Last time

- Compositing
- NPR
- 3D Graphics Toolkits
 - Transformations
Today

- 3D Transformations
- The Viewing Pipeline
- Mid-term: in class, Nov. 5
- Homework 3 available, due Nov. 3, in class
- No class on Thursday (10/22) and homework 2 can be turned in next Tuesday in class
Homogeneous Coordinates

- Use three numbers to represent a point
- \((x, y) = (wx, wy, w)\) for any constant \(w \neq 0\)
 - Typically, \((x, y)\) becomes \((x, y, 1)\)
 - To go backwards, divide by \(w\)
- Translation can now be done with matrix multiplication!
Basic Transformations

Translation: \[
\begin{bmatrix}
1 & 0 & b_x \\
0 & 1 & b_y \\
0 & 0 & 1
\end{bmatrix}
\]

Rotation: \[
\begin{bmatrix}
cos \theta & -sin \theta & 0 \\
sin \theta & cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Scaling: \[
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Homogeneous Transform Advantages

- Unified view of transformation as matrix multiplication
 - Easier in hardware and software
- To compose transformations, simply multiply matrices
 - Order matters: AB is generally not the same as BA
- Allows for non-affine transformations:
 - Perspective projections!
Directions vs. Points

- We have been talking about transforming points.
- Directions are also important in graphics:
 - Viewing directions
 - Normal vectors
 - Ray directions

- Directions are represented by vectors, like points, and can be transformed, but not like points.
Say I define a direction as the difference of two points: $d = a - b$

This represents the *direction* of the line between two points.

Now I translate the points by the same amount: $a' = a + t$, $b' = b + t$

How should I transform d?
Homogeneous Directions

- Translation does not affect directions!
- Homogeneous coordinates give us a very clean way of handling this
- The direction \((x,y)\) becomes the homogeneous direction \((x,y,0)\)

 $$
 \begin{bmatrix}
 1 & 0 & b_x \\
 0 & 1 & b_y \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 0 \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 x \\
 y \\
 0 \\
 \end{bmatrix}
 $$

- The correct thing happens for rotation and scaling also
 - Uniform scaling changes the length of the vector, but not the direction
3D Transformations

- Homogeneous coordinates: \((x, y, z) = (wx, wy, wz, w)\)
- Transformations are now represented as 4x4 matrices
- Typical graphics packages allow for specification of translation, rotation, scaling and arbitrary matrices
 - OpenGL: glTranslate[fd], glRotate[fd], glScale[fd], glMultMatrix[fd]
3D Translation

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
3D Rotation

- Rotation in 3D is about an axis in 3D space passing through the origin
- Using a matrix representation, any matrix with an orthonormal top-left 3x3 sub-matrix is a rotation
 - Rows are mutually orthogonal (0 dot product)
 - Determinant is 1
 - Implies columns are also orthogonal, and that the transpose is equal to the inverse
3D Rotation

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 r_{xx} & r_{xy} & r_{xz} & 0 \\
 r_{yx} & r_{yy} & r_{yz} & 0 \\
 r_{zx} & r_{zy} & r_{zz} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

and if

\[
R = \begin{bmatrix}
 -r_1 & -0 \\
 -r_2 & -0 \\
 -r_3 & -0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

then \(r_1 \cdot r_2 = 0, r_1 \cdot r_3 = 0, r_2 \cdot r_3 = 0, r_1 \cdot r_1 = 1, etc.\)
Problems with Rotation Matrices

- Specifying a rotation really only requires 3 numbers
 - Axis is a unit vector, so requires 2 numbers
 - Angle to rotate is third number

- Rotation matrix has a large amount of redundancy
 - Orthonormal constraints reduce degrees of freedom back down to 3

- Rotations are a very complex subject, and a detailed discussion is way beyond the scope of this course
Alternative Representations

- Specify the axis and the angle (OpenGL method)
- **Euler angles**: Specify how much to rotate about X, then how much about Y, then how much about Z
 - Hard to think about, and hard to compose
 - Any three axes will do e.g. X,Y,Z
- Specify the axis, scaled by the angle
 - Only 3 numbers, called the *exponential map*
- **Quaternions**
Quaternions

- 4-vector related to axis and angle, unit magnitude
 - Rotation about axis \((n_x, n_y, n_z)\) by angle \(\theta\):
 \[
 \left(n_x \cos(\theta/2), n_y \cos(\theta/2), n_z \cos(\theta/2), \sin(\theta/2) \right)
 \]
- Reasonably easy to compose
- Reasonably easy to go to/from rotation matrix
- Only normalized quaternions represent rotations, but you can normalize them just like vectors, so it isn’t a problem
- Easy to perform spherical interpolation
Other Rotation Issues

- Rotation is about an axis at the origin
 - For rotation about an arbitrary axis, use the same trick as in 2D: Translate the axis to the origin, rotate, and translate back again

- Rotation is not commutative
 - Rotation order matters
 - Experiment to convince yourself of this
Transformation Leftovers

- Scale, shear etc extend naturally from 2D to 3D
- Rotation and Translation are the *rigid-body transformations*:
 - Do not change lengths or angles, so a body does not deform when transformed
Modeling 101

- For the moment assume that all geometry consists of points, lines and faces
- Line: A segment between two endpoints
- Face: A planar area bounded by line segments
 - Any face can be *triangulated* (broken into triangles)
Modeling and OpenGL

- In OpenGL, all geometry is specified by stating which type of object and then giving the vertices that define it.
- `glBegin()` ... `glEnd()`
- `glVertex[34][fdv]`
 - Three or four components (regular or homogeneous)
 - Float, double or vector (e.g. `float[3]`)
- Chapter 2 of the OpenGL red book
Rendering

- Generate an image showing the contents of some region of space
 - The region is called the *view volume*, and it is defined by the user
- Determine where each object should go in the image
 - *Viewing, Projection*
- Determine which pixels should be filled
 - *Rasterization*
- Determine which object is in front at each pixel
 - *Hidden surface elimination, Hidden surface removal, Visibility*
- Determine what color it is
 - *Lighting, Shading*
Graphics Pipeline

- Graphics hardware employs a sequence of coordinate systems
 - The location of the geometry is expressed in each coordinate system in turn, and modified along the way
 - The movement of geometry through these spaces is considered a pipeline
Local Coordinate Space

- It is easiest to define individual objects in a local coordinate system
 - For instance, a cube is easiest to define with faces parallel to the coordinate axes

- Key idea: Object instantiation
 - Define an object in a local coordinate system
 - Use it multiple times by copying it and transforming it into the global system
 - This is the only effective way to have libraries of 3D objects
World Coordinate System

- *Everything* in the world is transformed into one coordinate system - the *world coordinate system*
 - It has an origin, and three coordinate directions, x, y, and z
- Lighting is defined in this space
 - The locations, brightness’ and types of lights
- The camera is defined *with respect to* this space
- Some higher level operations, such as advanced visibility computations, can be done here
View Space

- Define a coordinate system based on the eye and image plane - the camera
 - The eye is the center of projection, like the aperture in a camera
 - The image plane is the orientation of the plane on which the image should “appear,” like the film plane of a camera

- Some camera parameters are easiest to define in this space
 - Focal length, image size

- Relative depth is captured by a single number in this space
Canonical View Volume

- Canonical View Space: A cube, with the origin at the center, the viewer looking down \(-z\), \(x\) to the right, and \(y\) up
 - Canonical View Volume is the cube: \([-1,1] \times [-1,1] \times [-1,1]\)
 - Variants (later) with viewer looking down \(+z\) and \(z\) from 0-1
 - Only things that end up inside the canonical volume can appear in the window

- Tasks: Parallel sides and unit dimensions make many operations easier
 - Clipping - decide what is in the window
 - Rasterization - decide which pixels are covered
 - Hidden surface removal - decide what is in front
 - Shading - decide what color things are
Window Space

- Window Space: Origin in one corner of the “window” on the screen, x and y match screen x and y
- Windows appear somewhere on the screen
 - Typically you want the thing you are drawing to appear in your window
 - But you may have no control over where the window appears
- You want to be able to work in a standard coordinate system - your code should not depend on where the window is
- You target Window Space, and the windowing system takes care of putting it on the screen
Graphics Pipeline

1. Local Coordinate Space
2. World Coordinate Space
3. View Space
4. Canonical View Volume
5. Display Space

The process moves from Local Coordinate Space to World Coordinate Space, then to View Space, followed by Canonical View Volume, and finally to Display Space.
Canonical → Window Transform

- Problem: Transform the Canonical View Volume into Window Space (real screen coordinates)
 - Drop the depth coordinate and translate
 - The graphics hardware and windowing system typically take care of this - but we’ll do the math to get you warmed up
- The windowing system adds one final transformation to get your window on the screen in the right place
Canonical → Window Transform

- Typically, windows are specified by a corner, width and height
 - Corner expressed in terms of screen location
 - This representation can be converted to \((x_{\text{min}}, y_{\text{min}})\) and \((x_{\text{max}}, y_{\text{max}})\)

- We want to map points in Canonical View Space into the window
 - Canonical View Space goes from (-1,-1,-1) to (1,1,1)
 - Lets say we want to leave z unchanged

- What basic transformations will be involved in the total transformation from 3D screen to window coordinates?
Canonical → Window Transform

Canonical view volume → Window space

$$(x_{\text{min}}, y_{\text{min}}) \rightarrow (x_{\text{max}}, y_{\text{max}})$$
Canonical \rightarrow Window Transform

\[
\begin{bmatrix}
 x_{\text{pixel}} \\
 y_{\text{pixel}} \\
 z_{\text{pixel}} \\
 1
\end{bmatrix}
= \begin{bmatrix}
 \frac{(x_{\text{max}} - x_{\text{min}})}{2} & 0 & 0 & \frac{(x_{\text{max}} + x_{\text{min}})}{2} \\
 0 & \frac{(y_{\text{max}} - y_{\text{min}})}{2} & 0 & \frac{(y_{\text{max}} + y_{\text{min}})}{2} \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_{\text{canonical}} \\
 y_{\text{canonical}} \\
 z_{\text{canonical}} \\
 1
\end{bmatrix}
\]
Canonical → Window Transform

- You almost never have to worry about the canonical to window transform
- In OpenGL, you tell it which part of your window to draw in - relative to the window's coordinates
 - That is, you tell it where to put the canonical view volume
 - You must do this whenever the window changes size
 - Window (not the screen) has origin at bottom left
 - `glViewport(minx, miny, maxx, maxy)`
 - Typically: `glViewport(0, 0, width, height)` fills the entire window with the image
- The textbook derives a different transform, but the same idea
glViewport(0, 0, width, height)
glViewport(100, 0, width, height)
Graphics Pipeline

Local Coordinate Space → World Coordinate Space → View Space → Canonical View Volume → Display Space
View Volumes

- Only stuff inside the Canonical View Volume gets drawn
 - Points too close or too far away will not be drawn
 - But, it is inconvenient to model the world as a unit box

- A view volume is the region of space we wish to transform into the Canonical View Volume for drawing
 - Only stuff inside the view volume gets drawn
 - Describing the view volume is a major part of defining the view
Orthographic Projection

- Orthographic projection projects all the points in the world along parallel lines onto the image plane
 - Projection lines are perpendicular to the image plane
 - Like a camera with infinite focal length
- The result is that *parallel lines in the world project to parallel lines in the image, and ratios of lengths are preserved*
 - This is important in some applications, like medical imaging and some computer aided design tasks
Orthographic View Space

- **View Space**: a coordinate system with the viewer looking in the -z direction, with x horizontal to the right and y up
 - A right-handed coordinate system! All ours will be

- The view volume is a **rectilinear box** for orthographic projection
 - The view volume has:
 - a *near plane* at z=n
 - a *far plane* at z=f, (f < n)
 - a *left plane* at x=l
 - a *right plane* at x=r, (r>l)
 - a *top plane* at y=t
 - and a *bottom plane* at y=b, (b<t)
Rendering the Volume

- To find out where points end up on the screen, we must transform View Space into Canonical View Space
 - We know how to draw Canonical View Space on the screen
- This transformation is “projection”
- The mapping looks similar to the one for Canonical to Window ...
Orthographic Projection Matrix
(Orthographic View to Canonical Matrix)

\[
\begin{bmatrix}
 x_{\text{canonical}} \\
 y_{\text{canonical}} \\
 z_{\text{canonical}} \\
 1
\end{bmatrix} = \begin{bmatrix}
 \frac{2}{r-l} & 0 & 0 & 0 \\
 0 & \frac{2}{t-b} & 0 & 0 \\
 0 & 0 & \frac{2}{n-f} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 1 \\
 0 \\
 0 \\
 -\frac{(r+l)/2}{2/(r-l)} - \frac{(t+b)/2}{2/(t-b)} - \frac{(n+f)/2}{2/(n-f)}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_{\text{canonical}} \\
 y_{\text{canonical}} \\
 z_{\text{canonical}} \\
 1
\end{bmatrix} = \begin{bmatrix}
 \frac{2}{r-l} & 0 & 0 & 0 \\
 0 & \frac{2}{t-b} & 0 & 0 \\
 0 & 0 & \frac{2}{n-f} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x_{\text{view}} \\
 y_{\text{view}} \\
 z_{\text{view}} \\
 1
\end{bmatrix}
\]

\[
x_{\text{canonical}} = M_{\text{view} \rightarrow \text{canonical}} x_{\text{view}}
\]
Graphics Pipeline

Local Coordinate Space → World Coordinate Space → View Space → Canonical View Volume → Display Space
Next Time

☐ Perspective Projection
☐ Clipping
☐