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What is Modulation?
 Signal processing by which a message or information-

bearing signal s(t) is transformed into another signal to 
facilitate transmission over a communication channel 
(e.g., cellular, satellite, twisted wire pair [TWP])

 The message signal s(t) is transmitted through the 
communication channel by impressing it on a carrier
signal 

 Amplitude Modulation  amplitude of the carrier 
varied in accordance with the message signal 

 Frequency Modulation  frequency of the carrier 
varied in accordance with the message signal 

 Phase Modulation  phase of the carrier varied in 
accordance with the message signal 

 ( ) cos 2 cc t A f t  

Amplitude Frequency Phase
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Why Modulate?

 Frequency translation  Transfer the message signal s(t) to a 
new frequency slot depending upon the intended frequency of 
transmission

 The frequency slot is determined by the frequency of the 
carrier   

 Channelization  Enable sharing of a single communication 
(usually wideband) channel by several lower bandwidth 
signals/users

 Practical equipment design  Higher the transmitted signal 
frequency, the smaller the antenna size required

 Narrowband electronics easier to realize

 Noise performance improvement  Increase the noise 
immunity in transmission by expanding the bandwidth of the 
transmitted signal
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Low-pass Signals

 Low-pass (LP) signal  spectral energy clustered around the 
DC or zero frequency

 All practical LP signals have a frequency above which their 
spectral components may be considered negligible

 This frequency, denoted by B, is called the bandwidth of 
the LP signal
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Bandpass Signals

 Bandpass (BP) signal  spectral components concentrated in 
the vicinity of a frequency fc, which is usually much higher 
than the bandwidth of the signal

 Amplitude-phase representation of a BP signal
cfcf 0

( )X f

f

( ) ( ) cos[2 ( )]cx t A t f t t  

Amplitude or Envelope Phase
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Types of Amplitude Modulation

 Double-sideband, suppressed-carrier (DSB-SC) amplitude 
modulation (AM)

 Conventional AM

 Single-sideband AM (SSB-AM)

 Vestigial-sideband AM (VSB-AM)
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Double-Sideband Suppressed-Carrier AM

 A double-sideband suppressed-carrier (DSB-SC) AM signal is 
obtained by multiplying the message signal s(t) with the carrier 
signal

( ) ( ) ( ) ( )cos(2 )DSB c cx t s t c t A s t πf t 
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Spectrum of the DSB-SC AM Signal 
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Power Content of DSB-SC AM Signal 

 Normalized average power

 Ps =  Average power in the baseband message waveform s(t)

 = Unmodulated carrier power
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Peak Envelope Power (PEP)

 Average power supplied by the modulator to a 1 ohm load 
during one carrier frequency cycle at the crest of the 
modulation envelope 

 Sinusoidal modulating signal: 
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Coherent Demodulation of DSB-SC AM Signals 

 Multiply the received signal r(t) by a locally generated carrier 
that is frequency- and phase-locked to the carrier used for 
modulation at the transmitter. 

 Recover the message signal by passing the product through an 
ideal LP filter having a bandwidth B. The demodulation 
scheme is called coherent

Double carrier frequency term.
Filtered out.

( ) ( ) 2cos(2 ) ( ) 2cos(2 )

      ( )cos(2 ) 2cos(2 )

      ( ) ( )cos(4 )

c DSB c

c c c

c c c

y t r t πf t x t πf t

A s t πf t πf t

A s t A s t πf t

   
 

 

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Demodulation with Phase/Frequency Error

 Assume a frequency error f and phase offset  in the locally 
generated carrier at the demodulator. The multiplier output is

 The demodulated output is

 For f = 0, the desired signal is scaled by a factor that 
depends on the phase offset cos() 

 If cos() = 45o, the amplitude of the desired signal is 
reduced by 2  

 If cos() = 90o, the desired signal component vanishes

 
   

Double carrier frequency term.
Filtered out.
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 ( ) ( )cos 2Dy t s t ft   
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Conventional AM

 In the conventional AM, a portion of the sinusoidal carrier is 
added to the DSB-SC AM signal, which greatly simplifies 
the demodulation process

 The transmitted signal is given by 

 We can express the conventional AM signal as

where

( ) cos(2 ) ( )cos(2 )

      [ ( )]cos(2 )
AM c c c

c c

x t A πf t s t πf t

A s t πf t
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Conventional AM Waveforms
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Modulation Index

 The parameter ma determines the extent to which the carrier 
has been amplitude-modulated. It is called the modulation 
index and is defined as

 We observe from the figure that the envelope of the modulated 
signal xAM(t) is always positive, and hence retains the shape of 
the message signal sn(t) if

 Therefore, the message signal sn(t) can be easily recovered 
from xAM(t) by using a simple envelope detector 

min ( )
t
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Spectrum of the Conventional AM Signal 

 The spectrum of the AM signal xAM(t) is given by

 Observe impulses at  fc indicating presence of the carrier 
component in the modulated signal spectrum. It is wasted 
power because it does not carry any information. 

 The message signal information is conveyed in the sidebands 
of the AM signal spectrum.  

 Note that the spectrum of a conventional AM signal occupies 
twice the bandwidth of the message signal  
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Spectrum of the Conventional AM Signal (contd)

Bandwidth of Conventional AM signal

2TB B
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Power Content of Conventional AM Signal

 Normalized average power of a conventional AM signal

 Peak envelope power (PEP) of a conventional AM signal
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Envelope Detection

 Suitable for conventional AM signals

 Does not require generation of a coherent carrier at the 

receiver 

 Simple hardware:  diode, resistor, capacitor

 Will work with suppressed carrier modulation systems if the 

receiver inserts a carrier
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Demodulation of Conventional AM Signal 
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Hilbert Transform
 The Hilbert transform of the signal x(t) is defined as the 

signal whose frequency components are all phase shifted by 
/2 radians

 Examples

 For an arbitrary signal,        is obtained by passing x(t) through 
a filter with transfer function 
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Hilbert Transform in Frequency Domain
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Alternative BP Signal Representations
in Frequency Domain
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Alternative Representations of BP Signals 

 Quadrature carrier representation

 Complex envelope representation

 Equivalent LP (“phasor”) representation for the BP 
waveform x(t) in terms of its in-phase (I) and quadrature 
(Q) components

( ) ( )cos(2 ) ( )sin(2 )c cx t I t f t Q t f t  

In-phase component :        ( ) ( )cos ( )

Quadrature component :   ( ) ( )sin ( )

I t A t t

Q t A t t






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2 2 1 ( )
( ) ( ) ( ),            ( ) tan
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Q t
A t I t Q t t

I t
   

    
 

Complex envelope of x(t)
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Alternative Representations of BP Signals (contd)

 Analytic signal representation

 It is easy to prove that

 Also

2( ) ( ) cj f tx t x t e   
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Single-Sideband AM 

 Both DSB-SC and Conventional AM systems require a 
channel bandwidth of BT = 2B Hz

 The transmission of either sideband is sufficient to reconstruct 
the message signal s(t) at the receiver.

 We may reduce the transmitted bandwidth to B Hz by filtering 
out  either the upper or the lower sideband
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Phasing Method

 
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Phasing Method in Frequency Domain

 We can express a USB-AM signal as

 Taking FT of both sides, the spectrum of can be expressed as 
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Phasing Method in Frequency Domain (contd)
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Vestigial-sideband (VSB) AM 

 VSB-AM relaxes the requirement of eliminating the second 
sideband

 Allows a portion (“vestige”) of the unwanted sideband to 
appear at the output of the modulator 

 A VSB-AM signal is generated by partially suppressing one of 
the sidebands of a DSB-SC signal by a sideband-shaping filter 

 

 
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Coherent Demodulation of VSB-AM

 Multiply the VSB signal by the coherent carrier

 In the frequency domain, the output signal can be expressed as 

 Substituting for                yields 

 The LP filter in the demodulator removes the message signal 
terms in multiplier output translated to frequencies f = ±2fc

( ) ( ) 2cos(2 )VSB cy t x t πf t 

)2cos(2 tπfc

( ) [ ( ) ( )]VSB c VSB cY f X f f X f f   

 
 

( ) ( ) ( )
( )

2            + ( 2 ) ( ) ( 2 ) ( )

c cc

c c c c

S f H f f H f fA
Y f

S f f H f f S f f H f f

      
      

( )VSBX f
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VSB-AM (contd)
 The demodulator LP filter passes through the message signal 

spectrum S(f) without any distortion if the VSB filter H(f) 
satisfies the property

 This is called vestigial symmetry condition

 Figure displays a frequency response of a VSB filter that 
truncates the lower sideband of the DSB-SC signal

 Observe that the VSB filter roll off characteristic exhibits odd
symmetry in the transition width of 2fv (fv << B) around the 
carrier frequency fc

 VSB+C  a variant of VSB where a carrier component is 
added to the VSB signal. It can now be demodulated using an 
envelope detector like a Conventional AM signal

Bf CffHffH cc        )()(
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VSB-AM Filter
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Analog TV Broadcasting Format
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Quadrature Carrier Multiplexing 

 Transmit two message signals in the same frequency slot by 
using quadrature (orthogonal) carriers

 s1(t) modulates in-phase carrier cos(2 fct) to produce the 
DSB signal s1(t)cos(2 fct) 

 s2(t) modulates quadrature carrier sin(2 fct) to produce 
the DSB signal s2(t)sin(2 fct)

1 2( ) ( ) cos(2 ) ( )sin(2 )QAM c cx t s t πf t s t πf t 
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Coherent Demodulation 

 Multiply              with 2cos(2 fct) and recover the message 
signal s1(t) by LP filtering the resulting signal

 Similarly, the message signal s2(t) is recovered by multiplying 
with 2sin(2 fct) and then LP filtering the output

 Thus two baseband signals, each of bandwidth B Hz, can be 
transmitted simultaneously without any distortion over the 
same frequency channel of bandwidth 2B Hz by using 
orthogonal carriers

 Quadrature-carrier multiplexing, therefore, achieves the 
bandwidth efficiency of SSB-AM.  

1 2

Double frequency terms  Filtered out

( ) 2 cos(2 ) ( )[1 cos(4 )] ( ) sin(4 )

                            

QAM c c cx t f t s t f t s t f t  


   


( )QAMx t
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Multiplexing

 Process of combining multiple user signals into a composite 
signal such that individual signals can be separated at the 
receiving end without any distortion

 There are several common methods for signal multiplexing: 

 Frequency division multiplexing (FDM)

 Time division multiplexing (TDM)

 Code division multiplexing (CDM)

 Spatial multiplexing  

 Antenna direction

 Signal polarization

 TDM and CDM schemes are used in the transmission of 
digital signals

 FDM and Spatial multiplexing may be used for the 
transmission of either analog or digital signals  
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Frequency Division Multiplexing (FDM)

 The total system bandwidth is divided into nonoverlapping 
frequency slots, called channels

 Each user is assigned a unique channel to prevent 
interference during simultaneous signal transmissions. 
Tradeoff between adjacent channel interference versus # of 
users assigned to share the frequency band 

 Guard bands = spacing between users

 For example, commercial AM broadcasting

 The standard AM radio signal occupies 10 kHz in 535 

1605 kHz band.

 Multiplexing allows to carry multiple radio signals (voice 

and music programming) simultaneously over the AM band
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FDM (contd)
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Frequency Translation 

 Frequency translation  move a signal from one carrier 
frequency to another

 A necessary step in the design of communication 
transmitters and receivers

 Performed by a multiplier (called mixer) that multiplies the 
input BP signal by a fixed amplitude sinusoidal output from 
a local oscillator (LO)
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Down-conversion Mixer 

 Let

 The mixer output is

 Note that the mixer translates the input signal at frequency fc to 
the intermediate frequency (fIF) 

   
Filtered out by IF filter
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      cos 2 ( ) cos 2 ( ) ( )

2

RF LO

o
IF c LO

y t x t t

A t V
f t t f f t t
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       
  



RF or High Frequency input:  ( ) ( ) cos[2 ( )]RF cx t A t f t t  

LO output:  ( ) cos(2 )LO o LOt V f t 
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Down-conversion Mixer (contd)

 Low-side injection  LO frequency below the RF or carrier 
frequency

 High-side injection  LO frequency above the RF or carrier 
frequency

 For the low-side injection, for a given choice of fIF, the input 
frequency fc  2 fIF is also converted to the same IF frequency

 Similarly, for the high-side injection, the input frequency         
fc + 2 fIF is also converted to the same IF frequency. 

LO c IFf f f 

LO c IFf f f 
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Image Frequencies

 These frequencies that are separated from the desired 
frequencies by 2 fIF are called image frequencies
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Image Rejection

 Images cause interference in the reception of the desired signal 

 Noise and interference at the image frequency is also  
transferred to IF thereby corrupting the desired signal 

 To avoid the corruption of the desired signal, place an image-
reject filter immediately before the mixer 
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Image Rejection (contd)
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Communication Receivers

 Extract the desired signal in the presence of noise and 
interfering signals. Key functions include:

 Reception/amplification. Low-noise amplification in the 
front end for improved sensitivity

 Sensitivity is a measure of a receiver’s ability to 
receive weak signals in the presence of noise with an 
acceptable signal-to-noise ratio

 Channel or signal selection. Tuning of the desired signal 
(frequency slot) from the received signal that may contain 
other signals in addition to noise

 Selectivity is the measure of the ability of a receiver to 
select a particular frequency or a particular band of 
frequencies and reject all other unwanted frequencies.

 Demodulation. Recovering the original baseband 
message signal

1/31/2013 47

Types of Receivers

 Superheterodyne receivers

 Direct-conversion receivers

 Low IF receivers 
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Superheterodyne Receiver

 Most popular type of communication receiver

 Used for AM/FM & TV broadcasting, cellular & satellite 
systems, radars, GPS, etc.

 Main idea  downconvert RF signal to some fixed lower IF, 
then amplify it and demodulate
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Superheterodyne Receiver

 Low-noise amplifier (LNA ) amplifies a weak RF signal 
coming out of the antenna. Rejects the image frequency. 
Bandwidth much wider than the signal bandwidth

 Image-reject Mixer  together with the local oscillator 
downconverts the RF signal to the IF 

 Local oscillator  allows tuning the receiver to a desired 
channel

 IF amplifier  amplifies the IF signal significantly (up to 106) 
and rejects adjacent channel signals and interference 
(frequency selectivity). Bandwidth same as the signal’s

 Provides automatic gain control (AGC)  adjusts the IF 
amplifier gain according to the signal level (keeps the 
average signal amplitude almost constant)

 Detector (demodulator)  demodulates (recovers) the 
message signal
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Spectra at various stages in a superhet receiver

LOf
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Direct-Conversion or zero-IF (ZIF) Receiver 

 Down-convert RF signal with a center frequency of many GHz 
to baseband in one step, hence the name zero-IF (ZIF)

 This approach removes the IF stage from the receiver and 
eliminates the need for image rejection 
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Low-IF Receiver 

 DC offset problems in a zero-IF receiver eliminated

 Down-convert the desired RF signal to a low IF one or two 
channel bandwidths away from DC 

 Low-IF receiver is able to eliminate the off-chip IF SAW filter

 Implemented as RF CMOS ICs

 Wireless LAN (WLAN), Bluetooth, and GSM
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Comparison of Amplitude Modulation Schemes


