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Probability Concepts

 The fundamental concept in probability theory is the concept of 
random experiment, which is any experiment whose outcome 
cannot be predicted with certainty

 A simple example is coin tossing experiment. We know that 
heads and tails are possible outcomes, although the outcome 
(head or tail?) of a particular experiment (toss) is uncertain
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Probability Concepts (cont.)

 Let us define the following concepts associated with a random 
experiment:

 Outcome ( ) – the result of a random experiment 

 Sample space ()  the set of all possible outcomes of a 
random experiment

 Event (A)  any collection of outcomes, in other words, a subset 
of 

 The empty subset , is called the null or impossible event, and 
the whole set  is called the whole or sure event
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Probability Axioms
 In the axiomatic approach, the probability is defined as a 

function that assigns a real number, denoted by P(A), to every 
event A in the sample space  such that:

P2 The whole event  will occur each time we perform the     
random experiment

P3 If the events  are mutually exclusive (i.e., can not occur at 
the same time), the probability of their union is the sum of 
their probabilities 

( ) 1P  

1 2 1 2( ...) ( ) ( ) ...P A A P A P A    

P1 0  P(A)  1
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Probability Axioms (contd)

 (P1)  (P3) are called the axioms of probability

 By using the above axioms, we can derive following important 
properties of the probability function:

P4 The probability of the null event is zero.

P5

 If the events               are not mutually exclusive, the 
probability of their union is upper-bounded by the sum of 
probabilities of the constituent events. That is, 

( ) 0P  

( ) 1 ( ),              = complement of P A P A A A 

1 2, ,...A A

1 2 1 2( ......) ( ) ( ) ......P A A P A P A     Union Bound
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Conditional Probability

 The probability P(A) is a priori probability of the occurrence 
of an event A

 Reflects our knowledge of A before the random experiment 
takes place

 The conditional probability P(A|B) is the a posteriori
probability of event A knowing that event B has already 
occurred

 It is defined as

 Conditioning by event B has the effect of restricting the 
universe of outcomes for the event A to the subset B of  
 Definition satisfies all probability axioms

( )
( | ) ,                provided ( )  0

( )

P AB
P A B P B

P B
 
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Independent Events
 A and B are said to be independent events if

 One should not confuse independent events with mutually 
exclusive or disjoint events

 Mutually exclusive events have no outcome in common,    
i.e.,              implying that                   

 Independent events in most cases are not disjoint

 Substituting into the definition of conditional probability yields

  that the occurrence of B does not provide any more 
information about the event A

( ) ( ) ( )P AB P A P B

AB  ( ) 0P AB 

( ) ( ) ( )
( | ) ( )

( ) ( )

P AB P A P B
P A B P A

P B P B
  
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Random Variable
 A random variable is defined as a rule that assigns a real 

number to each possible outcome            of a random 
experiment

 Thus, random variable is a function that maps every 
outcome           to a real number x as illustrated in Figure 

Conceptual model
of a random variable

We will denote random 
variables in a bold font (x, y,…) 
and the values assumed by them 
are displayed by the lowercase 
letters (x, y,…). 

 

 1x


1
2

 2x

n

 nx



1x 2x nx

3

 3x
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Discrete Random Variables 

 Random variables may be discrete, continuous or mixed 
depending upon the range of values they assume

 A discrete random variable x can take on a countable
number of values x1, x2, x3,… with probabilities

 e.g., # of defective chips from a semiconductor wafer

 A probability mass function (PMF)            completely 
characterizes a discrete random variable. It is defined as

 Since            is a probability, it satisfies following properties

{ }, 0,1,2,...iP x i x

( ) { }i ip x P x x x

( )ip xx

0 ( ) 1,         ( ) { ( ) } 1i i i i i
i i

p x p x P x       x x x
( )ip xx
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Continuous Random Variables 

 A continuous random variable x takes values in a 
continuous set of numbers. The range of x may include the 
whole real line    or an interval thereof

 Continuous random variables model many real life 
phenomena that include file download time on Internet, 
voltage across a resistor, and phase of a carrier signal 
produced by a radio transmitter

 One characteristic that distinguishes a continuous random 
variable from the discrete one is that the probability of an 
individual outcome is zero. That is,                    , where x is 
any number in the range of x

 Therefore, we can not use the PMF for a continuous random 
variable. Instead we shall use the cumulative distribution 
function which serves as an appropriate probability measure 
for any random variable 



{ } 0P x x
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Cumulative Distribution Function (CDF) 

 The cumulative distribution function (CDF),          , of a 
random variable x is defined as 

 For any real number x, the CDF measures the probability that 
the random variable x is no larger than x

 (a)

 (b)

 (c)

 (d)           is nondecreasing

( ) { }F x P x x x

0 ( ) 1F x x

lim ( ) 0 and lim ( ) 1
x x

F x F x
 

 x x

{ } ( ) ( )P a b F b F a   x xx

( )F xx

( )F xx
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Probability Density Function (PDF)

 A probability density function (PDF),          , of a continuous 
random variable x is derivative of its CDF. That is. 

 The CDF of a continuous random variable x is integral of its 
PDF

 (a)

 (b)

 (c)

( )
( )

    

dF x
f x

dx
 x

x

( )f xx

( ) ( )
a

F a f x dx


 x x

( ) 0f x x

( ) { }
b

a

f x dx P a b   x x

( ) 1f x dx




 x

The PDF indicates the probability

that x is in the close vicinity of x
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Some Common Continuous Random Variables

 Here we introduce three important continuous random 
variables:

 Uniform

 Gaussian

 Exponential

 Poisson

 Rayleigh
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Uniform Random Variable

 x is a uniform random variable if its PDF is given by

 The uniform random variable is a good model when each 
outcome of a random experiment is equally likely, and 
constrained to lie in the interval [b, a], b > a. 

1
,    ,

( )
0,    otherwise.

a x b
f x b a

   


x
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Exponential Random Variable
 x is an exponential random variable if its PDF is given by

where  > 0

 For x  0,

 The exponential random variable is frequently used to model 
lifetimes (e.g., duration of a phone call) or waiting times (e.g. 
until some event happens)

,    0,
( )

 0,    otherwise.

xe x
f x

  
 


x

00 0
( ) { } 1

x x xt x t xF x P x e dt e dx e e              x x
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Gaussian or Normal Random Variable 

 x is a normal or Gaussian random variable if its PDF is given 
by

 Characterized by  mean       and variance

 called the standard deviation

 A Gaussian random variable with mean      and variance       is 
denoted by

 It is most frequently used random variable in the analysis and 
modeling of communication systems. Thermal noise, which is 
ubiquitously present in communication systems, has a 
Gaussian PDF

2 2( ) / 21
( )

2

x mf x e 


  x x

x 2
x

mx

 x

 2
x 2
x

 2
x

( , )m  2
x xN

mx  2
x

1/31/2013 1717

 The CDF           of the Gaussian random variable x is given by

 There is no closed form solution for the integral on the right 
hand side. However, it can be written in terms of the Q-
function as

Gaussian or Normal Random Variable (contd)

( )F xx

2 2( ) / 21
( ) { }

2

x
t mF x P x e dt


 



    x x
x 2

x

x

2 / 21
( ) { }

2
y

a

Q a P a e dy



   x

( ) 1
x m m x

F x Q Q
 

    
     

   
x x

x
x x

where
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Poisson Random Variable

 The Poisson random variable x models the number of events 
(k) occurring in any interval                 if the occurrence of 
these events, at an average rate , is independent of to and 
depends only on the length of interval 

 It is common in the literature to refer to the occurrence of a 
Poisson event as an arrival

 x is a Poisson random variable if its PMF is of the form

( , )o ot t 

( ) ( )

        {  arrivals in interval }

( )
        ,    0,1,2, ,

!

k

p k P k

P k

e k
k







 



  

x x

where  = average arrival rate

 =30

 =10

 =50

k
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Functions of a Random Variable 

 We are frequently interested in statistics of a random signal after 
passage through a system

 Let x be a random variable whose PDF is known and suppose 
that g(.) denotes the transfer characteristic of a linear or 
nonlinear system

 We want to determine the PDF          of the new random 
variable y related to x by

 For a monotone increasing or decreasing                              
function, the PDF of y is given by

( )f yy

( )gy x

1 ( )

( )
( )

'( )
x g y

f x
f y

g x 

 x
y
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Functions of a Random Variable (contd) 

 An arbitrary function g(x) can be viewed as consisting of  
several piecewise monotonic segments over the range of x

 Figure shows g(x) with three piecewise monontonic segments. 
As a result the intervals (x1, x1+ x1), (x2, x2+ x2), and           
(x3, x3+ x3) are mapped by into the same interval (y, y+y)

 The PDF of y is given by

1 1 1
1 2 3

1 2 3

1 2 3( ) ( ) ( )

( ) ( ) ( )
( )

'( ) '( ) '( )
x g y x g y x g y

f x f x f x
f y

g x g x g x    

  x x x
y

where x1, x2 and x3 are roots

of the equation g(x) = y
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Joint Cumulative Distribution Functions

 Consider a random experiment with sample space . We are 
interested in a function (x(), y()) that assigns a pair of real 
numbers to each outcome           of the random experiment

 That is, we are dealing with a vector function that maps  into       
the real plane     or a subset thereof

 The joint cumulative distribution function (CDF) of two 
random variables x and y is defined as

 Note that               measures the probability of event

( , ) { , }F x y P x y  xy x y

( , )F x yxy

{ : ( ) , ( ) }A x y     x y

 

2
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Properties of Joint CDFs

 For any pair of random variables x and y,

(a)

(b)

(c)

(d)                is nondecreasing

( , ) ( , ) 0F x F y   xy xy

( , )F x yxy

0 ( , ) 1F x y xy

( , ) 1F   xy

1/31/2013 23

Joint Probability Density Function 

 The joint probability density function,              , of two 
random variables x and y is defined as

(a) for all (x,y)

(b)

(c) For a rectangle                                in x-y plane,

( , )f x yxy

2 ( , )
( , )

          

F x y
f x y

x y



 

xy
xy

  

  
( , ) ( , ) 

x y
F x y f u v dudv

 
   xy xy

( , ) 0f x y xy

  

  
( , ) ( , ) 1f x y dxdy F

 

 
     xy xy

 
 

  
, ( , ) 

b d

a c
P a b c d f x y dxdy       xyx y

 ,a b c d   x y
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Conditional Distributions (contd)

 The conditional PDF of random variable x given {y = y}, 
denoted by            , is defined as

 Note that for each y with               , the conditional PDF 
provides a new probabilistic description of the random 
variable x

 Similarly, we can define

( )f x yx

 ( , )
( )  ( ) , ( ) 0

 ( )x

f x y
f x y f x y f y

f y
   xy

x y
y

y

( )f x yx( ) 0f y y

 ( , )
( )= ( ) , ( ) 0

 ( )

f x y
f y x f y x f x

f x
  xy

y y x
x

x
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Independent Random Variables
 Two random variables x and y are said to be statistically 

independent if

 Equivalently, for independent random variables

 For independent random variables,

 
   

( , ) ,

             ( ) ( )

F x y P x y

P x P y F x F y

  

   
xy

x y

x y 

x y 

( , ) ( ) ( )f x y f x f yxy x y

( , ) ( ) ( )
( ) ( )

( ) ( )x x

f x y f x f y
f x y f x

f y f y
  xy x y

y y

( ) ( )yf y x f y y

The PDF of x after knowledge   
of the event{ y = y } same as 
its PDF before the knowledge
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Statistics of a Random Variable

 The expected value or mean of a continuous random variable x
is defined as

 The expected value of a random variable represents its average 
value in a very large number of trials

 The mean of the function y = g(x) is

 The variance Var(x) of a random variable x is defined as

 Describes the spread of its PDF around the expected value

 

 
{ }  ( )m E x f x dx




   x xx x

 

 
( ) { ( )} ( ) ( )g E g g x f x dx




   xx x

 2 2 2

 
( ) {( ) } ( ) ( ) 0Var E m x m f x dx




     x x x xx x
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Statistics of Pair of Random Variables 

 Expected value of x + y

 More generally, expectation is a linear operator

 Variance of x + y

 Covariance of x and y

     E E E  x y x y

 i i i i
i i

E E  
 

 
 x x

( ) ( ) ( ) 2 {( )( )}Var Var Var E m m     x yx y x y x y

 ( , ) ( )( )Cov E m m  x yx y x y

( ) ( ) ( ) 2 ( , )Var Var Var Cov    x y x y x y
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Correlation and Covariance

 The correlation of two random variables x and y is defined as 

 It is very simple exercise to prove that

 x and y are called uncorrelated random variables if

 The correlation coefficient of two random variables x and y is 
defined as

( , ) 0Cov x y

{ }R Exy xy

( , ) { } { } { }Cov E E E R m m   xy x yx y xy x y

{ } { } { }E E E xy x y

( , )Cov
 

xy
x y

x y
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Pair of Gaussian Random Variables 

 The joint PDF of two Gaussian random variables x ~                  
and y ~                   is given by

where 

 (*) is also called the bivariate Gaussian density

 For uncorrelated Gaussian random variables,

2( , )m x xN
2( , )m y yN

22

2 2 2

2 ( )( ) ( )( )1
    

2(1 )

2

1
( , )   

2 1

                                          

x m y m y mx m

f x y e


   

  

      
   



xy x y yx

x yxy x y

xy

x y xy

| | 1 xy

0 xy

2 22 2 ( ) /2( ) /2

0

1 1
( , )

2 2

y mx mf x y e e 

  
  


 y yx x

xy
xy 2 2

x y

(*)

Uncorrelated Gaussian rvs   statistically independent
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Rayleigh PDF

 Assume that the random variables x and y are               and 
statistically independent. Let r and  be the polar coordinate 
representation of x and y

 The PDFs of r and  are given by

 is referred to as the Rayleigh’s PDF

  is uniformly distributed over [–, ]

2 2

1

( , )

( , ) tan

g

h 

  

 

r x y x y

y
x y

x


2(0, )N

2 2/2
2

( ) , 0rr
f r e r


   r

( )f rr
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Central Limit Theorem

 Let               be n independent, identically distributed random 
variables with finite mean m and variance

 Consider their scaled sum

 Then

 That is, the CDF of  zn converges to a Gaussian CDF             as 
n approaches ∞, independent of the distribution of random 
variables xn

1 2, ,...x x
2

 
1

n

i
i n

n

m
nm

n n 





 
 x

s
z

2 /21
lim { } (0,1)

2

z
u

n n
n

P z e du







   �z z N

(0,1)N
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Central Limit Theorem (contd)

 This result is known as the central limit theorem

 In a nutshell, the central limit theorem, states that the sum of 
almost any set of independent and randomly generated random 
variables rapidly converges to the Gaussian distribution

 This explains why the Gaussian distribution arises so 
commonly in practice to reflect the additive effect of multiple 
random occurrences 
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Random Process  Basic Concept

 Random variables assign one or more numbers to each 
outcome  of a random experiment

 In the case of random process x(t), every such outcome is 
assigned a waveform           

 is called the sample function and the ensemble of all 
such sample functions or realizations over time represents the 
random process x(t)

( , )x t 
( , )x t 

 Note that various sample 
functions themselves are 
deterministic

 The randomness is associated with the occurrence of a 
particular outcome which in turn determines the sample 
function observed
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Samples Functions of Various Random Processes
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Characterization of a Random Process 
 A random process is described by its ensemble of sample 

functions (waveforms) and the PDF over the ensemble

 Each time we perform the random experiment, a number              
is observed at t = t1 depending upon the particular outcome 
and the corresponding realization           

 The amplitudes of sample functions at any fixed instant 
instant t1, therefore, represent the random variable

 We will use the notation x1 to represent the random variable at 
instant t1. Thus, random variables                   represent 
amplitudes of sample functions at  

 A random process can, therefore, be viewed as a collection of 
infinite number of random variables

 The joint PDF for all n and for 
any choice of                 completely describes it 

1( , )x t 

( , )x t 

1( , )t x

1 2, ,..., nx x x

1 2, ,..., nt t t t

1 2 1 2( , ,..., , , ,..., )n nf x x x t t t
x

1 2, ,..., nt t t
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Expected Value and Correlation

 The expected value of the random process x(t) is defined as

 In general,            is a function of time

 Similarly, the mean-square value of the random process x(t) is 
given by 

 The autocorrelation function of the random process x(t) is 
defined as

 It is a measure of correlation between sample function values 
of the random process x (t) at time instants t1 and t2

 

 
( ) ( ) { ( )}  ( , )m t t E t x f x t dx




   x xx x

( )m tx

 2 2 2

 
( ) { ( )}  ( , )t E t x f x t dx




   xx x

 1 2 1 2( , ) ( ) ( )R t t E t t
x

x x
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Autocovariance Function

 The autocovariance of the random process x(t) is 
defined as

 Note that the variance of x(t) can be obtained from               as

 The correlation coefficient of the random process x(t) 
is defined as
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Wide-Sense Stationary Random Processes 

 A process whose statistical properties do not change with time 
is called a strictly stationary random process. 

 A random process x(t) is said to be wide-sense stationary
(WSS) if

 Thus in order for a random process to be WSS, we only 
require that its mean is a constant and that the autocorrelation 
function depends only on the time difference

 A strict-sense stationary random process is always wide-sense 
stationary
 However, the converse is not true in general, except for the 

Gaussian random process
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Ergodic Random Processes 
 A random process is ergodic if all time averages of sample 

functions equal corresponding ensemble averages

 Since time averages by definition are independent of time 
variable, it follows that an ergodic process is always stationary

Random Processes

Wide-sense Stationary

Stationary

Ergodic
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Cross-correlation Function
 The cross-correlation function provides a measure of 

correlation between sample function amplitudes of processes 
x(t) and y(t) at time instants t1 and t2 , respectively. It is 
defined as

 The random processes  x(t)  and  y(t) are said to be

 Uncorrelated

 Orthogonal
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Orthogonal and Independent Random Processes

 Note that if either of the processes x(t) and  y(t) has a zero 
mean, uncorrelatedness implies orthogonality and vice versa

 x(t) and  y(t) are said to be independent random processes if 
the set of random variables                                is statistically 
independent of the set of random variables                              
for any choice of                 and

 Independence implies that the joint PDF of the random 
variables is the product of the PDFs of the individual variables

 The random processes  x(t)  and  y(t) are said to jointly 
stationary in wide-sense if (a) x(t)  is WSS; (b) y(t) is WSS; 
and  (c)  their cross-correlation is invariant under the shift of 
time origin. That is,
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Gaussian Random Process

 A random process x(t) is said to be a Gaussian process if the 
random variables                               are jointly Gaussian for 
any n and for any choice of

 Many processes that arise from natural phenomena are 
approximated well by Gaussian processes, using central limit 
theorem arguments

 Examples include thermal noise in resistors and diffusion 
noise in semiconductors. 

 Gaussian processes are also relatively easy to handle 
analytically. That is why they are so important in 
communication and control systems. 
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Important properties of Gaussian processes

 A Gaussian process x(t) is completely specified by the set of 
means

and the set of autocorrelation functions

 For a Gaussian random process x(t), if                                   
for any set of distinct time instants               are uncorrelated, 
then they are statistically independent

 If x(t) is a wide-sense stationary Gaussian process, then x(t) is 
a strictly stationary Gaussian process 

 For an LTI system with Gaussian input process x(t), the output 
process y(t) is also Gaussian. Moreover, x(t) and y(t) are 
jointly Gaussian processes

{ ( )}i im E t x
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Power Spectrum of a Random Process 

 The power spectral density (PSD) of power signal x(t) 
from (2.171) is given by 

 For each sample function x(t,i), we can write its PSD as

where XT(f,i) is the FT of the truncated sample function xT(t,i) 

 A meaningful definition for the PSD of a random process would 
be the ensemble average of PSDs of all the sample functions. 
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Power Spectrum of a Random Process (contd)

 The PSD describes power distribution of a of a random signal 
as a function of frequency

 For a WSS random process x(t), the PSD Gx(f) is the Fourier 
transform of its autocorrelation function Rx(). 

 Conversely,

 It follows that

 That is, the area under Gx(f) represents the total power of the 
random process x(t)
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Response of Linear Systems to Random Signals 
 The output of an LTI system with impulse response function 

h(t) to the wide-sense stationary random signal x(t) is given by

 The PSD of output random process y(t) is related to the input 
process x(t) is related by

 Apply inverse FT to both sides, we obtain 
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White Gaussian Noise (WGN) 

 The term white noise n(t) is used to describe a wide-sense 
stationary random process whose power spectral density is flat 
over the entire frequency band (–, ) as shown in Figure

 The constant spectral density, by convention, is denoted by 
No/2
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WGN (contd)

 Taking the inverse Fourier transform yields

 White noise represents the ultimate in randomness since (*) 
implies instantaneous decorrelation

 That is, any two samples of WGN are uncorrelated no 
matter how closely spaced they are

 White noise processes that are also Gaussian are called white 
Gaussian noise (WGN)

 The samples of WGN                              for any set of 
distinct time instants                are jointly Gaussian random 
variables

 It follows from (*) and the Gaussian property that they are 
statistically independent 
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WGN (contd)

 WGN is an idealization of the noise observed in electronic 
components. This noise is caused by the chaotic motion of 
electrons in these components, and is commonly referred to as 
thermal noise

 Since the random motion of a large number of electrons 
contributes to this noise, we can apply the central limit 
theorem to conclude that this noise is a Gaussian random 
process

 Experiments conducted by Johnson (and verified analytically 
by Nyquist) in the 1920s showed that the power spectral 
density of thermal noise was constant for frequencies as high 
as 1000 GHz

 Although WGN is a useful mathematical abstraction, it does 
not conform to any random signal or noise observed in real life
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Filtered White Gaussian Noise 

 If WGN is passed through a nonideal filter with transfer 
function H(f), the output noise spectral density is given by

 The mean-square output power is given by

 If we have an ideal filter with bandwidth BN and gain equal to 
the maximum gain of the nonideal filter,                 , as shown 
in Figure, the mean-square output power is given by
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Noise-Equivalent Bandwidth 

 We would now like to determine the equivalent bandwidth that 
passes the same amount of noise power as the nonideal filter. 
Comparing (*) and (**), we obtain

 Solving for yields

 BN is called the noise-equivalent bandwidth of the nonideal 
filter H(f)

2 2

max
0

( ) ( )  o N oN B H f N H f df


 

2

0
2

max

( )  

( )
N

H f df

B
H f






1/31/2013 53

Narrowband Noise

 The power spectral density of a narrowband random process is 
nonzero only in a narrow frequency band which is very small 
compared to the center frequency fc as illustrated in Figure

 It is convenient to represent the narrowband random process 
x(t) in terms of in-phase and quadrature components, xc(t) and 
xs(t), respectively
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Spectral Densities of Quadrature Components

 The PSDs of quadrature noise components xc(t) and xs(t) are 
given by

where             is PSD of narrowband noise x(t) 

 Consider the noise n(t) obtained by passing white Gaussian 
noise with spectral density No/2 through an ideal bandpass 
filter centered at frequency fc . Assume fc >> 2B

 n(t) can be expressed in terms of its quadrature components 
nc(t) and ns(t) as
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Spectral Densities of Quadrature Components
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Narrowband White Gaussian Noise (contd)

 The spectral densities of nc(t) and ns(t) are obtained as
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