
Video Summagator: An Interface for Video Summarization
and Navigation

Cuong Nguyen, Yuzhen Niu, and Feng Liu
Portland State University
Portland, OR 97207-0751

{cuong3,yuzhen,fliu}@cs.pdx.edu

ABSTRACT
This paper presents Video Summagator (VS), a volume-based
interface for video summarization and navigation. VS models
a video as a space-time cube and visualizes the video cube
using real-time volume rendering techniques. VS empowers
a user to interactively manipulate the video cube. We show
that VS can quickly summarize both the static and dynamic
video content by visualizing the space-time information in
3D. We demonstrate that VS enables a user to quickly look
into the video cube, understand the content, and navigate to
the content of interest.

Author Keywords
Video Visualization; Navigation; Summarization

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Graphical User Interfaces

INTRODUCTION
Video capturing and displaying devices are ubiquitous now.
Capturing, sharing, and watching videos has become a com-
mon practice. Meanwhile, the human video interaction tools,
mainly video players, remain almost unchanged in user in-
terface design. A typical video player consists of a display
window to show a video one frame at a time and a slider to
navigate through the video. While such a player prevails, it
is often inconvenient for video browsing. It cannot fully and
quickly convey important aspects of the video content.

This paper describes Video Summagator (VS), a 3D volume-
based interface for video summarization and navigation. VS
considers a video as a cube, with time as the third dimen-
sion, as shown in Figure 1. It employs real-time volume ren-
dering techniques to quickly visualize the cube in a 3D vol-
ume [10]. VS seamlessly combines video summarization and
navigation. By visualizing and deforming the video cube, VS
can quickly convey important visual content that otherwise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1. Video Summagator visualizes a video in 3D, allowing a user to
look into the video cube, and enables rapid visualization and navigation.

would be time-consuming to find and easy to miss. VS al-
lows a user to look into the video cube, summarize the video,
quickly identify the content of interest and navigate to it.

The main idea behind VS is to visualize a time sequence in
3D. VS is inspired by recent research that summarizes a video
clip into a 2D image [1, 5, 12]. VS extends the 2D display
space of these methods to 3D, which provides more visual-
ization space and better conveys space-time video content. It
also extends these methods with interactive video manipula-
tion and visualization, and handles a wider variety of camera
and object motion. An important aspect of VS is direct ma-
nipulation for video browsing inspired by [9, 13]. But VS is
different from these methods because it visualizes the whole
video, enables a user to manipulate the entire video cube,
and then navigate to the interesting part by clicking the cor-
responding region in the cube.

RELATED WORK
A rich literature exists on video summarization that selects
a key frame sequence or key segments from an input video
as a concise video representation. A good review can be
found in [22]. Our work is particularly relevant to video
summarization methods that represent a video clip as a still
picture like panorama and action synopsis [1, 5, 12, 21].
These methods can create high-quality pictures; however,
they are typically time-consuming. Compared to these meth-
ods, our work models a video as a cube and uses real-time
volume rendering techniques to show the video cube in 3D.
Our method supports interactive video cube manipulation and
navigation. While our method sometimes cannot create final

images equal in quality to these dedicated video summariza-
tion methods, our results are good for quick video browsing.

Our work builds on video cubism research that models a
video as a space-time volume and manipulates a cut surface
through the volume to display the video content [11]. This
method has also been extended for non-photorealistic ren-
dering [16]. Unlike these methods, our method visualizes
the whole video volume instead of the cut surface to more
concisely summarize the video. Our method also allows in-
teractive volume manipulation to visualize complex motion.
Bennett and McMillan extend video cubism for convenient
space-time video editing [3]. Their method does not work for
visualization. Daniel and Chen visualize a video in a trans-
parent cube or other pre-defined volume [8]. This technique
has been extended to visualize human activities [4, 20]. Our
work extends it to support interactive video cube manipula-
tion to facilitate video summarization and browsing.

Our work is relevant to research on video player design.
Adaptive fast-forwarding is designed for quick video brows-
ing with predefined semantic rules [6]. The video speed and
playing speed are decoupled and content analysis is adopted
to play interesting shots at an intelligible speed [18]. Be-
sides the player bar, maps have also been used for browsing
domain-oriented videos, such as lecture videos [7] and tour
videos [17]. Our work is inspired by direct manipulation that
allows users to browse videos by directly dragging the video
content and frees them from the player bar [9, 13, 14, 15].
Unlike these methods, our method enables a user to manipu-
late the whole video cube and navigate to the interesting part
by clicking the corresponding region in the cube. Our work
is also relevant to video collection browsing in 3D that re-
constructs the 3D scene and uses video-based rendering to
create novel views [2]. Our method is different in that it does
not require 3D scene reconstruction although it visualizes the
video content in 3D. Our 3D visualization typically does not
correspond to the 3D scene structure.

VIDEO SUMMAGATOR
Two common types of user interaction with videos are
quickly skimming through a video for overview and slowly
navigating in interesting segments for detail [18]. We de-
velop Video Summagator (VS), a 3D volume-based interface,
to support both video summarization and navigation. Below
we first describe how we model and render a video as a cube
(volume), with time as the third dimension. We then describe
how VS supports a user to interactively manipulate the video
cube to visualize video content. We finally describe exem-
plary scenarios of using VS for summarization and naviga-
tion.

Video Cube Modeling and Rendering
We consider a video as a cube V that contains a set of voxels:

V = {vx,y,t|1 ≤ x ≤ w, 1 ≤ y ≤ h, 1 ≤ t ≤ n} (1)

where voxel vx,y,t corresponds to pixel (x, y) at frame t. w
and h are the video frame width and height, and n is the
number of video frames. Each voxel is associated with a set
of features, including the voxel’s 3D coordinates, color, and

(a) global shear

(b) skeleton-based deformation
Figure 2. Video cube deformation. VS supports a user to globally shear
the video cube to create a panoramic summarization (a). The user can
also use a spline interface to deform the cube to better arrange the video
content in the 3D space. For the example in (b), the user define three
control points (in green) to define a new spline to deform the cube.

opacity. A voxel takes its color from the corresponding pixel.
Its coordinates and opacity are controlled by a user for video
summarization and navigation, as described in the next sub-
section. With the volume features, VS uses the state-of-the-art
volume rendering techniques from the Visualization Toolkit 1

to quickly render the video cube.

User Interaction
A user interacts with VS by controlling three features of a
video cube: opacity, shape, and video frame sampling.

The voxel opacity value ranges from 0 to 1, with 0 being
fully transparent and 1 fully opaque. VS uses off-the-shelf
computer vision algorithms to detect dynamic voxels and as-
signs higher opacity values to them than the stationary ones to
clearly convey the video dynamics. VS allows a user to con-
trol the opacity values of the dynamic, static, and boundary
voxels using a slider interface.

VS supports a user to translate, rotate, scale, and deform a
video cube to clearly visualize its content. These user inter-
actions are mapped to the coordinates of the voxels. We use
the standard 3D interface for translation, rotation and scaling.
We design two interactive deformation modes in VS . One is
to shear the cube globally, as shown in Figure 2 (a). This
is implemented by applying a shearing transformation to the

1http://www.vtk.org

(a) front view

(b) side view
Figure 3. Video summarization. Rendering a video cube from the front
view often suffers from self-occlusion, as shown in (a). This problem can
often be solved by simply rotating the video cube, as shown in (b).

cube. The other is skeleton-based local shearing transforma-
tion. We define a video skeleton as a spline that is perpendic-
ular to each video frame. For the original cube, its skeleton is
a line parallel to the t axis. We provide a spline-based inter-
face for adjusting the skeleton to deform the video cube and
create the output volume. As shown in Figure 2 (b), a user can
create control points and move them to define a new skeleton.

VS uses two methods to select key frames, as rendering all the
video frames will lead to a cluttered visualization. The first
is frame-based uniform sampling (default rate 1/20). A user
can control the sampling rate through a slider-based interface.
Uniform sampling is used to create all the examples except
Figure 5. The second is importance sampling, which is more
applicable for a long video. We consider that the probability
of a frame being a key frame is proportional to the amount of
foreground motion. Then, we select a sequence of key frames
according to this distribution [19].

VS allows a user to get a quick overview of a video typically
with two steps: adjust the opacity values of the stationary and
dynamic pixels to see the activities and rotate the video cube
if there exists self-occlusion. Since VS renders the cube at
an interactive speed, these two steps together take less than
5 seconds, which is typically shorter than the video length.
With a preview of the video, the summarization can be further
improved by adjusting the cube parameters.

Video Summarization
We now show how VS can be used to summarize a range of
videos with different camera and scene motion.

(a) scene panorama

(b) action synopsis
Figure 4. Video summarization. A user creates scene panorama or ac-
tion synopsis by globally shearing the video cube.

Static camera with moving objects. Figure 3 shows a street
show video captured by an almost static camera. Dynamic
voxels are assigned bigger opacity values than the back-
ground ones to reveal the magician’s activity. For this video,
since the camera is almost static and the magician moves in
a small region, looking into the video cube suffers from self-
occlusion, as shown in Figure 3 (a). This problem can be
simply solved by rotating the cube, as shown in Figure 3 (b).
For (b), the opacity values for the left, back, and bottom cube
faces are set to a big value to better visualize the background
scene.

Panning camera motion. Consider a video with the cam-
era panning horizontally. VS enables a user to easily create a
panorama by shearing the video cube, as shown in Figure 4
(a). For this application, the opacity values for all the voxels
are uniformly set to 1. If the video contains a moving object,
VS then creates an action synopsis that visually depicts the
object activity, as shown in Figure 4 (b). For this example,
the moving objects are automatically separated horizontally
as the cube is being sheared. The opacity value for the back
and right cube face is set to 1 to visualize the background.

Moving camera following actions. Consider a video with
the camera following the athletes. VS supports a user to first
create a mosaic image by shearing the cube globally. Then,
the user refines the result with local adjustments using the
skeleton-based interface, as shown in Figure 2 (b). Since VS
provides online visual feedback, this can be done quickly. For
this example, the opacity values for the voxels on the key
frames are set to 0.9 and the others are set to 0.

Video Navigation
VS also provides an intuitive interface for video naviga-
tion. VS associates the (possibly curved) time axis with a
3D volume-based summarization. With the overview of the
video, a user can quickly navigate to the interesting video
segment by clicking and selecting the corresponding area in
the summarization. For example, given a surveillance video,
a user rotates the whole video cube so that the evolution of
video content shows clearly in the display window. Look-
ing into the video cube, the user spots the region in the cube
with human activity and selects this region by drawing a line
indicating the region of interest, as shown in Figure 5. VS
maps the selected region to the time axis by projection and
automatically navigates to the corresponding video segment.

time

Figure 5. Video navigation. Video Summagator enables a user to look
into the video cube and navigate to the interesting part by selecting the
corresponding area (marked in green) in the 3D summarization.

To handle a long video, we down-sample the video frame
size and adaptively sample the video frames using importance
sampling. On a desktop machine with 6G memory and AMD
Phenom II X6 2.8 GHz CPU, VS currently can allow a user to
interactively manipulate a video cube with as many as 3000
key frames with frame size 480×270. Figure 5 shows a video
cube that samples 1500 frames from an input video with to-
tally 10000 frames.

CONCLUSION
This paper described Video Summagator, a 3D volume-based
interface for interactive video summarization and navigation.
We model a video as a space-time cube and visualize the
video cube in a 3D volume using volume rendering tech-
niques. We show that Video Summagator supports a user
to manipulate the video cube to quickly summarize a video,
identify the content of interest, and navigate to it.

Currently, we use off-the-shelf computer vision algorithms
for moving object detection, which is sometimes not very re-
liable and causes visual artifacts, as shown in Figure 1. The
advance in computer vision research can benefit our results.
In future, we plan to extend VS to handle a streaming video
such as webcam videos. We also plan to integrate more video
analysis to better handle complex videos. Our visualization is
not necessarily physically correct, so we plan to design user
study to more thoroughly evaluate how people perceive the
video content from our summarization.

REFERENCES
1. Assa, J., Caspi, Y., and Cohen-Or, D. Action synopsis:

pose selection and illustration. ACM Trans. Graph. 24
(July 2005), 667–676.

2. Ballan, L., Brostow, G. J., Puwein, J., and Pollefeys, M.
Unstructured video-based rendering: interactive
exploration of casually captured videos. ACM Trans.
Graph. 29 (2010), 87:1–87:11.

3. Bennett, E. P., and McMillan, L. Proscenium: a
framework for spatio-temporal video editing. In ACM
Multimedia (2003), 177–184.

4. Botchen, R. P., Bachthaler, S., Schick, F., Chen, M.,
Mori, G., Weiskopf, D., and Ertl, T. Action-based
multifield video visualization. IEEE Trans. Vis. Comput.
Graphics 14 (2008), 885–899.

5. Caspi, Y., Axelrod, A., Matsushita, Y., and Gamliel, A.
Dynamic stills and clip trailers. Vis. Comput. 22
(September 2006), 642–652.

6. Cheng, K.-Y., Luo, S.-J., Chen, B.-Y., and Chu, H.-H.
Smartplayer: user-centric video fast-forwarding. In
ACM CHI (2009), 789–798.

7. Corsten, C. Dragonfly: spatial navigation for lecture
videos. In ACM CHI EA (2010), 4387–4392.

8. Daniel, G., and Chen, M. Video visualization. In IEEE
Visualization (2003), 409–416.

9. Dragicevic, P., Ramos, G., Bibliowitcz, J.,
Nowrouzezahrai, D., Balakrishnan, R., and Singh, K.
Video browsing by direct manipulation. In ACM CHI
(2008), 237–246.

10. Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C.,
and Weiskopf, D. Real-Time Volume Graphics. 2006.

11. Fels, S., Lee, E., and Mase, K. Techniques for interactive
video cubism. In ACM Multimedia (2000), 368–370.

12. Goldman, D. B., Curless, B., Salesin, D., and Seitz,
S. M. Schematic storyboarding for video visualization
and editing. ACM Trans. Graph. 25 (2006), 862–871.

13. Goldman, D. B., Gonterman, C., Curless, B., Salesin,
D., and Seitz, S. M. Video object annotation, navigation,
and composition. In ACM UIST (2008), 3–12.

14. Karrer, T., Weiss, M., Lee, E., and Borchers, J. Dragon:
a direct manipulation interface for frame-accurate
in-scene video navigation. In ACM CHI (2008),
247–250.

15. Karrer, T., Wittenhagen, M., and Borchers, J.
Pocketdragon: a direct manipulation video navigation
interface for mobile devices. In MobileHCI (2009),
47:1–47:3.

16. Klein, A., Sloan, P.-P. J., Colburn, R. A., Finkelstein, A.,
and Cohen, M. F. Video cubism. In Microsoft Research
Technical Report (2001), MSR–TR–2001–45.

17. Pongnumkul, S., Wang, J., and Cohen, M. Creating
map-based storyboards for browsing tour videos. In
ACM UIST (2008), 13–22.

18. Pongnumkul, S., Wang, J., Ramos, G., and Cohen, M.
Content-aware dynamic timeline for video browsing. In
ACM UIST (2010), 139–142.

19. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.
Numerical Recipes: The Art of Scientific Computing.
2007.

20. Romero, M., Vialard, A., Peponis, J., Stasko, J., and
Abowd, G. Evaluating video visualizations of human
behavior. In ACM CHI (2011), 1441–1450.

21. Teodosio, L., and Bender, W. Salient stills. ACM Trans.
Multimedia Comput. Commun. Appl. 1, 1 (2005), 16–36.

22. Truong, B. T., and Venkatesh, S. Video abstraction: A
systematic review and classification. ACM Trans.
Multimedia Comput. Commun. Appl. 3, 1 (2007),
3:1–3:37.

