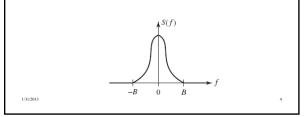
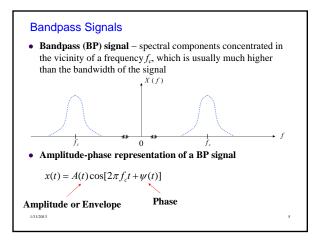


What is Modulation?

- Signal processing by which a message or informationbearing signal *s*(*t*) is transformed into another signal to facilitate transmission over a communication channel (e.g., cellular, satellite, twisted wire pair [TWP])
- The message signal *s*(*t*) is transmitted through the communication channel by impressing it on a **carrier** signal

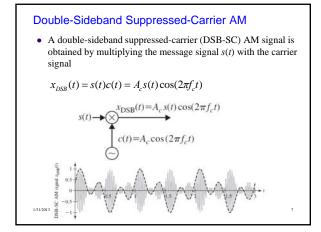
$$c(t) = A\cos\left(2\pi f_c t + \theta\right)$$

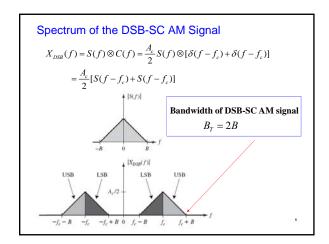

- Amplitude Frequency Phase • Amplitude Modulation – amplitude of the carrier varied in accordance with the message signal
- Frequency Modulation frequency of the carrier varied in accordance with the message signal
- **Phase Modulation** phase of the carrier varied in accordance with the message signal

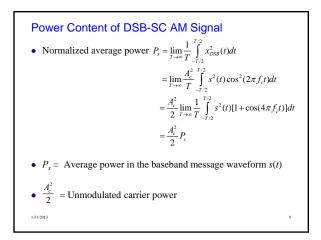

Why Modulate?

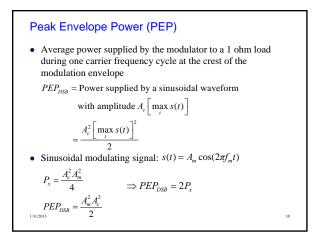
- **Frequency translation** Transfer the message signal *s*(*t*) to a new frequency slot depending upon the intended frequency of transmission
 - The frequency slot is determined by the frequency of the carrier
- **Channelization** Enable **sharing** of a single communication (usually wideband) channel by several lower bandwidth signals/users
- **Practical equipment design** Higher the transmitted signal frequency, the smaller the antenna size required
 - · Narrowband electronics easier to realize
- Noise performance improvement Increase the noise immunity in transmission by expanding the bandwidth of the transmitted signal

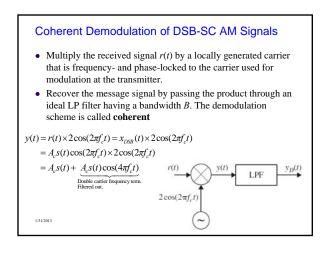
- Low-pass (LP) signal spectral energy clustered around the DC or zero frequency
- All practical LP signals have a frequency above which their spectral components may be considered negligible
 - This frequency, denoted by *B*, is called the **bandwidth** of the LP signal

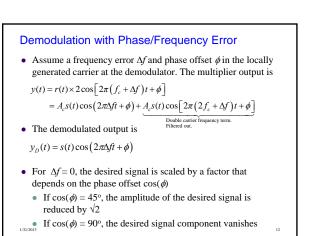




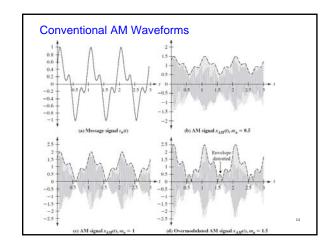

Types of Amplitude Modulation


- Double-sideband, suppressed-carrier (DSB-SC) amplitude modulation (AM)
- Conventional AM
- Single-sideband AM (SSB-AM)
- Vestigial-sideband AM (VSB-AM)


1/31/2013



- In the conventional AM, a portion of the sinusoidal carrier is added to the DSB-SC AM signal, which greatly simplifies the demodulation process
- The transmitted signal is given by


 $\begin{aligned} x_{AM}(t) &= A_c \cos(2\pi f_c t) + s(t) \cos(2\pi f_c t) \\ &= [A_c + s(t)] \cos(2\pi f_c t) \end{aligned}$

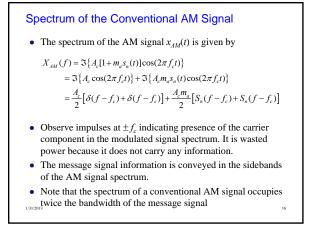
• We can express the conventional AM signal as

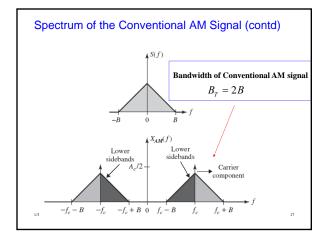
$$x_{AM}(t) = A_c [1 + m_a s_n(t)] \cos(2\pi f_c t)$$

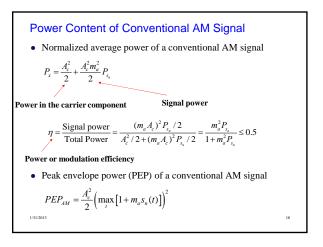
where Normalized message signal

 $s_n(t) \Box \frac{s(t)}{|\min s(t)|}, \quad \left|\min_t s(t)\right| \neq 0$

Modulation Index

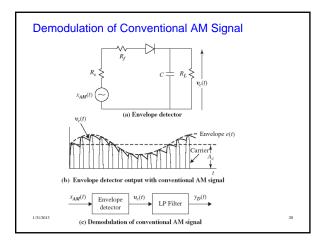

• The parameter m_a determines the extent to which the carrier has been amplitude-modulated. It is called the **modulation index** and is defined as

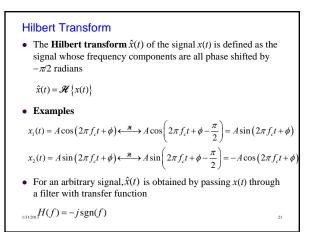

$$m_a \Box \frac{\left|\min_t s(t)\right|}{A_c}$$

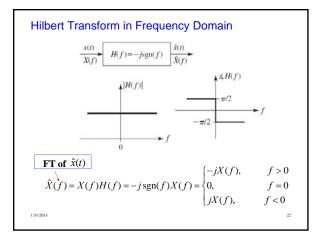

• We observe from the figure that the envelope of the modulated signal $x_{AM}(t)$ is always positive, and hence retains the shape of the message signal $s_n(t)$ if

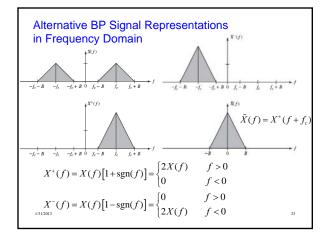
 $m_a \leq 1$

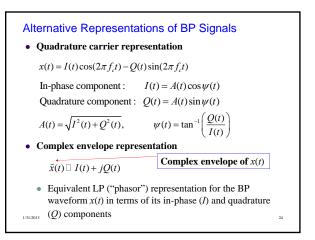
• Therefore, the message signal $s_n(t)$ can be easily recovered from $x_{AM}(t)$ by using a simple envelope detector

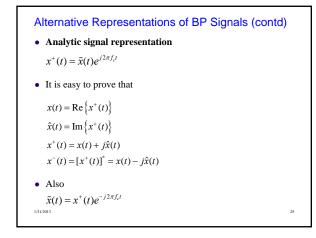


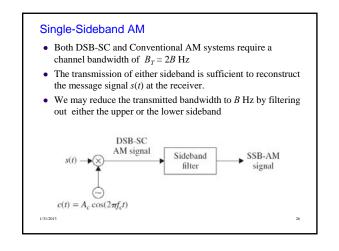


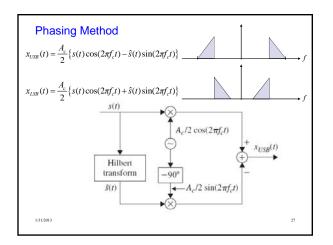

Envelope Detection


1/31/2013

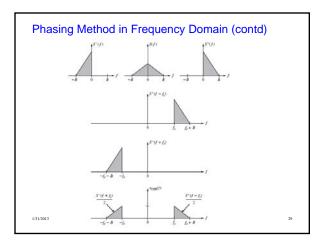

- Suitable for conventional AM signals
- Does not require generation of a coherent carrier at the receiver
- Simple hardware: diode, resistor, capacitor
- Will work with suppressed carrier modulation systems if the receiver inserts a carrier







• We can express a USB-AM signal as


$$\begin{aligned} x_{USB}(t) &= \frac{A_c}{2} \operatorname{Re}\left\{s^+(t)e^{j2\pi f_c t}\right\} = \frac{A_c}{4} \left\{s^+(t)e^{j2\pi f_c t} + s^{+*}(t)e^{-j2\pi f_c t}\right\} \\ &= \frac{A_c}{4} \left\{s^+(t)e^{j2\pi f_c t} + s^-(t)e^{-j2\pi f_c t}\right\} \end{aligned}$$

• Taking FT of both sides, the spectrum of can be expressed as

$$X_{USB}(f) = \frac{A_c}{2} \left\{ \frac{S^+(f - f_c)}{2} + \frac{S^-(f + f_c)}{2} \right\}$$

Positive frequency portion of S(f) shifted in frequency by f_c

Negative frequency portion of S(f) shifted in frequency by f_c

Vestigial-sideband (VSB) AM

- VSB-AM relaxes the requirement of eliminating the second sideband
 - Allows a portion ("vestige") of the unwanted sideband to appear at the output of the modulator
- A VSB-AM signal is generated by partially suppressing one of the sidebands of a DSB-SC signal by a sideband-shaping filter

$$x_{VSB}(t) = x_{DSB}(t) \otimes h(t) = \left[A_c s(t) \cos(2\pi f_c t)\right] \otimes h(t)$$

$$X_{VSB}(f) = \underbrace{\frac{1}{2} \left[S(f - f_c) + S(f + f_c) \right] H(f)}_{\text{SBS-SC}}$$

$$\underbrace{S(f) + \underbrace{S(f) + S(f) + S(f) + S(f)}_{\text{Signal}} + \underbrace{VSB-AM}_{\text{Signal}} + \underbrace{SSB-AM}_{\text{Signal}}$$

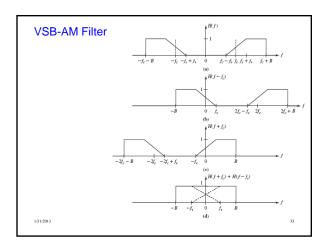
$$C(f) = A_c \cos(2\pi f_c f)$$

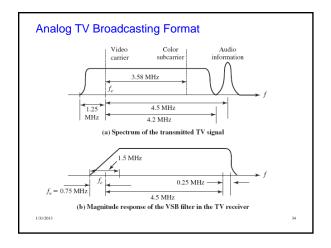
$$30$$

Coherent Demodulation of VSB-AM

- Multiply the VSB signal by the coherent carrier $2\cos(2\pi f_c t)$ $y(t) = x_{_{VSB}}(t) \times 2\cos(2\pi f_c t)$
- In the frequency domain, the output signal can be expressed as
- $Y(f) = [X_{VSB}(f f_c) + X_{VSB}(f + f_c)]$ • Substituting for $X_{VCP}(f)$ yields

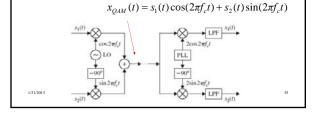
$$Y(f) = \frac{A_c}{2} \begin{cases} S(f) [H(f - f_c) + H(f + f_c)] \\ + [S(f - 2f_c)H(f - f_c) + S(f + 2f_c)H(f + f_c)] \end{cases}$$

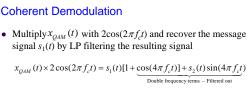

• The LP filter in the demodulator removes the message signal terms in multiplier output translated to frequencies $f = \pm 2f_c$


VSB-AM (contd)

• The demodulator LP filter passes through the message signal spectrum *S*(*f*) without any distortion if the VSB filter *H*(*f*) satisfies the property

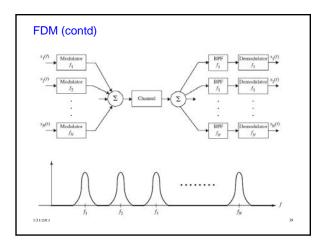
 $H(f - f_c) + H(f + f_c) = C \qquad |f| \le B$


- This is called vestigial symmetry condition
- Figure displays a frequency response of a VSB filter that truncates the lower sideband of the DSB-SC signal
- Observe that the VSB filter roll off characteristic exhibits *odd* symmetry in the transition width of $2f_v (f_v << B)$ around the carrier frequency f_c
- VSB+C a variant of VSB where a carrier component is added to the VSB signal. It can now be demodulated using an envelope detector like a Conventional AM signal



Quadrature Carrier Multiplexing

- Transmit two message signals in the *same* frequency slot by using quadrature (orthogonal) carriers
 - s₁(t) modulates in-phase carrier cos(2πf_ct) to produce the DSB signal s₁(t)cos(2πf_ct)
 - s₂(t) modulates **quadrature** carrier sin(2πf_ct) to produce the DSB signal s₂(t)sin(2πf_ct)


- Similarly, the message signal $s_2(t)$ is recovered by multiplying with $2\sin(2\pi f_c t)$ and then LP filtering the output
- Thus two baseband signals, each of bandwidth *B* Hz, can be transmitted simultaneously without any distortion over the same frequency channel of bandwidth 2*B* Hz by using orthogonal carriers
- Quadrature-carrier multiplexing, therefore, achieves the bandwidth efficiency of SSB-AM.

Multiplexing

- Process of combining multiple user signals into a composite signal such that individual signals can be separated at the receiving end without any distortion
- There are several common methods for signal multiplexing:
- Frequency division multiplexing (FDM)
- Time division multiplexing (TDM)
- Code division multiplexing (CDM)
- Spatial multiplexing
 - Antenna direction
 - Signal polarization
- TDM and CDM schemes are used in the transmission of digital signals
- FDM and Spatial multiplexing may be used for the transmission of either analog or digital signals

Frequency Division Multiplexing (FDM)

- The total system bandwidth is divided into nonoverlapping frequency slots, called **channels**
 - Each user is assigned a unique channel to prevent interference during simultaneous signal transmissions. Tradeoff between adjacent channel interference versus # of users assigned to share the frequency band
 - Guard bands = spacing between users
- · For example, commercial AM broadcasting
 - The standard AM radio signal occupies 10 kHz in 535 1605 kHz band.
- Multiplexing allows to carry multiple radio signals (voice and music programming) simultaneously over the AM band

Frequency Translation

- Frequency translation move a signal from one carrier frequency to another
 - A necessary step in the design of communication transmitters and receivers
 - Performed by a multiplier (called **mixer**) that multiplies the input BP signal by a fixed amplitude sinusoidal output from a **local oscillator (LO)**

(a) Down-conversion mixer (b) Up-conversion mixe

Down-conversion Mixer

• Let

RF or High Frequency input: $x_{RF}(t) = A(t)\cos[2\pi f_c t + \psi(t)]$

LO output:
$$v_{IO}(t) = V_o \cos(2\pi f_{IO}t)$$

• The mixer output is

 $y(t) = x_{RF}(t) \times v_{LO}(t)$ A(t)V

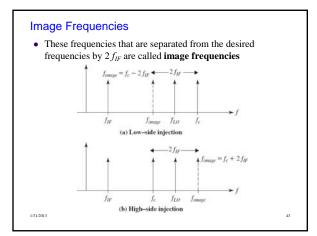
$$=\frac{A(I)v_o}{2}\left\{\cos\left[2\pi f_{IF}t+\psi(t)\right]+\underbrace{\cos\left[2\pi (f_c+f_{LO})t+\psi(t)\right]}_{\text{Filtered out by IF filter}}\right\}$$

t)]

• Note that the mixer translates the input signal at frequency f_c to the intermediate frequency (f_{IF})

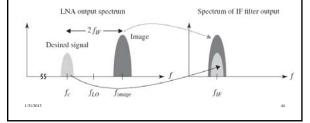
Down-conversion Mixer (contd)

• Low-side injection – LO frequency below the RF or carrier frequency


 $f_{LO} = f_c - f_{IF}$

• **High-side injection** – LO frequency above the RF or carrier frequency

 $f_{\scriptscriptstyle LO} = f_{\scriptscriptstyle c} + f_{\scriptscriptstyle IF}$


1/31/2013

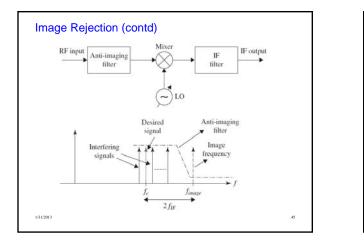

- For the low-side injection, for a given choice of f_{IF}, the input frequency f_c 2 f_{IF} is also converted to the same IF frequency
 Similarly, for the high-side injection, the input frequency
- Similarly, for the high-side injection, the input frequency $f_c + 2 f_{IF}$ is also converted to the same IF frequency.

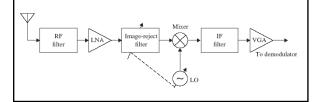
Image Rejection

- Images cause interference in the reception of the desired signal
 Noise and interference at the image frequency is also
 - transferred to IF thereby corrupting the desired signal
- To avoid the corruption of the desired signal, place an imagereject filter immediately before the mixer

47

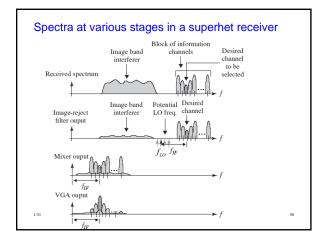
Communication Receivers Extract the desired signal in the presence of noise and interfering signals. Key functions include: Reception/amplification. Low-noise amplification in the front end for improved sensitivity Sensitivity is a measure of a receiver's ability to receive weak signals in the presence of noise with an acceptable signal-to-noise ratio Channel or signal selection. Tuning of the desired signal

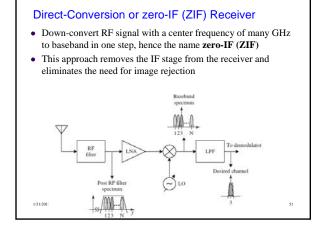
- **Channel or signal selection.** Tuning of the desired signal (frequency slot) from the received signal that may contain other signals in addition to noise
 - Selectivity is the measure of the ability of a receiver to select a particular frequency or a particular band of frequencies and reject all other unwanted frequencies.
- **Demodulation.** Recovering the original baseband message signal


Types of Receivers

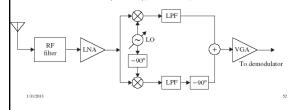
- Superheterodyne receivers
- Direct-conversion receivers
- Low IF receivers

1/31/2013


Superheterodyne Receiver


- Most popular type of communication receiver
 - Used for AM/FM & TV broadcasting, cellular & satellite systems, radars, GPS, etc.
- Main idea downconvert RF signal to some fixed lower IF, then amplify it and demodulate

Superheterodyne Receiver


- Low-noise amplifier (LNA)- amplifies a weak RF signal coming out of the antenna. Rejects the image frequency. Bandwidth much wider than the signal bandwidth
- Image-reject Mixer together with the local oscillator downconverts the RF signal to the IF
- Local oscillator allows tuning the receiver to a desired channel
- **IF amplifier** amplifies the IF signal significantly (up to 10⁶) and rejects adjacent channel signals and interference (frequency selectivity). Bandwidth same as the signal's
 - Provides automatic gain control (AGC) adjusts the IF amplifier gain according to the signal level (keeps the average signal amplitude almost constant)
- Detector (demodulator) demodulates (recovers) the message signal

Low-IF Receiver

- DC offset problems in a zero-IF receiver eliminated
- Down-convert the desired RF signal to a low IF– one or two channel bandwidths away from DC
- Low-IF receiver is able to eliminate the off-chip IF SAW filter
 Implemented as RF CMOS ICs
- Wireless LAN (WLAN), Bluetooth, and GSM

Type of Modulation	Transmission Bandwidth	Power Efficiency	Equipment Complexity	Comment
DSB-SC	2 <i>B</i>	100%	Medium	Coherent demodulator only
Conventional AM	2 <i>B</i>	< 50%	Low	Envelope detector can be used
SSB	В	100%	High	Coherent demodulator only complex sideband filtering required at modulator
SSB + C	В	Depends upon the magnitude of the carrier	Medium	Envelope detector can be used; complex sideband fil tering required at modulate
VSB	$B+f_{\rm v},f_{\rm v}/B\approx 0.2-0.3$	100%	Medium	Coherent demodulator required
VSB + C	$B+f_{\rm p},f_{\rm p}/B\simeq 0.2-0.3$	Depends upon the magnitude of the carrier	Low	Envelope detector can be used