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Abstract

With the development of Motion capture techniques, more and more 3D motion libraries

become available. In this paper, we present a novel content-based 3D motion retrieval algo-

rithm. We partition the motion library and construct a motion index tree based on a hierarchi-

cal motion description. The motion index tree serves as a classifier to determine the sub-library

that contains the promising similar motions to the query sample. The Nearest Neighbor

rule-based dynamic clustering algorithm is adopted to partition the library and construct

the motion index tree. The similarity between the sample and the motion in the sub-library

is calculated through elastic match. To improve the efficiency of the similarity calculation,

an adaptive clustering-based key-frame extraction algorithm is adopted. The experiment

demonstrates the effectiveness of this algorithm.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Motion capture techniques have been widely used in computer animation, film

making, game, etc. Optical, mechanical, or magnetic sensors are attached to the

joints of a human performer to record his movement, which can be used to drive

animated characters [1]. These techniques enable animators to produce realistic
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animations efficiently. With the popularity of motion capture systems, a large num-

ber of 3D motion libraries have been built.

However, problems occur when these 3D motion libraries are put into use, mainly

on the following two aspects:

1. How to make full use of existing motions. Although motion capture systems can
accurately record the motion of a performer, the captured motion does not nec-

essarily meet the requirements of animators in practice. Animators can hardly

predict exactly what motion they need, and even they can, they often change their

intentions. Moreover, because animated characters often interact with the envi-

ronment and other characters, existing motions need to be modified accordingly

before applied to animated characters. In addition, the captured motions need to

be adapted to the special configuration of different characters before retargeted to

them.
2. How to get desired motions from the library. It is difficult and tedious for users to

obtain required motions by browsing the library. The new animation technolo-

gies, such as [2], in which new motions are produced by extracting and synthesiz-

ing motions (fragments) similar to motion samples from the library, also demand

the technique for retrieving motion data automatically.

In these years, fruitful work has been proposed to make full use of the captured 3D

motion. A popular method is to adapt existing motions to new requirements through

interactive control, such as constrained-based methods [3–5], motion retargeting [6],
etc. Meanwhile, an attractive way is to apply techniques from signal and image

processing fields to motion adaptation and new motion generation [7,8]. Recently, a

more fantastic way is proposed to synthesize new motions from example [2,9–11].

That is to generate motions through selecting and piecing existing motions along a

specified path or according to statistical distributions.

To the best of our knowledge, however, no available algorithms have been pro-

posed to retrieve 3D motions based on their content. The most relevant work pro-

posed [2] is to choose appropriate motion fragments from an existing motion
library to synthesize required motions. This algorithm, however, is unsuitable for

the full-body motion retrieval, as motion match is executed by comparing partial

scripted key-frame motions with partial captured motions.

Inspired by content-based retrieval algorithms for retrieving multimedia data

based on the features automatically extracted from the content [12–15], we propose

a content-based motion retrieval algorithm. Particularly, desired motions are ob-

tained by submitting a similar sample in the form of a captured motion or a scripted

one. To achieve this goal, the following problems have to be addressed:
1. An effective motion representation is needed. Each motion is a frame sequence,

with each frame defining a posture. Because each posture is a configuration made

up of all the body joints and each motion is a harmonic combination of sub-mo-

tions of all these joints, an efficient description of the posture is required. The de-

scription should also address the different effects of each joint on determining the

posture.

2. An efficient match algorithm is demanded to calculate the similarity between two

motions. Each posture in a motion is defined by a frame with tens of parameters
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depicting the character configuration, and the temporal order among the posture/

frame sequence is essential, so an efficient and effective match algorithm is

demanded.

3. A key-frame extraction algorithm is required. Because each motion consists of a

large number of frames, it is time-consuming to calculate the similarity or distance
between two motions with these original data. To reduce the computational over-

head, key-posture sequences need to be extracted to calculate the similarity.

Aiming at the above challenges, we present a content-based 3D motion retrieval

algorithm. Specifically, we describe two main stages in this paper, first building a

motion index tree to structure the motion library, and then retrieving motions using

the motion index tree. Particularly, we adopt a hierarchical motion description to

represent a posture, based on which we partition the motion library hierarchically

and construct a motion index tree to facilitate motion retrieval. Nearest Neighbor
rule-based dynamic clustering algorithm is employed to partition the motion library

and construct the motion index tree. The similarity between two motions is calcu-

lated by elastic match. To improve the efficiency during the similarity calculation, we

adopt an adaptive clustering-based key-frame extraction algorithm to extract key-

posture/-frame sequences, which are used in elastic match. During the retrieving

stage, the motion index tree serves as a hierarchical classifier to determine the sub-

library that contains the promising similar motions to the query sample. Next, key-

frame/-posture sequences are extracted from the sample and the motion from the
sub-library respectively, and the similarity between them is calculated using elastic

match.

The remainder of this paper is organized as follows. In the next section, we give a

review on previous work. In Section 3, we give a brief description on the hierarchical

motion representation. In Section 4, we describe the construction of the motion in-

dex tree in detail. In Section 5, we describe the procedure of motion retrieval. We

discuss the experiment in Section 6 and conclude the paper in the last section.
2. Previous work

In this section, we first make a brief review on previous work on motion process-

ing, namely motion editing, motion analysis, and synthesis. Then we summarize re-

lated work with key-posture/key-frame extraction used in the paper.

2.1. Motion editing, analysis, and synthesis

Early research on motion processing aimed to provide convenient tools for inter-

active motion editing. A popular way is constraint-based method. Gleicher [3] and

Gleicher and Litwinowicz [4] proposed a space-time constraint-based method for ed-

iting a pre-existing motion such that it meets various requirements yet preserves its

original quality as much as possible. However, it is time-consuming to solve the con-

straint optimization problem in this method. To improve the efficiency, Lee and Shin

[5] presented a hierarchical approach, which divides the constraint optimization
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problem into two sub-processes: (1) the configuration of an articulated figure is ad-

justed to meet the constraint on each frame by an inverse kinematics solver and (2)

the motion displacement in each constrained frame is interpolated and thus

smoothly propagated to the nearby frames using a fitting technique. Another attrac-

tive method is the so-called motion signal processing. Bruderlin and Williams [7] ap-
plied techniques from image and signal-processing fields to designing, modifying,

and adapting motions. Similarly, Liu et al. [8] provided a series of tools for editing

motion at a high level by introducing wavelet transformation into motion analysis

and synthesis.

Recently, a fantastic technique, example-based motion synthesis, is proposed. Lee

et al. [9] developed a technique for controlling an animated character in real time us-

ing several possible interfaces, through which users can choose from a set of possible

actions, sketch a path on the screen and create animations by searching through a
motion database using a clustering algorithm. The approach of Li et al. [10] com-

bines some low-level noise driven motion generators with a high-level Markov pro-

cess to generate new motions with variations in fine details. Pullen and Bregler [2]

presented a motion capture assisted animation, which allows animators to key-frame

motions for a sub-set of Degree of Freedoms (DOFs) of a character and use motion

capture data to synthesize motion for the missing DOFs and add texture to those

key-framed. Kovar et al. [11] build a motion graph that encapsulates connections

among the motion library and synthesize motions by building walks on the graph.

2.2. Key-frame extraction

Because motion resembles video in their representation (i.e., both of them can be

represented as posture/frame sequences), we explore key-frame extraction algorithms

in video abstraction to find or adapt an appropriate one for extracting key-frames

from motions. Below we give a review on key-frame extraction from video.

In the earlier work such as [16,17], key-frames are selected by sampling video
frames randomly or uniformly at certain time intervals. Though this is a fast way

to extract key-frames, it neglects the actual video content. Therefore, many represen-

tative frames are missing, especially from short segments, whereas redundant frames

are extracted especially from long segments. To address this problem, shot-based

key-frame extraction algorithms are proposed. A video clip is first segmented into

shot sequences based on features such as color [15], motion [18,19], and then a cer-

tain frame in each shot, e.g., the first or the last frame, is selected as a key-frame.

Another way is sequential comparison-based method [20], in which the current frame
is compared with the last extracted key-frame. If the difference is significant, then the

current frame is selected as a new key-frame. To avoid successive selection in highly

active frames, a minimal interval between key-frames is set [21]. A special way is to

utilize the visual content as well as such information as corresponding audio streams

for key-frame detection [22,23].

As addressed in Kim and Hwang [24], previous key-frame extraction algorithms

relied mostly on low-level features and other readily available information instead of

using semantic primitives. Recently, object-based video abstract techniques have
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been presented in [25–27]. The representative work of object-based algorithms is re-

ported in Kim and Hwang [21,27]. The objects in each frame are first segmented and

identified through a moving-edge detection algorithm [28,29], and the first frame in

each shot is selected as the first key-frame. If the object number changes, the current

frame is selected as a new key-frame. Otherwise the dissimilarity between the current
frame and the recent extracted key-frame is calculated through measuring the dissim-

ilarity between two object masks extracted from the two frames, respectively, and if

it excesses a given threshold, a new key-frame is created. These object-based methods

work especially well in video surveillance systems. However, they are not suitable for

extracting key-frames from motion, as there is no object, even no background/fore-

ground in motion at all.

Because a large number of motions are nearly periodical, a promising method is

clustering-based extraction. Particularly, similar frames are clustered into the same
cluster, and a representative frame from each cluster is selected as a key-frame.

Ratakonda et al. [30] proposed a hierarchical video summarization using a pair-wise

K-means algorithm. However, this temporal constrained K-means clustering cannot

merge similar but temporally apart frames. Doulamis et al. [31] adopted a fuzzy

classifier to cluster all features extracted through a recursive shortest spanning tree

algorithm to predetermined classes. And a genetic algorithm is adopted to extract

key-frames by minimizing a cross-correlation criterion. This method is highly

time-consuming. Kim and Hwang [24] also present an object-based video abstraction
through Mean Shift Clustering.
3. Motion representation

Motion can be described as a frame sequence, with each frame depicting a posture

at a given time. An intuitive description of a posture is a set of bones, each repre-

sented as a rigid 3D model with a position and orientation, together with a set of
constraints imposed on joints that prevent them from separating or rotating in illegal

ways. Within this model, the DOFs of a character are the positions and orientations

of bones in the body.

A more concise representation imposes a hierarchical relationship on the bones, in

which the position and orientation of each bone are specified with regard to its ‘‘par-

ent’’ bone. A bone�s configuration at a specific time can be specified by a fixed trans-

lation (thus not involving any DOFs) and a rotation with regard to its parent bone,

which is in turn defined in terms of its parent. The configuration is recursively de-
fined all the way up to the root joint, which has full translational and rotational

DOFs [32]. In the case of a human body, the posture can be depicted as a tree, as

illustrated in Fig. 1. Within this hierarchical posture description, the DOFs of a char-

acter include the rotational parameters of non-root joints and the position and ori-

entation of the root joint (which is Pelvis in Fig. 1). Each motion can be represented

as follows:
MðtÞ ¼ ðTrootðtÞ;QrootðtÞ;R1ðtÞ;R2ðtÞ; . . . ;RnðtÞÞ; ð1Þ



Fig. 1. Hierarchical motion description.
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where TrootðtÞ and QrootðtÞ are the position vector and orientation vector of root at

time t, and RiðtÞ is the rotation vector of joint i around its parent joint at time t.
This hierarchical description implicitly holds the bones together. Moreover, it

clearly demonstrates the different role played by each joint in determining the pos-

ture, with parent joints being more prominent than children joints. Furthermore,

it reflects the effect of each joint�s motion on the full-body motion, with the motions

of parent joints being more significant than those of children joints. Motions repre-
sented in the intuitive way can be transformed into the hierarchical description using

inverse kinematics [32].
4. Motion index tree

Within the hierarchical motion description, the motion of a parent joint may in-

duce those of its children joints, whereas that of a child joint is unable to influence its
parent joint. Obviously, the joints at high levels of the hierarchy are more significant

than those at lower levels in terms of determining a motion. This hierarchy among

the parameters of a posture can be well used to facilitate motion retrieval by building

a corresponding motion index tree for a motion library.

Given the above human body as an example, all the joints can be divided into the

following five levels according to their positions in the tree illustrated in Fig. 1, as

{Root}, {Lhip, Rhip, Chest}, {Lknee, Rknee, Neck, Lshoulder, Rshoulder}, {Lan-

kle, Rankle, Head, Lelbow, Relbow}, and {Lwrist, Rwrist} from top to bottom. We
construct a motion index tree based on this hierarchy to partition and structure the

3D motion library, as shown in Fig. 2. This motion index tree serves as a hierarchical

classifier to determine the sub-set that contains promising similar motions to a sub-

mitted example. For this sake, each non-leaf node in the motion index tree contains a

sample set, built by selecting representative motions from its children nodes as de-

scribed below. Each sample is labeled with the information of its source. The sample

set is used in kNN rule (k Nearest Neighbor rule) to classify the submitted example in

the process of retrieval described in Section 5. Each leaf node is associated with a
sub-set, which contains promising similar motions to the example. All these sub-sets
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constitute the whole motion library. (For simplicity, the sub-motions of the joints at

one or multiple levels are also called motions in the subsequent sections.)
The main steps to construct the motion index tree are outlined as follows:

1. Partition the 3D motion library ML into several sub-sets ML2;k using dynamic

clustering (to be described in Section 4.1) according to the motion of the first-level

joint (viz. {Root}), and build a sample motion set from the sub-sets for the node

Root. Particularly, motions closest to the centroid of each sub-set are selected as

samples from this sub-set. Create a null node with an empty sample set, associate

it with a sub-set ML2;k, and take it as one of the children nodes of Root.

2. Partition each sub-set MLi;k, respectively, according to the motion of joints at the
level i in the hierarchy and build a sample set for its corresponding node in the

motion index tree in the similar way in Step (1). Again, create a null node for a

newly created sub-set MLiþ1;j and take it as a child node of MLi;k.

3. Repeat Step (2) until all joints at the lowest level of the hierarchy are processed.

4. Take the last partitioned sub-sets as leaf nodes of the motion index tree.

In the following subsections, we will first describe the dynamic clustering algo-

rithm for partitioning the motion library, and then elaborate the key-frame extrac-

tion algorithm and the elastic motion match algorithm, respectively.

4.1. Nearest Neighbor rule-based dynamic clustering

Partitioning a motion library into sub-sets is a well-defined clustering problem. As

described in Section 3, motion is a high-dimensional signal and no function is avail-

able to describe the probability density up to now. Due to the lack of available prob-

ability density functions, we partition the motion library based on the similarity

between sample motions. Therefore, Nearest Neighbor rule-based dynamic cluster-
ing [33] is adopted to partition and structure the library.

Given two motion samples Mi and Mj, if Mj is the Ith Nearest Neighbor (NN) of

Mi, the ‘‘NN coefficient’’ ofMj toMi is defined as I . Likewise, if Mi is the Kth Nearest

Neighbor of Mj, the NN coefficient of Mi to Mj is defined as K. Let aij be the
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‘‘NN value’’ between Mi and Mj, aij ¼ I þ K � 2. If Mi and Mj are classified into the

same cluster, the connection cost is defined as aij; otherwise, the cost is 0. To elim-

inate clusters with only one sample, the connection cost of the self-connection is de-

fined as 2NM (NM is the number of motions in the library).

The objective function JNN is defined as the sum of the total inner-cost LIA and
total inter-cost LIR:
JNN ¼ LIA þ LIR:
The total inner-cost LIA can be defined as the sum of all the connection values be-

tween every pair of samples in the whole library, given that the connection cost

between samples from different clusters is 0.

To calculate the inter-cost, the minimal NN value between cluster xi and xj, cij, is
computed first. And ci, the minimal NN value between cluster xi and all the other

clusters can be calculated as follows:
ci ¼ min
j 6¼i

cij:
Let aimax and akmax be the maximal connection cost between samples in the cluster xi

and xk each, c be the number of clusters, bi, the inter-cost of cluster xi to the other

clusters, is defined as follows:
bi ¼

�½ðci � aimaxÞ þ ðci � akmaxÞ� ðci > aimax; ci > akmaxÞ;
ci þ aimax ðci 6 aimax; ci > akmaxÞ;
ci þ akmax ðci > aimax; ci 6 akmaxÞ;
ci þ akmax þ aimax ðci 6 aimax; ci 6 akmaxÞ;

8>>><
>>>:

k ¼ arg min cij
j 6¼i;j2h;h¼f1;2;...;cg

:

The total inter-cost can be defined as the sum of all the inter-costs.

The optimal clustering should result in the minimal objective value JNN. The fol-

lowing iterative method is proposed to solve this problem:

1. Calculate the distance matrix D, with each element Dij ¼ DðM i;M jÞ, where

DðM i;M jÞ is the distance between motion M i and M j. The distance calculation

is described in Section 4.3.

2. Construct NN coefficient matrix M based on D, with each element M ij being the
NN coefficient of M i to M j.

3. Build NN value matrix L based on the NN coefficient matrix M
Lij ¼
Mij þMji � 2 ðj 6¼ iÞ;
2NM ðj ¼ iÞ:

�

4. Connect each element to the element, to which it has the minimal NN value in L,
and form the initial clusters.

5. Calculate ci of each cluster and compare it with aimax and akmax. If ci is smaller

than either of aimax and akmax, merge cluster xi and xk.

6. Repeat Step 5 until no clusters can be merged.
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4.2. Key-frame extraction

Because each motion is represented as a frame sequence, the similarity between

two motions is defined as that between the two corresponding frame sequences.

However, even a short motion of 4 s is composed of approximately 100 frames. It
is time-consuming to calculate the similarity with these original data. To improve

the computational efficiency, we extract key-frame sequences from two motions

and calculate the similarity between them as that between the motions. Taking the

motion of the second level joints as an example, we show the key-frame extraction

algorithm in detail below.

Given a motion M with N frames, the motion at the second level can be repre-

sented as a (3� 3�N )� 1 vector M2:
M2 ¼ ½F1; F2; . . . ; FN �;
Fi ¼ ½rlxi; rlyi; rlzi; rrxi; rryi; rrzi; rcxi; rcyi; rczi�;

ð2Þ
where Fi is the ith frame at the second level, rlxi, rlyi, and rlzi are the rotational pa-

rameters of joint Lhip, rrxi, rryi, and rrzi are the rotational parameters of joint Rhip,

and rcxi, rcyi, and rczi are the rotational parameters of joint Chest.

As presented in Section 2.2, many methods have been proposed for key-frame ex-
traction in the field of video abstraction. However, due to the periodicity of motions,

most of these algorithms, including sampling-based, shot-based, and sequential com-

parison-based methods, will cause the redundancy in that similar frames in different

cycles are extracted as key-frames. Methods, in which other information, such as au-

dio stream, objects in each frame, are utilized for key-frame detection, are obviously

not suitable for key-frame extraction from motions, as the only information avail-

able is the posture sequence in each motion.

A promising way is clustering-based extraction [24,30,31]. Particularly, similar
frames are clustered into the same cluster, and a representative frame from each clus-

ter is selected as a key-frame. We adopt the adaptive clustering-based key-frame ex-

traction technique proposed in [34], in which similar frames in different cycles can be

clustered into the same cluster.

Define the similarity between two frames as some decreasing function fd about the
weighted distance between them:
SimðF1; F2Þ ¼ fd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

wkðF1k � F2kÞ2
r !

; ð3Þ
where F1k and F2k are the motion parameters of frame F1 and F2, respectively and wk

is the weight indicating the significance of joint k. If these joints are from different

levels in the hierarchy illustrated in Fig. 2, we give higher weights to joints at higher
levels whereas lower weights to those at lower levels empirically. Let di be the ith
cluster, the clustering algorithm can be summarized as follows:

1. Initialization: F1 ! d1, F1 ! Fc1, the centroid of d1, 1! numCluster.

2. Get the next frame Fi. If the frame pool is empty, end.
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3. Calculate the similarity between Fi and the centroid of an existing cluster dk
(k ¼ 1; 2; . . . numCluster) according to Eq. (3).

4. Determine the cluster closest to Fi through calculating Maxsim as follows:
Maxsim ¼ Max
numCluster

k¼1
simðFi; FckÞ: ð4Þ

If Maxsim is below a given threshold, it means Fi is not close enough to be put
into any cluster, goto Step 5; otherwise put Fi into the cluster with Maxsim, and

goto Step 6.

5. numCluster¼ numCluster + 1. A new cluster is created: Fi ! dnumCluster.

6. Update the cluster centroid as follows:
Fck ¼
nF 0

ck þ Fi
nþ 1

; ð5Þ

where F 0
ck and Fck are the centroids before and after update, respectively, and n is

the size of the old cluster. Goto Step 2.

According to Zhuang et al. [34], the frame that is closest to the centroid of a clus-

ter is selected as a key-frame. However, as the order among frames is lost during

clustering, the extracted key-frame sequence is not consistent with the original tem-

poral sequence. To preserve this essential attribute, considering frames in the same

cluster are extracted sequentially, the first frame in each cluster is selected as the

key-frame. The effectiveness of this algorithm will be discussed in Section 6.1. This

algorithm can also be applied to the motion with multiple level joints or to the full
body motion.
4.3. Motion match

According to the hierarchical motion description in Section 3, the global position

of a body is determined by TrootðtÞ in Eq. (1). Because the initial position of a motion

is inessential in comparing one motion with another, we replace the absolute position

of a motion with its velocity to eliminate the disturbance of the initial position yet
preserve the information of the global locomotion.

Most similarity measures for motions are defined based on their corresponding

key-frame sequences. A simple method is the Nearest Center (NC) algorithm. Zhang

et al. [15] proposed a Nearest Neighbor approach, in which the similarity is defined

as the sum of the most similar pairs of key-frames. As discussed in Li et al. [35], these

methods neglected the temporal order of frames. To address the problem, Li [35] pre-

sented a Nearest Feature Line-based method. Though this method accommodated

the temporal correlation between key-frames, it could only be applied to retrieving
motions using a single frame as the query sample.

Elastic match performed with a dynamic time warping algorithm is a non-linear

match method originally used in speech recognition and it has been successfully

applied to online signature verification [36]. Elastic match can be used in comparison

of all kinds of continuous function about a continuous parameter, which is time

typically.



F. Liu et al. / Computer Vision and Image Understanding 92 (2003) 265–284 275
Given two motions,M1 fF 11; F 12; . . . ; F 1Ng and M2 fF 21; F 22; . . . ; F 2Mg, the dis-
tance between them is defined as follows:
D ¼ 1

2
min
fx1ðiÞg

XN
i¼1

dði;x1ðiÞÞ
 

þ min
fx2ðiÞg

XM
i¼1

dði;x2ðiÞÞ
!
; ð6Þ
where the first factor on the right part is the distance between M1 and the motion

resulting from warping M2 according to the path defined by a time warping path

x1ðiÞ, and the second factor on the right is the distance between M2 and the motion

resulting from warping M1 according to the path defined by x2ðiÞ. dði; jÞ is the
distance between the ith frame of M1 and the jth frame of M2, defined as:
dði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

wkðF 1ik � F 2jkÞ2
r

; ð7Þ
where F 1ik and F 2jk are the kth motion parameters in frame F 1i and F 2j, respec-
tively, andwk is the weight, set in the same way described in Section 4.2.

The time warping path, for example, x1ðiÞ, is constrained by the following bound-

ary and continuity conditions. The boundary conditions ensure that the first and last

frame of M1 are matched to the frame b and frame e of M2: x1ð1Þ ¼ b, x1ðNÞ ¼ e,
where b ¼ mini6Margðdð1; iÞ6 thresholdÞ and e ¼ maxi6MargðdðN ; iÞ6 thresholdÞ.

The continuity conditions restrict the match of the intermediate frames, and x1ðiÞ
is defined as a monotonically increasing function and thus the temporal order is pre-

served during match.

Let the left half part of D be DL, defined as DL ¼ minfx1ðiÞg
PN

i¼1 dði;x1ðiÞÞ, we
solve it recursively by applying dynamic programming in the following way [37]:
DLði; jÞ ¼ dði; jÞ þminfDLði� 1; jÞ;DLði� 1; j� 1Þ;DLði� 1; j� 2Þg;
DLð1; bÞ ¼ dð1; bÞ;

ð8Þ
where DLði� 1; j� 2Þ corresponds to skipping the ðj� 1Þth frame of M2 and

DLði� 1; jÞ means that at least two frames of M1 correspond to the jth frame of M2.
5. Motion retrieval

By now, the motion index tree has been constructed. We describe motion retrieval

using the motion index tree in this section.

We devise a two-stage process to retrieve similar motions to a query example M .

Determine a sub-set that contains promising similar motions to M and calculate dis-
tances/similarities between M and motions in the sub-set. The process of motion re-

trieval is outlined as follows:

1. Fetch M1, the motion of the first-level joints, from the example M .

2. Extract key-frame sequences from M1 and each motion in the sample set of Root

in the motion index tree using the key-frame extraction described in Section 4.2,

and calculate the distances between them using elastic match described in Section

4.3. Then get the k Nearest Neighbors. Let k1; k2; . . . ; kc be the number of the
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Nearest Neighbors belonging to the children nodes of Root x1;x2; . . . ;xc, respec-

tively, the decision-making function is defined as giðM1Þ ¼ ki; i ¼ 1; 2; . . . ; c and

the decision-making rule is defined as follows:

If gjðM1Þ ¼ max
i

ki; i ¼ 1; 2; . . . ; c, thenM1 belongs toxj, the jth child node ofRoot.

3. Continue classification until a leaf node of the motion index tree is reached.
Calculate the similarity between M and each motion stored in the sub-set in

the leaf node, and select appropriate motions as the result according to the

similarity.
6. Experiment and discussion

To validate the effectiveness and efficiency of the proposed technique, we develop
a prototype system of content-based motion retrieval (CBMR) and test it on a mo-

tion library consisting of about 450 different motions. The composition of the library

is shown in Table 1.

6.1. Key-frame extraction

Both the adaptive clustering-based key-frame extraction algorithm and the se-

quential comparison-based method, in which a frame is selected as a new key-frame
when the difference between this frame and the last key-frame is significant, are im-

plemented and tested. For convenience, these two algorithms are called ACE and

CE, respectively. In both algorithms, the similarity between two frames is defined

as the reciprocal of the weighted distance between them.

First, two non-periodical motions, jump-kick and dive, are experimented on. jump-

kick consists of 70 frames and dive consists of 50 frames. The Maxsim value in ACE

and the similarity in CE are shown in Fig. 3. For ACE, when the Maxsim value is

below a given threshold, a new cluster is found and the current frame is selected
as a new key-frame. From Fig. 3, we can see that totally 11 key-frames, including

the first frame and the other 10 new key-frames, are extracted from jump-kick,

and totally 10 key-frames, including the first frame and the other 9 new key-frames,
Table 1

Composition of the motion library

Motion class Size of class Motion class Size of class

Walk forward 70 Rotate 32

Run forward 62 Run backward 32

Walk backward 54 Climb 28

Jump 48 Box 18

Squat 45 Wave hand 12

Ballet dancing 36 Fall 12

Eight students are engaged in partitioning the library. A motion can be classified into a certain class

only when it gains ratifications from more than five of these students.



Fig. 3. Extract key-frame sequences from non-periodical motions using ACE and CE.
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are extracted from dive. For CE, the frame with its similarity below a given threshold

is selected as a new key-frame. From Fig. 3, we can see that totally 16 key-frames,

including the first frame and the other 15 new key-frames, are extracted from

jump-kick, and totally 14 key-frames, including the first frame and the other 13

new key-frames, are extracted from dive. The extracted key-frame sequences are

shown in Fig. 4. As shown in Fig. 3, more key-frames are extracted using ACE than

using CE from both motions given the same threshold though the same similarity
measure is adopted. Two reasons account for it. The Maxsim value in ACE is de-

fined as the maximal similarity between the current frame and the centroid of each

cluster, which means that the current frame is compared with the centroids of all the

previously extracted clusters. In CE, the current frame is only compared with the

most recent key-frame, which rules out the possibility for the current frame to match



Fig. 4. Key-frame sequences extracted from non-periodical motions. (a) Key-frame sequence extracted

from jump-kick by ACE. (b) Key-frame sequence extracted from jump-kick by CE. (c) Key-frame sequence

extracted from dive by ACE. (d) Key-frame sequence extracted from dive by CE.
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the most similar key-frame previously extracted. Another reason is that each motion

is continuous, so the frames nearby are usually classified into the same cluster. Then

the similarity between the current frame and the centroid decreases more slowly in

ACE than that between the current frame and the last extracted key-frame in CE,

which results in the fact that in ACE more frames after the last extracted key-frame
have similarities over the threshold than in CE. As shown in Fig. 5, the similar key-

frame sequences can be extracted by ACE at a relatively high threshold and by CE at

a relatively low threshold. These results show that the performance of CE and ACE

are similar for non-periodical motions.

Second, two periodical motions, power-walk and hurdle, are tested on. power-walk

consists of 120 frames, and hurdle consists of 195 frames. power-walk is composed of

about 4 cycles of steps. From Fig. 6a, we can see that using ACE, 5 clusters are

formed in power-walk, including the initial one and the appended 4. The first frame
of each cluster is extracted as a key-frame. All these key-frames are extracted from

the first 30 frames, which compose the first cycle of power-walk. No frames in the

successive cycles are extracted as key-frames. This shows the compactness of the ex-

tracted key-frame sequence. When it comes to CE, totally 29 key-frames, including

the initial frame and the appended 28, are extracted from power-walk. From Fig. 6a,

we can see that the last 28 key-frames can nearly be divided into 4 cycles and the last

3 seven-frame sequences are almost the repetitions of the first seven-frame sequence.



Fig. 5. Key-frame extraction using ACE and CE with different thresholds. The key-frame sequence ex-

tracted from dive by ACE with threshold, 0.033, is 0 4 6 8 9 10 18 20 27 28 29 43, and the key-frame se-

quence extracted by CE with threshold, 0.025, is 0 4 6 8 9 11 18 20 27 29 32 45.
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The experiment on hurdle shows the similar result. All these demonstrate that

ACE is superior to CE when applying to periodical motions.

6.2. Motion match

To evaluate the performance of the elastic match algorithm, we implement this

algorithm, as well as other methods, such as the NC method and the NN method, in

our CBMR system. Some motions are selected from the library shown in Table 1
as examples for queries to evaluate each algorithm. The distribution of these exam-

ples is stated in Table 2. Based on these queries, we plot the average precision-recall

graph for each algorithm as illustrated in Fig. 7, from which we can see that elastic

match is superior to both NC and NN. The main reason is that both NC and NN

neglect the temporal order among the frame sequence of a motion. For example, walk

cannot be distinguished from run, and walk-back cannot be distinguished from walk-

forward either. Contrary to NC and NN, the continuity of the motion is preserved

during the process of elastic match as a result of the constraint of continuity as ad-
dressed in Section 4.3. The result of one query is shown in Fig. 8. Each row represents

a motion. The top one is the example. The retrieved motions are sorted by similarity

from top to bottom.

The calculation overhead of elastic match using dynamic programming is OðmnÞ,
where m and n are the lengths of the two compared key-frame sequences, respectively.

When retrieving a similar motion, the example is firstly classified into the promising

sub-library. The calculation overhead for the classification is OðhsmnÞ, where h is

the height of the index tree and s is the size of the sample set in each non-leaf node.
After classification, only the similarities between the example and motions from the

very sub-library are needed to be calculated and thus the efficiency is well improved.



Table 2

Distribution of examples for queries

Motion

class

The number

of examples

Motion

class

The number

of examples

Walk forward 6 Rotate 3

Run forward 5 Run backward 3

Walk backward 5 Climb 2

Jump 4 Box 2

Squat 4 Wave hand 1

Ballet dancing 3 Fall 1

The number of examples from each class is nearly proportional to the size of this class.

Fig. 6. Extract key-frame sequences from periodical motions using ACE and CE (a) Power-walk

(b) Hurdle.
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Fig. 7. Performance of elastic match.

Fig. 8. Retrieval result of walk-forward.
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7. Conclusion

In this paper, a content-based 3D motion retrieval algorithm is proposed. The

main contribution is the motion index tree constructed based on the hierarchical mo-

tion description. This motion index tree features the hierarchical effect that each joint

has on the full-body motion, and serves as a classifier to determine a sub-library that

contains promising similar motions to the query example. Thus the efficiency can be

well improved. We adopt Nearest Neighbor rule-based dynamic clustering algorithm
to partition the motion library and construct the motion index tree. We employ a
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novel elastic match algorithm to calculate the similarity between two motions. The

elastic match algorithm combines the dynamic time warping and dynamic program-

ming, and has excellent performance on comparing two sequences. To improve the

efficiency, we adopt an adaptive clustering-based key-frame extraction algorithm,

which is especially competent for key-frame extraction from periodical motions.
The presented work can be used to retrieve similar motions to an example from a

motion library. It can also be used in various animation techniques, such as motion

editing, analysis, and synthesis. In these promising techniques, the ability to find sim-

ilar motions is demanded for synthesizing new motions. Moreover, a potential appli-

cation is to find and provide appropriate motions for autonomous animated

characters.

Contrary to such information as image, video, and audio, it is common for ani-

mators, the most possible users of 3D motion, to sketch a simple key-frame motion.
Compared with the query with a real motion as the example, the query with a

scripted motion is usually more relevant to the user�s intent. In addition, it is often

difficult to obtain an appropriate example. So such user interface as allowing users to

script key-frame motions is needed and a corresponding algorithm to compare the

scripted example with captured motion in the library is demanded. A promising

method is to decompose the captured motion into different bands with wavelet anal-

ysis and compare the approximate content with the scripted one. In this paper, we

determine the weights for the joints at each level empirically. A reasonable method
is needed to calculate the weights automatically. We will address these two questions

in the future work.
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