging in PMC-IP into general path tracing
algorithm. To do the comparison, we also render the anima-
tion with 256 samples per pixel by plugging in uniform sam-
ple distribution into the path tracing algorithm. For the room
scene, we render each frame with 64 iterations and each iter-
ation with averaging 16 samples per pixel and with uniform
1024 samples per pixel. The overhead of prediction of the
kernel function is roughly 5 s. The overhead of adjusting the
kernel function at each iteration is about 10 s. The cost of
tracing a view ray through a scene is the same because the
only difference is the start-up position of a view ray. Figure 7
shows the final results of 4 frames taken from a sequence

of animation in a Cornell Box scene. When visually check-
ing the prediction and final estimation, the position of the
high-probability region and the strength are similar. When
numerically analyzing the deviation between the prediction
and final estimation of the kernel function, α(i,j), with root
mean square error for each frame, the values are small with
a maximum of 1.26 × 10−6. The predictor does a good job
in tracking the high-sample region roughly corresponding
to the caustics lighting on the ground. As a result, our al-
gorithm consistently puts more effort at this region to get
a smoother caustics lighting region. When comparing the
animation result, we can see that the variance of the caus-
tics region when using the uniform 256 SPPs is roughly the
same as the variance of caustics regions when plugging in
our algorithm with 4 iterations, with averaging 16 SPPs per
iteration. Our algorithm with 16 iterations, with averaging
16 SPPs per iteration can generate a much smoother caus-
tics region.

Figure 8 shows the final results of 4 frames taken from
a sequence of animation in a room scene when plugging in
PMC-IP and plugging in uniform sample distribution with
the path tracing. We notice that our algorithm distributes
more samples to high variance regions and therefore ren-
ders images with less noise spikes. In addition to even dis-

Animation rendering with Population Monte Carlo image-plane sampler 551

Fig. 8 A room scene is rendered using the PMC-IP algorithm. The
top row of images are the final result using PMC-IP algorithm with
64 iterations, with each iteration averaging 16 SPPs at 1st, 31st, 61st,
and 91st frame. The second row are the final results using general path

tracing algorithm with 1024 sample per pixel at 1st, 31st, 61st, and
91st frame. There are obvious less artifacts existing in all four frames.
When watching the animation, the noisy spike keep popping up in the
room scene animation using path tracing algorithm

tribution of variance on the image plane, our algorithm uses
the prediction of the kernel function to incorporate the tem-
poral information of the sample distribution among con-
secutive frames. As a result, the inconsistency among con-
secutive frames is lower. We can observe this from how
the chance of a noise spike popping up in the animation
rendered by using general path tracing algorithm is higher
than the chance in the animation rendered with our algo-
rithm. The result is a more perceptually pleasant anima-
tion.

5 Conclusion

Adaptive image-plane sampling, derived from a PMC frame-
work, learns to become an effective sampler based on the re-
sults from early iterations. Instead of starting from a uniform
distribution, we use computer vision techniques to predict
the start-up kernel function based on the previous results.
This start-up kernel function shifts part of the uniformly
distributed samples from regions with low visual variance
to regions with high visual variance on the image plane and
also provides us a base of considering temporal coherence
of kernel functions among consecutive frames. The adap-
tive algorithm automatically adjusts the kernel function to
approximate the ideal image-plane sample distribution. The
prediction and adaptation of the kernel function can both
improve the rendering efficiency and temporal consistency
among frames. The pixel-position generator is a common
component in many basic ray-tracing algorithms. PMC-IP
sampler could be used as a plug-in component for essen-
tially any algorithm that forms light paths through the eye,

including the gather phase of photon mapping, bi-directional
path tracing, irradiance caching, and so on. We have shown
how photon mapping can use PMC samplers in the final
gathering phase.

There are several future research directions. First, we ap-
ply the temporal prediction for the pixel-position distribu-
tion. In addition, direct lighting is another main factor for
the quality of generated images. The importance of lights to
a point in the scene should also be temporally coherent. If
we can use similar prediction for the importance of lights,
we can use more direct-lighting samples to estimate the in-
tensity from an important light. Second, we only use percep-
tual metrics suitable for measuring the performance of ren-
dering a single frame. However, it cannot measure human’s
sensitivity for the temporal inconsistency among consecu-
tive frames. The sensitivity of the temporal inconsistency is
very important cue for survival. A proper metrics to eval-
uate the performance among consecutive frames can allow
us to further adjust our kernel functions to take the entire
rendering sequence into account instead of a frame-based
manner. Third, now we use a fixed number of iterations and
a fixed number of samples per pixel when rendering a frame.
However, some frames may need less samples than others.
A convergence test on each frame can terminate the render-
ing process earlier. One step further, we may even want to
have method that can predict the number of iterations and
samples per pixel needed to generate a smooth image from
the previous frames.

PMC algorithm is useful to take advantage of correlated
information. The Kalman filter is a well-known example. We
believe that it can provide proper solution to exploit the cor-
related and temporal-coherence information existing in in-
tegrals for animation rendering. In addition, motion analysis

552 Y.-C. Lai et al.

of a film in the vision community provides us with tech-
niques to explore the temporal coherence which may be the
key to render a consistent animation in an efficient way.

References

1. Aydin, T., Mantiuk, R., Myszkowski, K., Seidel, H.: (2008)
2. Baker, S., Black, M.J., Lewis, J., Roth, S., Scharstein, D., Szeliski,

R.: A database and evaluation methodology for optical flow. In:
IEEE ICCV (2007)

3. Bolin, M.R., Meyer, G.W.: A perceptually based adaptive sam-
pling algorithm. In: SIGGRAPH ’98, pp. 299–309 (1998)

4. Dayal, A., Woolley, C., Watson, B., Luebke, D.: Adaptive frame-
less rendering. In: Proc. of the 16th Eurographics Symposium on
Rendering, pp. 265–275 (2005)

5. Dippé, M.A.Z., Wold, E.H.: Antialiasing through stochastic sam-
pling. In: SIGGRAPH ’85, pp. 69–78 (1985)

6. Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Convergence of
adaptive sampling schemes. Technical Report 2005–2006, Uni-
versity Paris Dauphine (2005). http://www.cmap.polytechnique.fr/
~douc/Page/Research/dgmr.pdf

7. Farrugia, J.P., Péroche, B.: A progressive rendering algorithm us-
ing an adaptive pereptually based image metric. Comput. Graph.
Forum (Proc. Eurograph. 2004) 23(3), 605–614 (2004)

8. Ferwerda, J.A., Pattanaik, S.N., Shirley, P., Greenberg, D.P.:
A model of visual adaptation for realistic image synthesis. In:
SIGGRAPH ’96, pp. 249–258 (1996)

9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a par-
adigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 24(6), 381–395 (1981).
doi:10.1145/358669.358692

10. Ghosh, A., Doucet, A., Heidrich, W.: Sequential sampling for
dynamic environment map illumination. In: Proc. Eurographics
Symposium on Rendering, pp. 115–126 (2006)

11. Glassner, A.: Principles of Digital Image Synthesis. Morgan Kauf-
mann, San Mateo (1995)

12. Hesterberg, T.: Weighted average importance sampling and defen-
sive mixture distributions. Technometrics 37, 185–194 (1995)

13. Kirk, D., Arvo, J.: Unbiased sampling techniques for image syn-
thesis. In: SIGGRAPH ’91, pp. 153–156 (1991)

14. Lai, Y., Fan, S., Chenney, S., Dyer, C.: Photorealistic image ren-
dering with population Monte Carlo energy redistribution. In: Eu-
rographics Symposium on Rendering, pp. 287–296 (2007)

15. Lai, Y.C., Liu, F., Zhang, L., Dyer, C.: Efficient schemes for Monte
Carlo Markov chain algorithms in global illumination. In: ISVC
’08: Proceedings of the 4th International Symposium on Advances
in Visual Computing, pp. 614–623 (2008)

16. Lee, M.E., Redner, R.A., Uselton, S.P.: Statistically optimized
sampling for distributed ray tracing. In: SIGGRAPH ’85, pp. 61–
68 (1985)

17. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

18. Lucas, B., Kanade, T.: An iterative image registration technique
with an application to stereo vision. In: Proc. of International Joint
Conference on Artificial Intelligence, pp. 674–679 (1981)

19. Mantiuk, R., Myszkowski, K., Seidel, H.P.: Visible difference
predicator for high dynamic range images. In: Proceedings of
IEEE International Conference on Systems, Man and Cybernet-
ics, pp. 2763–2769 (2004)

20. Mitchell, D.P.: Generating antialiased images at low sampling
densities. In: SIGGRAPH ’87, pp. 65–72 (1987)

21. Painter, J., Sloan, K.: Antialiased ray tracing by adaptive progres-
sive refinement. In: SIGGRAPH ’89, pp. 281–288 (1989)

22. Pharr, M., Humphreys, G.: Physically Based Rendering from The-
ory to Implementation. Morgan Kaufmann, San Mateo (2004)

23. Purgathofer, W.: A statistical method for adaptive stochastic sam-
pling. In: Proc. EUROGRAPHICS 86, pp. 145–152 (1986)

24. Ramasubramanian, M., Pattanaik, S.N., Greenberg, D.P.: A per-
ceptually based physical error metric for realistic image synthesis.
In: SIGGRAPH ’99, pp. 73–82 (1999)

25. Rigau, J., Feixas, M., Sbert, M.: New contrast measures for pixel
supersampling. In: Proc. of CGI’02, pp. 439–451. Springer, Berlin
(2002)

26. Rigau, J., Feixas, M., Sbert, M.: Entropy-based adaptive sampling.
In: Proc. of Graphics Interface 2003, pp. 149–157 (2003)

27. Schlick, C.: An adaptive sampling technique for multidimensional
integration by ray-tracing. In: Proc. of the 2nd Eurographics Work-
shop on Rendering, pp. 21–29 (1991)

28. Stokes, W.A., Ferwerda, J.A., Walter, B., Greenberg, D.P.: Per-
ceptual illumination components: a new approach to efficient,
high quality global illumination rendering. In: SIGGRAPH ’04,
pp. 742–749 (2004)

29. Szeliski, R.: Image alignment and stitching: A tutorial. Tech. Rep.
MSR-TR-2004-92, Microsoft Research (2006)

30. Tamstorf, R., Jensen, H.W.: Adaptive sampling and bias estima-
tion in path tracing. In: Proc. of the 8th Eurographics Workshop
on Rendering, pp. 285–296 (1997)

Yu-Chi Lai received the B.S. from
National Taiwan University, Taipei,
ROC, in 1996 in Electrical Engi-
neering Department. He received
his M.S. and Ph.D. degrees from
University of Wisconsin—Madison
in 2003 and 2009 respectively in
Electrical and Computer Engineer-
ing and his M.S. and Ph.D. degrees
in 2004 and 2010 respectively in
Computer Science.
He is currently an assistant profes-
sor in NTUST and his Research in-
terests are in the area of graphics,
vision, and multimedia.

Stephen Chenney received his a
Ph.D. in 2000 from the Computer
Science division at the University of
California at Berkeley. He is current
a programmer in Emergent Game
Technology.

http://www.cmap.polytechnique.fr/~douc/Page/Research/dgmr.pdf
http://www.cmap.polytechnique.fr/~douc/Page/Research/dgmr.pdf
http://dx.doi.org/10.1145/358669.358692

Animation rendering with Population Monte Carlo image-plane sampler 553

Feng Liu received the B.S. and
M.S. degrees from Zhejiang Univer-
sity, Hangzhou, China, in 2001 and
2004, respectively, both in computer
science. He is currently a Ph.D. can-
didate in the Department of Com-
puter Sciences at the University of
Wisconsin-Madison, USA.
His research interests are in the ar-
eas of graphics, vision and multime-
dia.

Yuzhen Niu received the B.S. de-
gree from Shandong University,
Jinan, China, in 2005 in computer
science. She is currently a Ph.D.
candidate in the School of Com-
puter Science and Technology at the
Shandong University, China.
Her research interests are in the ar-
eas of graphics, vision and human-
computer interaction.

Shaohua Fan received his B.S de-
gree in Mathematics from Beijing
Normal University, M.S. degree in
Mathematical Finance from Courant
Institute at NYU, and Ph.D. in com-
puter science from University of
Wisconsin-Madison. He is currently
a professor at financial engineering
research center at Suzhou Univer-
sity, China and a quantitative re-
searcher at Ernst & Young in New
York.
His research interests are statisti-
cal arbitrage, high-frequency trad-
ing, and Monte Carlo methods for
financial derivatives pricing.

	Animation rendering with Population Monte Carlo image-plane sampler
	Abstract
	Introduction
	Related work
	PMC-IP: image-plane sampling
	Integrating the sampler into a global rendering system
	Predict a good initial start-up kernel
	Adapting the PMC-IP kernel
	Deterministic mixture sampling

	Results
	Static image rendering
	Animation rendered with the adaptive image plane sampler

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

