Computational Photography

Prof. Feng Liu

Spring 2022

http://www.cs.pdx.edu/~fliu/courses/cs510/

05/19/2022

Last Time

Video Stabilization

Today

- ☐ Stereoscopic 3D
 - 3D Cinematography
 - Stereoscopic media post-processing

Stereoscopic 3D

History

Number of 3D movies released in the US

Weekly Box Office Returns by Dimension

Ubiquitous Stereoscopic 3D

Stereoscopic 3D Camera

Stereo Photo

Left Right

Red-cyan anaglyph

3-D RETURNS SINCE 2009

3-D RETURNS SINCE 2009

3D Fatigue

- Blurring vision
- Eyestrain
- Headache

Stereopsis

Disparity and Perceived Depth

Disparity and Perceived Depth

Vergence-accommodation

 There is an area around it where vergence and accommodation agree, which is called zone of comfort.

real world

stereoscopic displays

Stereoscopic Comfort Zone

Monocular Object

Stereo Window Violation

(b) Actual 3D perception

When an object with negative disparities is cut by the screen edge, it suffers from the <u>stereo window violation</u>. That is, the object is perceived in front of the screen, but is occluded by the screen edge.

Stereo Window Violation

Left Right

More Visual Fatigue Sources

Keystone Correction for Stereoscopic Cinematography

Stereoscopic Comfort Zone

Stereoscopic Camera Model

Keystone distortion

Keystone distortion

Keystone in projectors

Keystone correction for projectors

- Basics: 3D rotation can be modeled by a homography
- Keystone correction [Raskar and Beardsley 01, Li et al. 04, etc]
 - Estimate 3D rotation or homography
 - Optical keystone correction by modifying the lens system
 - Or digital keystone correction by image warping

Stereo keystone correction

- Projector keystone correction cannot work
 - Revert the toe-in operation
 - Change the desirable (horizontal) disparity distribution
- Stereo keystone correction requires
 - Eliminate vertical disparities
 - Preserve horizontal disparities

Content-preserving warping

- Non-uniformly move image content to target positions
- Avoid noticeable distortion
- Applications:
 - Video stabilization [Liu et al. '09]
 - Disparity editing [Lang et al. '10]

Correction by content-preserving warping

- Use a spatially-varying warping method
 - Non-uniformly move image content to remove vertical disparities and preserve horizontal disparities
 - Avoid noticeable image distortion

Stereo keystone correction

Feature correspondence estimation

Target feature position estimation

Image transformation via content-preserving warping

Feature correspondence estimation

Input: left image with disparity and right image

- Detect SIFT features from the left and right image
- Establish feature correspondence [Lowe '04]
- Remove outliers using the epipolar geometry constraint [Hartley and Zisserman '00]

Target feature position estimation

- Keep the input horizontal coordinates to
 - preserve horizontal disparities
- Average the left and right vertical coordinates for each feature pair to
 - remove vertical disparities

Content-preserving warping

Keystone correction result: left with disparity and right with mesh

Warping algorithm

- Build a grid mesh from input image
- Warp input image by least-squares minimization
 - Data term: move features to target positions
 - Smoothness term: avoid visual distortion

Smoothness term: minimize visual distortion

Local similarity transformation constraint

Warping algorithm

- Build a grid mesh from input image
- Warp input image by least-squares minimization
 - Data term: move features to target positions
 - Smoothness term: avoid visual distortion
 - Solved by a linear solver

Camera-centric disparity editing

- Estimate the relative camera pose between the left and right camera and a sparse set of 3D points
 - 6-point algorithm [Stewenius et al. '05]
- Adjust the baseline and toe-in angle
 - Compute output feature positions
- Content-preserving warping

Input

Input

Input

Vertical disparity from 3D rotation

Input

Our result

Examples

Input anaglyph and disparity

Examples: Move the train near the screen

Toe-in result

Examples: Move the train near the screen

Output anaglyph and disparity

Examples: Move the walker near the screen

Examples

Input

Output 1 and 2

Video example

Input sequence

Output sequence

Input Result

Student Paper Presentations

- ☐ Presenter: Zwovic, Kitt
 - A global sampling method for alpha matting
 K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun
 CVPR 2011
- Presenter: Filgas, Ryan
 - A Closed Form Solution to Natural Image Matting A. Levin, D. Lischinski, and Y. Weiss CVPR 2006

Next Time

- Student paper presentations
 - 05/24: Hall, Timothy
 - ☐ First-person Hyper-lapse videos J. Kopf, M. F. Cohen, R. Szeliski SIGGRAPH 2014
 - 05/24 : Kim, David
 - ☐ 360° Video StabilizationJ. KopfSIGGRAPH Asia 2016
 - 05/24 : Panthala, Krishna Sai
 - Steadiface: Real-Time Face-Centric Stabilization on Mobile Phones
 F. Shi, S. Tsai, Y. Wang, C. Liang

ICIP 2019