
Motion Path Synthesis for Intelligent Avatar

Feng Liu1 and Ronghua Liang1,2

1 College of Computer Science, Zhejiang University
lffred@yahoo.com.cn

2 Institute of VR and Multimedia, Hang Zhou Inst. of Electronics Engineering
rhliang2000@eyou.com

Abstract. In this paper, we present a new motion generation technique,
called motion path synthesis. The objective is to generate a motion for an
intelligent avatar to move along a planned route using a pre-existing mo-
tion library. First, motion primitives, each defined as a dynamic motion
segment, are extracted from the motion library. Then a motion graph
is constructed based on the motion primitives and their connectivities.
Within this motion graph, the desired realistic motion for avatars can be
synthesized through a two-stage process: search an optimal motion path
within the motion graph, joint the motion path and adapt it to the route.
The experiment shows the effectiveness of the presented technique.

1 Introduction

Creating a realistic motion along a planned route is often an important task in
making an intelligent virtual avatar. As people are well qualified to discern the
artificiality in the motion of human-like avatars, both effort and expertise are
needed to create realistic motions by key framing. And a large number of DOFs
(Degree of Freedom) of avatars make it even more difficult.

A recent popular solution to this problem is motion capture [1]: the required
motion along a given route is performed by an actor and then recorded to drive
avatars. However, motion capture data is hard to be adapted to different routes.
Two methods have been presented to improve the re-use of the motion capture
data. One is to adapt existing motions to new requirements through interactive
control, such as constraint based methods [2, 3], motion retargeting [4], etc. A
more attractive way is to synthesize new motions from example. That is to gen-
erate motions through selecting and jointing existing motions along a specified
path or according to statistical distributions. Most presented techniques, how-
ever, are limited by the size of a motion library, and the results lack variation.

In this paper, we present a new example based motion synthesis technique
for creating motions for intelligent avatars to move along a planned route. Each
motion is considered to be composed of a series of motion primitives, the minimal
element that embodies the dynamic of a motion, and is modelled as a first-order
Markov process. Then a directed graph, called motion graph, can be constructed
from the motion library, with each motion primitive as a vertex. New motion
can be generated by synthesizing primitives along a constrained or specified path

T. Rist et al. (Eds.): IVA 2003, LNAI 2792, pp. 141–149, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

142 Feng Liu and Ronghua Liang

within the motion graph. Since each new motion is created by segmented motion
capture data (motion primitives), the reality of each motion is preserved. And
as motion primitives are used in synthesizing new motions instead of full-length
motion clips, the promising motion space is well enlarged.

The remainder of the paper is organized as follows: in the next section, we
give an overview on related work. In Section 3, we describe motion graph con-
struction. In Section 4, we propose motion path synthesis for intelligent avatars.
We show the result in Section 5 and conclude the paper in the last section.

2 Related Work

Fruitful work has been carried out to adapt motion capture data for avatars
to new application. The early research mostly aimed at providing convenient
tools for interactive motion editing. A constraint based method was proposed
for editing a pre-existing motion such that it meets new needs yet preserves the
original quality as much as possible [2, 3]. A similar technique was presented for
adapting a motion from one character to another [4]. Other researchers, such as
Bruderlin and Williams [5], apply techniques from image and signal-processing
domain to designing, modifying and adapting animated motion. Similarly, Liu et
al.[6] provided a series of tools for editing motion at a high level by introducing
wavelet transformation into motion analysis and synthesis. Unuma et al.[7] de-
scribed a method for modelling human figure locomotion with emotions. Brand
and Hertzmann [8] proposed a style machine to produce new motion with the
desired feature.

More recently, a fantastic approach, motion synthesis by example, is pre-
sented. Molina-Tanco and Hilton [9] presented a system that can learn a statis-
tical model from motion capture data and synthesize new motions by specifying
the start and end key-frames, and sampling the original captured sequence ac-
cording to the statistical model to generate novel sequences between key-frames.
Pullen and Bregler [10] presented a motion capture assisted animation, which
can derive realistic motions from partially key-framed motion using motion cap-
ture data. Arikan and Forsythe [11] constructed a hierarchical graph from a
motion library and adopted a randomized search algorithm to extract motion
according to user constraints. Kovar et al. [12] build a similar motion graph that
encapsulates connections among the motion library and synthesize motions by
building walks on the graph. In the work of Li et al.[13], motion data is divided
into motion textons, each of which can be modelled as a linear dynamic sys-
tem. Motions are synthesized by considering the likelihood of switching from
one texton to the next.

3 Motion Graph

Each motion is represented as a frame sequence, with each frame defining a
posture using a popular hierarchical posture description, in which the posture

Motion Path Synthesis for Intelligent Avatar 143

of an articulate figure is specified by its joint configurations together with the
orientation and position of Root as follows:
F t=(TRoot(t), QRoot(t), Q1(t), Q2(t). . .Qn(t))
where TRoot(t) and QRoot(t) are the translation vector and rotation vector of
Root at time t, and Q i(t) is the rotation vector of joint i around its parent
joint at time t.

A directed graph, called motion graph as shown in Fig. 1, is built to cap-
ture the connection among motions (motion segments)
in a motion library. Motion graph is a newly arisen
structure for motion description, plan and generation.
Each vertex is associated with a motion segment, vary-
ing from a single frame to a full-length motion, and
the edge from vertex i to vertex j is associated with a
weight denoting the connectivity from the motion seg-
ment associated with vertex i to that with vertex j. In
Arikan and Forsyth [11], each vertex is a single frame,
which enlarges the motion graph and the promising
motion space. Its drawback, however, is obvious in that Fig. 1. Motion graph.

a large number of vertices in the graph cause high calculation overhead, and the
realism of the original motion is damaged severely for the selected neighbor
frames do not necessarily have smooth transitions. Whereas it comes to associ-
ating each vertex with a long motion segment or even a full-length motion, the
realism of the original motion is preserved at the cost of small promising motion
space. We adopt a similar scheme to Li et al.[13], and associate each vertex with
a motion segment. Unlike Li et al.[13], in which each motion segment is replaced
completely with a dynamic model, called motion texton, we preserve all the orig-
inal frames in the motion segment/primitive and synthesize new motions with
them. Thus the detail and reality of motion capture data is well preserved.

3.1 Motion Primitive Extraction

Motion primitive is defined as a fundamental segment that captures the dynamics
of a motion and can be well fitted to a quadratic dynamic model in the following
way:F t=F 0+At2+Bt, where F 0 and F t are the initial and t th frames, A and
B are dynamic parameters.

In this paper, we model an articulate avatar with the global position, orienta-
tion and other 17 joints. Thus the posture can be represented as a 57-dimension
vector and a motion M with T frames can be described as a T×57 matrix. To
reduce the high dimensions, we adopt SVD to decompose M and get the princi-
pal motion components in the following way: M T×57=U T×T ΛT×57V57×57. Let
U 1−q be the first q columns of U, it comprises the principal components of M.
Greedy algorithm is employed to extract motion primitives.

1. Fetch a motion M from the library, decompose it using SVD and get U 1−q.
2. Fetch Tmin frames from U 1−q , and fit them to a dynamic model using the least

square method. Add subsequent frames to them until the fitting error exceeds a
given threshold.

144 Feng Liu and Ronghua Liang

3. Fetch the next Tmin frames from U 1−q , and extract a new motion primitive MP i

in the similar way to that described in step 2.

4. Repeat step 3 until all frames in M are processed.

5. Repeat step from 1 to 4 until all motions in the library are processed.

3.2 Motion Graph Construction

Inspired by the previous work, such as Li et al.[13] and J.Lee et al.[14], we
model each motion as a first-order Markov process. Each motion primitive is
a state and the next state only depends on the current state. Unlike J.Lee et
al.[14], each state is a motion primitive, instead of a single frame, which makes
the previous states have little effect on the current state and thus makes this
motion model more plausible. Each motion in the library can be modelled as a
first-order Markov process, and thus the motion library can be represented as a
motion graph. Each vertex is a motion primitive, and the directed edge eij from
MP i to MPj is defined as the connectivity from MP i to MPj , P(MPj |MP i),
which can be calculated as the similarity between the last L frames from MP i

and those from the precedence of MPj .
The similarity between two frame sequences can be defined as the sum of the

similarity between the two corresponding trajectories of Root and that between
two posture sequences as follows.

sim(Mi, Mk) = βsimt(Mi, Mk) + (1 − β)simp(Mi, Mk)

simt(Mi, Mk) = exp(− min
R,T

L∑

t=1

(α((RMpit + T) − Mpkt)
2 + (1 − α)(RMoit − Mokt)

2)/L)

simp(Mi, Mk) = exp(−
L∑

t=1

∑

j

ωj(Mjit − Mjkt)
2/L)

where sim(M i,M k) is the similarity between M i and M k, simt(M i,M k) is the
similarity between the two Root trajectories, simp(M i,M k) is the similarity
between the two posture sequences. M jit is the rotation of joint j in frame t in
M i, and ωj is a weight indicating the significance of joint j. M pit and M oit are
the position and orientation of Root in frame t in M i respectively. To avoid
the disturbance of the initial orientation and position of a motion, we calculate
the optimal simt(M i,M k) by transforming M i globally with rotation R and
translation T. The optimal R and T can be found using the algorithm detailed
in [15]. The result is normalized such that

∑N
j=1eij=1. If no precedence of MPj

is found, the connectivity is set 0.5 empirically.

4 Motion Synthesis

We generate the desired motion along a planned route R through a two-stage
process. Search a motion path within the motion graph, joint the motion prim-
itives on the extracted motion path and adapt it to the route R.

Motion Path Synthesis for Intelligent Avatar 145

4.1 Motion Path Finding

The optimal motion path shall satisfy the following two criterions, fitting for the
route and having natural transition. We define the motion path MS as follows:

MS = arg max
Π

P (MPk1,MPk2 · · ·MPkn|MPk1 = MPs,G,R)

where
∏

is the set of motion primitive sequences beginning with MPs within
the motion graph G. We can transform this problem into a path finding problem
in a graph based on the first-order Markov process as follows.

MS = arg max
Π

P (MPk1, MPk2 · · ·MPkn|MPk1 = MPs, G, R)

= arg max
Π

P (MPk2|MPs)P (MPk2|R, Sk2) · · ·P (MPkn|MPkn−1)P (MPkn|R, Skn−1)

= arg max
Π

lgP (MPk2|MPs)P (MPk2|R, Sk2) · · ·P (MPkn|MPkn−1)P (MPkn|R, Skn−1)

= arg min
Π

−(lgP (MPk2|MPs)P (MPk2|R, Sk2) + · · ·P (MPkn|MPkn−1)P (MPkn|R, Skn−1))

where MPs is the specified start motion primitive, P(MPkj |MPki) is the tran-
sition from MPki to MPkj , P(MPki|R,Ski) is the fitness of MPki to the path
segment on R starting at the position Ski and is defined as a decreasing function
of the total change needed to adapt MPki to the path segment. The process of
adapting is detailed in Section 4.2.

We construct a hierarchi-
cal directed graph as shown in
Fig. 2. The start motion prim-
itive is selected as vertex V0.
Let the number of all the mo-
tion primitives be n, we set
the other vertices Vij=MPj ,
where Vij is the j th vertex at
level i, j ε[1, n]. The weight of Fig. 2. Hierarchical graph for motion path finding.

each edge is -lgP(MPki|MPki−1)-lgP(MPki|R,Ski), to be calculated in the
runtime. According to this graph, the problem can be transformed to finding
a shortest path. Because no evident end vertex is present and the number of
vertices in the graph is infinite, the traditional Dijkstra algorithm can not be
adopted directly. We devise an adapted Dijkstra algorithm. Let S be the set of
vertices whose final shortest path weights starting at V0 have been determined,
and Q be the set of vertices whose best estimations of the shortest path weights
have been calculated, the adapted Dijkstra algorithm can be outlined as follows:

1)Initialization.

V0.d=0 //set the shortest path weight starting at V0 to this vertex

V0.p_end=P0//P0 is the start location of the route R

Add(V0,Q) //add V0 to Q

2)While the end location of R has not been approximated enough

Vc=Extract-Min(Q)//fetch Vc with the minimal shortest path weight in Q

Add(Vc,S) //add Vc to S

Remove(Vc,Q) // remove Vc from Q

146 Feng Liu and Ronghua Liang

for each vertex Vi in the next level to Vc

Vi.pre=Vc // set Vc as the precedence of Vi

Vi.d=Vc.d+(-lg(P(Vi|Vc)P(Vi|R,Vc.p_end))// calculate the shortest path

// weights from V0 to Vi

Vi.p_end=Reach-end(R,Vc.p_end,Vi)//calculate the end location after

the shortest

//path from V0 to Vi has been adapted to R

if Vi has already been in Q,

Update the Vi in Q

else

Add(Vi,Q)

endif

endfor

endwhile

The calculation of Reach-end(R,Vc.p end,Vi), the end location after the
shortest path from V0 to Vi has been adapted to R, is similar to the process
for jointing motion primitives in Section 4.2. The motion path can be obtained
through starting from the last vertex added to S, and tracing its precedence in
S back up to the start vertex.

4.2 Motion Primitives Jointing and Adapting

Let M be the motion resulting from jointing all the motion primitives on the
motion path before MP i+1, the current motion primitive to be connected to
M, PS be the end location of M, we devise the following motion transition and
adaptation algorithm to append M with MP i+1.

1. Fetch the first frame from MP i+1 as an appended frame.

2. Translate the appended frame to locate its Root at PS.

3. Calculate the tangent of R at PS, and orientate the appended frame parallel to
the tangent. If the appended frame is the first frame of MP i+1, replace the last
frame of M with it. Otherwise append M with this appended frame.

4. If no frame left in MP i+1, end. Otherwise fetch the next frame as the appended
frame, and move PS along R with the distance from the appended frame to its
previous frame in MP i+1. Goto Step 2.

5. Smooth Mwith a Gauss convolution template G.

M(m − T b)
M(m − T b+1)

· · ·
M(m + T b)

 =

G0(0) G0(1) · · · G0(2Tb)
G1(-1) G1(0) · · · G1(2Tb-1)
· · · · · · · · · · · ·

G2Tb(-2Tb) G2Tb (1-2Tb) · · · G2Tb(0)

M(m − T b)
M(m − T b+1)

· · ·
M(m + T b)

Gi(t)=p(t)/
∑2Tb−i

j=−i
p(j)

where m is the number of frames in M before appending it with MP i+1,[m-
Tb,m+Tb] is the range for smoothing, and p(t) is the Standard Normal Distri-
bution.

Motion Path Synthesis for Intelligent Avatar 147

Table 1. Composition of the motion library

Motion The number of frames The number of Motion Primitives

Normal Walk 136 7

Cat Walk 121 8

Fig. 3. Path synthesis.

5 Experiment

To verify the effectiveness of the presented technique, we build a small motion
library as shown in Table 1. We extract motion primitives from this library, and
the number of motion primitives extracted from each motion is also shown in
Table 1. A motion graph is constructed using these motion primitives. Below we
show some motions synthesized within this motion graph.

Firstly, a circle route is specified, and a natural motion along this route is
synthesized. This motion consists of 477 frames. The result is shown in Fig. 3(a).
Secondly, a sine curve is sketched. Again, a smooth motion along this route is
generated. This motion consists of 1020 frames. The result is shown in Fig. 3(b).

From these two examples, we can see that there are far more frames in
each generated motion than those in the original motion library. Some motion
primitives are frequently used to generate the desired motion, which demands
new transitions for every two motion primitives which are not connected in the
original motions. Within the presented motion generation framework, we propose
two strategies to achieve the smooth transition, selecting the motion primitive
sequence, which is most likely to have natural transitions among its every two
nearby motion primitives, and smoothing every two nearby motion primitives
with a Gauss convolution template. The results above show that using these
two strategies does help to produce realistic motions. We adopt a frame by
frame strategy to adapt the motion primitive sequence to the route. To preserve
the realism of the motion as much as possible, we incorporate a least change
strategy into the motion primitive sequence extraction. The results show that
the generated motions fit the route well; meanwhile, these generated motions are
realistic though something different from the original one.

148 Feng Liu and Ronghua Liang

6 Conclusion

In this paper, we present a new example based motion synthesis technique to
create motions for intelligent avatars to move along a planned route. The main
contribution of this paper is to propose a new motion graph using motion capture
data. Because we adopt motion primitives, segments from the original motions,
as the vertices, and use them to create new motions, our motion graph preserves
the reality of the original motion yet provides a large promising motion space.
Another contribution is that we present an efficient way to generate motions
for intelligent avatars. Given a planned route, the motions can be produced
automatically.

The problem in this technique is that we use the motion primitives to con-
struct the motion graph directly, which results in the problem of high computa-
tional overhead in searching the optimal motion path when the motion library
is large. This drawback may affect the application of our method in real-time
fields when the motion library is large. We will focus our future work on it.

References

1. Michael Gleicher.: Animation from observation: Motion capture and motion editing.
Computer Graphics, 1999. 4(33):51–55

2. Michael Gleicher.: Motion editing with spacetime constraints. In: Proceedings of the
1997 Symposium on Interactive 3D Graphics. Providence,1997. 139–148

3. Jehee Lee, Sung Yong Shin.: A hierarchical approach to interactive motion editing
for human-like figures. In: Proceedings of SIGGRAPH 99. Los Angeles,1999. 39–48

4. Michael Gleicher.: Retargeting motion to new characters. In: Proceedings of SIG-
GRAPH 98. Orlando, Florida, 1998. 33–42

5. Bruderlin. A, Williams. L.: Motion signal processing. In: Proceedings of SIGGRAPH
95. Los Angeles, 1995. 97–104

6. Feng Liu, Yueting Zhuang, Zhongxiang Luo, Yunhe Pan.: A hybrid motion data ma-
nipulation: Wavelet based motion Processing and spacetime rectification. In: Pro-
ceedings of IEEE PCM 2002, Hsinchu, Taiwan, 2002. 743–750

7. Unuma. M, Anjyo. K, Takeuchi. R.: Fourier principles for emotion-based human
figure animation. In: Proceedings of SIGGRAPH 95. Los Angeles, 1995. 91–96

8. Matthew Brand, Aaron Hertzmann.: Style Machine. In: Proceedings of SIGGRAPH
2000. New Orleans, 2000. 183–192

9. L. Molina Tanco, A. Hilton.: Realistic synthesis of novel human movements from a
database of motion capture examples. In: Proceedings of IEEE Workshop on Human
Motion. Austin, Texas, 2000. 137–142

10. Katherine Pullen, Christoph Bregler.: Motion capture assisted animation: Textur-
ing and synthesis. In: Proceedings of SIGGRAPH 2002. San Antonio, Texas, 2002.
501–508

11. Okan Arikan, D.A. Forsyth.: Interactive Motion Generation From Examples. In:
Proceedings of SIGGRAPH 2002. San Antonio, Texas, 2002. 483–490

12. Lucas Kovar, Michael Gleicher, Frdric Pighin.: Motion graphs. In: Proceedings of
SIGGRAPH 2002. San Antonio, Texas, 2002. 473–482

13. Yan Li , Tianshu Wang, Heung-Yeung Shum.: Motion texture: A two-level statisti-
cal model for character synthesis. In: Proceedings of SIGGRAPH 2002. San Antonio,
Texas, 2002. 465–472

Motion Path Synthesis for Intelligent Avatar 149

14. Jehee Lee , Jinxiang Chai , Paul S. A. Reitsma , Jessica K. Hodgins, Nancy S.
Pollard.: Interactive control of avatars animated with human motion data. In: Pro-
ceedings, SIGGRAPH 2002. San Antonio, Texas, 2002. 491–500

15. A. Eden.: Directable Motion Texture Synthesis. technical report, Harvard Univer-
sity, April 2002.

	Introduction
	Related Work
	Motion Graph
	Motion Primitive Extraction
	Motion Graph Construction

	Motion Synthesis
	Motion Path Finding
	Motion Primitives Jointing and Adapting

	Experiment
	Conclusion

