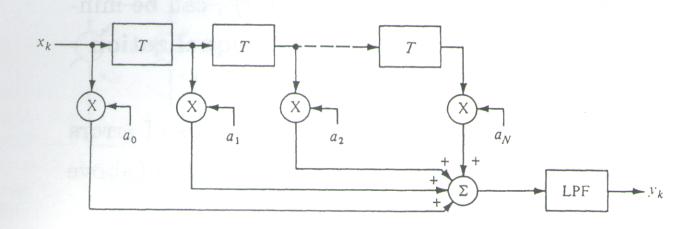
- The binary data stream is applied to duobinary filtering system $y_k = b_k b_{k-2} = x_k \oplus b_{k-2} b_{k-2}$.
- If $x_k = 0$ then $y_k = 0$ regardless of b_{k-2} ; if $x_k = 1$, then $y_k = 1$ or 1
 - The decoding is


$$\tilde{x}_k = y_k \mod -2 = \begin{cases} 0, & y_k = 0, 2 \\ 1, & y_k = 1 \end{cases}$$

the dependence of previous decoded values has been eliminated.

TABLE 9.3 Decoding of Precoded Modified Duobinary Signals

x_k	b_{k-2}	y_k	Y_k	
1	If it is unless o	1	A	
1	1.	-1	-A	
0	tive conal o	0	0	
0	Both among 1	0	0	

• Both duobinary signaling and modified duobinary signaling are the cases of a wider selection of partial-response signaling methods. A general framework of using transversal filtering can be shown as

