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ABSTRACT
With more and more data being stored in the cloud, securing
multimedia data is becoming increasingly important. Use of
existing encryption methods with cloud services is possible,
but makes many web-based applications difficult or impossi-
ble to use. In this paper, we propose a new image encryption
scheme specially designed to protect JPEG images in cloud
photo storage services. Our technique allows efficient recon-
struction of an accurate low-resolution thumbnail from the
ciphertext image, but aims to prevent the extraction of any
more detailed information. This will allow efficient storage
and retrieval of image data in the cloud but protect its con-
tents from outside hackers or snooping cloud administrators.
Experiments of the proposed approach using an online selfie
database show that it can achieve a good balance of privacy,
utility, image quality, and file size.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; I.4.2 [Image Processing
and Computer Vision]: Compression (Coding)
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Multimedia encryption; Image security; Privacy

1. INTRODUCTION
As network connectivity continues to increase, cloud ser-

vices have become perhaps the most common tools for stor-
ing and sharing photos. As early as 2010, Facebook was
already receiving tens of millions of new images every day
[2]. The idea of moving all one’s personal files to the cloud
is increasingly popular because it offers a number of ben-
efits over earlier approaches, including low cost, worldwide
availability, built-in redundancy against hardware or net-
work failure, and nearly infinite storage capacity.
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At the same time, the security and privacy of today’s cloud
services leaves much to be desired. Users must trust the
operators of the cloud infrastructure to protect their data
against malicious outsiders seeking to steal secrets, as in
the 2014 compromise of Apple iCloud accounts [7], in which
intimate photos were stolen from hundreds of victims and
posted to the Internet. Users must also trust that the cloud
service itself (or its employees) will not misuse its access for
its own ends, as when Facebook used its members’ photos
to build a face recognition database [13].

A simple way to secure one’s multimedia data in the cloud
would be to encrypt all files before uploading them into the
cloud, using a key unknown to the cloud service. But the use
of encryption presents its own challenges. First, traditional
file encryption tools like PGP or openssl produce opaque
binary byte streams as output, whereas the cloud photo
services expect to receive only valid image files. Format-
compliant encryption schemes can encrypt the image data
while maintaining valid file formats. Recent work on P3 [12]
and Cryptagram [17] has proposed using similar schemes to
protect images posted to social networking sites. However,
even format-compliant encryption still breaks much of the
useful functionality that made the cloud services popular
in the first place, because the cloud service can no longer
perform meaningful computations on the data.

One particularly painful limitation that encryption cre-
ates for photo management services is that the service can
no longer create useful low-resolution “thumbnail” versions
of the images it stores. Each user may store hundreds or
thousands of photos, each of which may be a few megabytes
in size. Normally, the cloud service generates reduced res-
olution versions of each photo so the user can preview her
collection without downloading hundreds of megabytes ev-
ery time she visits the page. Without the thumbnails, even a
simple task like finding a certain photo becomes much more
difficult; it does not help that cameras tend to create images
with non-informative filenames like DSC0293.JPG.

In other applications, it may be useful to allow the cloud
service to perform some analysis on the uploaded images.
For example, some security cameras can upload a snapshot
to the cloud whenever they detect motion. The cloud ser-
vice then uses its greater processing power to perform more
intensive image processing to look for the presence of a hu-
man in the image. It would be nice if we could give the
cloud service just enough information to do its job, while
still allowing a user to log in from her mobile device to re-
trieve and decrypt the full-resolution image that triggered
an alarm.



Figure 1: Different Approaches to Cloud Storage of Images. (a) Images stored in plaintext are available to both user and
hacker. (b) Conventionally encrypted. Less usable for the client but secure from attackers. (c) Thumbnail-preserving. Attacker
has access to the obscured version only. Users can preview thumbnails, then download at full resolution and decrypt locally.

In this paper, we propose an image encryption scheme
for images that allows the cloud service to create accurate,
reduced resolution thumbnails from the encrypted images,
but prevents the extraction of more detailed information.
Our goal is not to provide perfect security, but rather to
protect privacy in images stored online, while still allowing
convenient use of today’s cloud services. To be useful in
practice, any such scheme must:

1. Support the image formats used in popular cloud ser-
vices like Flickr, Apple iCloud, Google Drive, and Face-
book. In practice, this means support for JPEG.

2. Obscure the image data sufficiently to prevent the cloud
service or an attacker from recovering fine details from
the image, for example revealing the faces (or other
body parts) of people in the photo.

3. Preserve coarse perceptual features of the image so
that the user can effectively manage large photo col-
lections online, using low-resolution versions of the im-
ages generated by the cloud service. A user who knows
what the original photo looks like can recognize it triv-
ially from the thumbnail.

4. Enable the user to reverse the encryption to recover a
high-quality representation of the original image from
the encrypted image.

5. Degrade gracefully when the cloud service compresses
the obfuscated image to save on storage space. Face-
book and other social networking services are known to
apply aggressive compression to all uploaded photos.

Additionally, we would like to minimize the increase in file
size incurred by the obfuscation, because many users access
cloud services via mobile devices over slow or expensive wire-
less links. We also avoid reliance on trusted third parties as
in P3 [12].

We experiment with and demonstrate the utility of the
proposed approach with user-generated images from an on-
line selfie dataset. Our results show that our approach can
obscure interesting features in real user-generated images
from the web, while maintaining acceptable image quality
and file size. In the remainder of this paper, we provide
some necessary background and related work. We then fol-
low with a description of the proposed approach, some ex-
perimentation, and a discussion.

2. BACKGROUND AND RELATED WORK

2.1 Securing Data
Typically, to protect the confidentiality of sensitive data

against a nosy third party, the best approach is to encrypt
it using a rigorously vetted encryption scheme and a secret,
hard-to-guess key. Many symmetric encryption schemes are
built on block ciphers, for example AES-GCM is the block
cipher AES [13] in Galois-counter mode [14].

There are a number of desirable properties for any encryp-
tion scheme. Most importantly, it should be computation-
ally infeasible for anyone who does not have the key to re-
cover the original data (the “plaintext”) from the encrypted
“ciphertext”; this is called one-wayness. Most current en-
cryption schemes also aim to provide much stronger secu-
rity, so that the adversary cannot learn anything at all—not
even a single bit—about the plaintext from the ciphertext,
even if he has access to a large number of (plaintext, cipher-
text) pairs encrypted under the same key [15]; this is called
semantic security.

In this work, our goal is a scheme that is one-way but not
semantically secure. We want to prevent the adversary from
learning the true values of our pixels, but we intentionally
reveal coarser features, including the average color in each
block of the image. We note that the approach presented
here also reveals the set of pixel values in each block of
the image. Because this technique reveals so much more



information than a typical encryption scheme, the reader
may find it more intuitive to think of this as a reversible
obfuscation method.

2.2 Multimedia Cryptography
Multimedia cryptography techniques typically focus on

taking advantage of the fact that the image data is (or is
going to be) highly compressed and more or less random in
byte distribution. As such, lighter-weight encryption tech-
niques can be employed to encrypt and decrypt the stream
[8, 14, 16].

More closely related to our approach is work on partial im-
age encryption [3, 20, 19, 15, 10]. Stütz and Uhl’s transpar-
ent encryption technique for JPEG2000 [15] is thumbnail-
preserving and uses a traditional encryption method (AES)
to achieve very good security; unfortunately it only works
with the relatively rare JPEG2000 format. Unterweger and
Uhl’s bitstream encryption for JPEG [19] is also similar to
our approach in many ways. Because they operate on the
compressed JPEG bitstream rather than on the pixels, they
incur no increase in file size. At the same time, their tech-
nique does create some visual artifacts, and it is not guar-
anteed to preserve an accurate thumbnail.

3. THUMBNAIL PRESERVING
ENCRYPTION

Our encryption scheme is essentially a special purpose,
wide block, tweakable block cipher [9] for image data. Given
an image of MxN pixels, a secret key k, and a block size
B, we divide the image spatially into blocks of neighboring
pixels, ie BxB squares. The goal is to encrypt each block
such that the cipher image reveals the average pixel value in
the block but nothing more. This allows an untrusted third
party who does not posess the key to re-construct an accu-
rate M/B x N/B pixel thumbnail, where each block in the
cipher image corresponds to a single pixel in the thumbnail.
This has the desired effect of preserving coarse features of
the image—those larger than the block size—while obscur-
ing fine details smaller than the block size.

Naturally, a user who has the key can decrypt the cipher
image to recover a full resolution MxN image. Our en-
cryption scheme is carefully designed so that, even if the
cipher image has been lossily compressed with JPEG, the
decrypted image still maintains high fidelity to the original,
and the image quality degrades gracefully as the level of
JPEG quantization increases.

3.1 Key Derivation
Given an input image and a secret passphrase, we use the

passphrase to derive a secret symmetric key K using a pass-
word based key derivation function [11]. We also use some
public information about the image, such as its filename, as
a “salt” in the key derivation function; this makes it more
difficult for an adversary to guess our key and ensures that
we derive a different key for each unique filename.

3.2 Color Space Transformation
In the following sections, we describe techniques for oper-

ating on images as two-dimensional arrays of greyscale pixel
values. We treat a color images as a collection of three such
2-d arrays or “planes”, one for each dimension of the color
space, for example R,G,B or Y,U,V.

JPEG uses the YUV color space, where pixel values are
represented by a luminance value, Y, and two chrominance
values, U and V. Because the human eye is more sensitive to
changes in brightness than in color, JPEG typically stores
the U and V channels at half the resolution of the Y channel.
Given a JPEG image as input, we simply decompress it to
extract the Y, U, and V planes. If we are given an RGB
image as input, we first convert it to the YUV colorspace
and subsample the chrominance channels at 4:1:1 just like a
JPEG encoder would.

We encrypt each plane independently using a unique key.
We use the password-derived key K to compute a key for
each color plane as a pseudorandom function (PRF) of the
name of the plane. In our prototype implementation, we use
HMAC-SHA1 as our PRF, so we compute the key for the Y
plane as KY = HMACK(“Y”).

After encryption, we recombine the Y, U, and V planes
to arrive at a raw uncompressed YUV representation of the
cipher image. Finally, the cipher image YUV array (with
its subsampled UV planes) is passed to the JPEG encoder,
which then compresses the data in the regular way.

We take this approach to better align the encryption with
the JPEG compression process. In early experiments, we
investigated encrypting by operating on the full R,G,B or
Y,U,V pixels as a single plane. While this produced accept-
able results for lossless PNG images, with JPEG it led to
significant artifacts and loss of color in the decrypted image.
The reason was that dissimilar pixels in the original image
were often placed next to each other in the permutation step.
Then, when the JPEG encoder performed its subsampling
on the U and V planes, much of the original color detail was
lost.

3.3 Block Encryption
Then, if our block size is B, we divide the image into

blocks of BxB pixels, and we encrypt the pixels in each
block by first permuting the order in which they appear.
Because each block can be encrypted independently of all
the others, this design allows for a very fast implementation
in the future using parallel processing on a GPU.

We use the (x, y) coordinates of the block as a “tweak”
in our block encryption algorithm [9]. The tweak ensures
that, even if the same block of pixel values appears at sev-
eral different locations in the image, it will be encrypted
differently at each location. For the block located at (x, y)
in an image plane P having key KP , we seed a cryptograph-
ically secure pseudorandom number generator with the seed
s = HMACKP (x||y). (The || operator denotes concatenta-
tion.) We then use the PRNG to permute the pixels in the
block as follows.

We shuffle the locations of the pixels within the block, us-
ing our cryptographically secure PRNG to drive a random
shuffle algorithm from Fisher and Yates [5]. We chose the
Fisher-Yates shuffle because, when used with a good pseudo-
random number generator, it makes all permutations of the
input equally likely. As a result, the locations of the pixels
in the cipher image give the adversary no information about
their original locations. If he is to reconstruct the image, he
must rely on the values of the pixels to infer which ones go
where. With a sufficiently large block size, shuffling alone
may actually give us some reasonable security (see Section
3.5). Figure 2 shows an example 320x320-pixel image en-
crypted with 32x32 blocks.



Figure 2: (left) Original and (right) 32x32 block-shuffled

3.4 Alternative: Recursive Block Encryption
As an alternative to the baseline approach above, we also

propose the following scheme for use with large images, or
in applications where efficiency and image quality are prior-
itized over high security.

As before, we first derive a secret symmetric key for the
image and divide the image up into BxB-pixel blocks. Next,
we divide each BxB block into a (B/b)x(B/b) grid of smaller
bxb-pixel sub-blocks. (Because JPEG uses 8x8-pixel blocks
in its compression algorithm, we set b = 8.) We seed the
PRNG as before and use the Fisher-Yates algorithm to per-
mute the location of the sub-blocks within the block. Fi-
nally, we encrypt the pixels in each bxb sub-block using the
algorithm from Section 3.3.

Figure 3 shows an example of this technique, using 32x32-
pixel blocks and 16x16-pixel sub-blocks. Part (A) shows
an intermediate result after the sub-blocks have been rear-
ranged, but before the pixels have been encrypted. Part (B)
shows the final encrypted image. Note that we chose a very
large sub-block size for this image to illustrate the technique.
In practice, the sub-blocks should be made much smaller to
achieve good JPEG compression.

Figure 3: (left) After shuffling 16x16 sub-blocks within
32x32 blocks and (right) after shuffling pixels in sub-blocks

3.5 Security
It’s not clear what is the best way to evaluate the security

of our scheme. As a first approximation of the difficulty of
reconstructing the image, we note that the number of possi-
ble permutations increases as the factorial of the number of
pixels in the block. So for example, a 32x32 block contains
1024 pixels; there are therefore 1024! ≈ 4 × 102567 ways to
re-order its pixels. In comparison, there are only 2256 ≈ 1077

possible AES-256 keys. This is the general approach used
by Unterweger and Uhl for evaluating the security of their
partial image encryption scheme in [19]. However, this ap-
proach is problematic because it focuses only on brute force
attacks, ignoring the possibility of cryptanalytic or statisti-
cal attacks.

The most promising attack method may be to start with
the low-resolution thumbnail and use super resolution tech-
niques [6, 21] to increase its effective resolution. Super res-
olution can commonly be used to double the resolution of
an image; if our attacker can do this, then he can replace
each pixel in our thumbnail with a 2x2 grid of pixels. Then,
he can go back to the ciphertext image and examine the
pixels in the block corresponding to the given pixel in the
thumbnail. He can then attempt to use the 2x2 grid of su-
perresolution pixel values to place each pixel in the block
back into the quadrant where it started. If he is successful,
he can repeat this process several times to recover a much
higher resolution version of the image.

Fortunately, it appears that this attack may be computa-
tionally quite hard. When the attacker attempts to put the
pixels back into the correct quadrant of the block, for an
NxN block he must find N2/4 pixels whose average value
is the value of the super resolution pixel for that quadrant.
This is an instance of the d-SUM problem, a generalization
of the more well-known 3SUM problem. The best known
lower bound [4] for d-SUM given n numbers is approximately

O(nd/2). When d = n/4 as we have here, d-SUM is approx-

imately O(nn/8).

4. EXPERIMENTATION
Knowing that our techniques tend to create cipher images

with more high frequency components than in natural im-
ages, we are interested in the impact of our encryption on the
encrypted file size and the quality of decrypted images. In
the remainder of this section, we describe the image dataset
used and the results of our initial empirical evaluation.

4.1 Image Dataset
To study the performance impact of our techniques, we

require an image dataset. Because the block size of permu-
tation is currently fixed across the entire image, we sought
an image set with roughly the same image content per pixel
density. This allows us to look at the effect of encryption
on images in a more meaningful way. For this reason, we
chose an online database of “selfies” collected from Insta-
gram by the Selfiecity project [18]. With selfies, the distance
to camera and the object of the image (the person in this
case) will be roughly constant. From this database, we ran-
domly selected 50 images for this initial study. The selfies
are 640x640 pixel JPEGs; 48 of the 50 are color images and
2 are black and white. Most were taken with mobile phones.

4.2 File Size and Image Quality
We encrypted each of the 50 images using the two tech-

niques described in Section 3, with block sizes ranging from
8x8 up to 256x256. Each encrypted image was then JPEG
compressed using the ImageMagick convert utility on Linux,
with quality parameter ranging between 10 and 95. Finally,
each cipher image was decrypted to recover the pixels of the
original image, albeit with some loss due to JPEG.



(a) File size for block-permuted images (b) File size for recursively permuted images

(c) Quality of decrypted images with block-based permutations (d) Quality of decrypted images with recursive permutations

Figure 4: Experimental Results

4.2.1 Size of the Encrypted Images
Figure 4a and Figure 4b show the average size of images

encrypted using the simple block encryption and the recur-
sive encryption technique, respectively. The average file size
of the original plaintext images was 56 kB.

With the simple block-based approach, as the block size
increases, it becomes more and more likely that the per-
mutation destroys spatial locality in the image by placing
pixels from distant parts of the image next to each other.
This creates high-frequency noise in the ciphertext image,
which causes a large increase in file size, particularly for
less-aggressive JPEG settings.

4.2.2 Quality of the Decrypted Images
Figure 5 shows two example images decrypted after the

ciphertext was JPEG compressed with q=85. Figure 4c
and Figure 4d show how the average peak signal-to-noise
ratio (PSNR) for the decrypted images changes as the block
size increases. When we use the simple block-based encryp-
tion scheme, doubling the block size tends to decrease the
PSNR by about 1-2 dB. With the recursive block encryp-
tion scheme, the PSNR is relatively unaffected by changes
in block size. This is because JPEG operates on 8x8 blocks,
and the pixels within each 8x8 sub-block in the encrypted

image are still roughly similar to one another even after be-
ing permuted and perturbed.

Figure 5: Decrypted images (left) 16x16 blocks and (right)
64x64 blocks

5. CONCLUSIONS AND FUTURE WORK
We have presented a new image encryption algorithm for

protecting JPEG image data stored in the cloud. It provides
tunable privacy through an adjustable block size and allows
the untrusted cloud service to reconstruct an accurate low-
resolution thumbnail of the encrypted photo. Experiments



with a data set of real selfie images from the web show that,
by selecting an appropriate block size, we can achieve a good
balance between convenience, privacy, image quality, and file
size.

In future work, to make the adversary’s job even more
difficult, we will apply additional transformations to modify
the pixel values after shuffling. The key property for these
transformations is that they must (approximately) preserve
the average value of the pixels in the block—otherwise the
encryption will no longer be thumbnail-preserving. To achieve
reasonable compression and high quality on natural images,
we also approximately preserve the standard deviation of
the pixels in each block. The simplest way to perturb pixel
values without shifting the mean is to add some small noise
to each pixel, where the noise is drawn from a statistical
distribution with mean zero and relatively small standard
deviation. For example, in additive white Gaussian noise
(AWGN) with shape parameter σ, we set each pixel pi equal
to pi = pi + ni, where ni ∼ N(0, σ).

We will also investigate another approach, which also pre-
serves the sample standard deviation. We first compute the
mean value m of the pixels in the block and the difference
between each pixel pi and the mean, di = pi −m. Then we
set the new value for each pixel value to be:

pi =

{
m+ di, with probability 0.5

m− di, with probability 0.5

Each pixel has a 50% chance of being “reflected” across the
sample mean and a 50% chance of staying the same. In
either case, the mean is unchanged, and each value in the
sample stays the same distance away from the mean, leav-
ing the sample standard deviation unchanged. This way,
blocks that are very uniform or low-frequency, e.g. a patch of
clear blue sky, can still be compressed extremely efficiently,
while blocks containing more interesting features are more
strongly perturbed.

Finally, we will also develop a better understanding of the
relationship between our encryption parameters (eg. block
size) and the cloud service’s ability to perform various analy-
ses on the uploaded images. For example, work on using su-
per resolution to improve face recognition [1] indicates that
relatively large blocks may be required to prevent the recog-
nition of people in our photos.
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