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Analog and Digital Signals

 A continuous-time signal that assumes a continuum of 
amplitude values between given maximum and minimum is 
called an analog signal

 Most signals we encounter in the real world are analog in 
nature. Examples include speech, music, image, and video 
signals

 Digital signals, on the other hand, can change values at 
discrete instants of time, assuming one of a finite number of 
amplitude levels

Analog signal

Digital signals
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Deterministic and Random Signals
 A deterministic signal x(t) is completely specified for each 

value of time t – that is, its amplitude is known either 
graphically or analytically for all values of t

 An example is a simple sinusoidal waveform

 A random signal is not precisely known for each value of t 
it can only be specified in terms of probabilities

 A very important class of signals that includes noise and all 
information-carrying signals, such as speech and data

Random noiseSine wave

)4sin( πt
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Some Useful Basic Signals
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The Unit Impulse Signal (Delta Function)

 The unit impulse signal (t) is defined by the equations 

 Thus the unit impulse signal is zero everywhere except at the 
origin and it has unit area 

 The value of (t) at t = 0 is not defined. In particular, (0) ≠∞

 A unit impulse signal can be viewed as a narrow pulse with 
large amplitude and having a unit area

( ) 1,  for any real number 0t dt



 


 

( ) 0, 0t t  

 For example, it can be viewed as a limit of 
the unity area rectangular pulse as its 
width approaches zero and its amplitude 
increases proportionately
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Important Properties of Delta Function

 P1.

 P2.

 P3. Sampling property

 P4.  Convolution

 The convolution of an arbitrary signal with the impulse 
signal yields the signal itself

( ) ( ) ( ) ( )o o ox t t t x t t t   

)()()()()()()( oooooo txdttttxdttttxdttttx  













( ) ( ) ( ) ( ) ( )x t t x t dt x t   



   

1
( ) ( )t t  






2

1/17/2013 7

Frequency Domain Representation 

 Although electrical signals used in communication systems are 
functions of time, such as voltage and current, it is very useful 
to think of signals in terms of their frequency content

 Certain characteristics of signals are easier to analyze and 
measure in the frequency domain. In addition, the frequency 
domain analysis of many important operations on signals leads 
to unique and valuable insight towards understanding their 
effect

 That is why the frequency domain representation and analysis 
of signals and systems is an integral part of design tools for 
communication and control systems

 Figure shows the time domain representation of a 10 Hz sine 
wave embedded in noise 
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Sine Wave Embedded in Noise

Frequency Domain Display

Time Domain Display

1/17/2013 9

Frequency Domain Representation (contd)

 Difficult to identify a 10 Hz tone in the presence of 
wideband (“white”) noise on an oscilloscope display

 However, easy to identify 10 Hz tone in the frequency 
domain using a spectrum analyzer display. Note that the 
white noise forms the floor of the display

 In more complex situations, the composite signal may consist 
of hundreds of channels or carriers. An example is CATV 
system where several hundred channels or signals may be  
present

 Analyzing such a complex signal in time domain is not very 
useful. The frequency domain analysis, on the other hand, 
provides valuable insight into the effects of system 
impairments and noise when dealing with such signals
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Exponential Fourier Series (FS)

 The Fourier series can be used to represent periodic signals in 
the frequency domain

 A periodic function xp(t) with fundamental period To can be 
represented by an exponential Fourier series

where fo = 1/ To is called the fundamental frequency of the 
periodic signal xp(t)

 The FS coefficients Cn are given by

 Observe that the FS expands a periodic function as an infinite 
sum of complex phasor signals
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Exponential FS (contd)

 The term C0 represents the DC component of the signal

 n = 1 FS coefficients represent the fundamental frequency (fo) 
component in the periodic signal xp(t) 

 n = 2, 3,… FS coefficients represent the harmonic (nfo) 
components in the periodic signal xp(t)

 Each phasor term in FS can be written as 

 Plots of        and          versus discrete frequency values (n fo, n
= 0, 1, 2,…..) are called the magnitude and the phase line 
spectra of the signal, respectively
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Trigonometric Fourier Series 

 For a real signal,

  the magnitude spectrum is an even function, and the phase 
spectrum is an odd function of frequency

 In this case, the exponential FS can be expressed as
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Trigonometric FS (contd)

 An alternative form of the trigonometric FS is

where

  For xp(t) even function of time, its FS will contain only 
cosine terms, i.e., Bn = 0, n = 1, 2,……. 

  For xp(t) odd function of time, its FS will contain only 
sine terms, i.e., An = 0, n = 1, 2,……
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Example: Rectangular Pulse Train 

 Determine the FS expansion of a periodic pulse train of 
rectangular pulses

 Each pulse has unity amplitude and duration . The FS 
coefficients are given by 
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Line Spectrum of a Rectangular Pulse Train
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Energy and Power Signals 
 Energy and power are useful parameters of a signal

 The normalized energy of a signal x(t) is defined as the energy 
dissipated by a voltage x(t) applied across a 1-ohm resistor (or 
a current x(t) passing though a 1-ohm resistor)

 The energy of a signal is meaningful only if the integral value 
is finite. Such signals are called energy signals

 Example Energy of a rectangular pulse

2
( )xE x t dt



�

/22 2 2

/2
( )

b

b

T

x bT
E x t dt A dt A T



 
   

( ) ( / )bx t A t T 

,                 / 2
( )

0,                   otherwise
bA t T

x t
  


1/17/2013 17

Example: Energy of the Carrier Pulse 

 The second integral is zero because carrier frequency fc >> 
1/Tb has been assumed – true in practice

 The energy content of the signal becomes infinite in the limit 
as Tb 
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Power Signals

 The normalized average power of a signal x(t) is defined as 
the power dissipated by a voltage x(t) applied across a 1-ohm 
resistor (or a current x(t) passing though a 1-ohm resistor)

 The normalized average power of a signal is meaningful only 
if the limit exists (that is, finite). Such signals are called power
signals

 For a periodic signal xp(t) with period To, the expression for 
normalized power simplifies to
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Example: Power of a Sinusoidal Signal

 The second integral is zero because it evaluates the integrand 
over two complete periods

 A signal cannot be both power- and energy-type, because for 
energy signals Px = 0 and Ex =  for power signals

 A signal may be neither energy-type nor power-type 
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Parseval’s Theorem 
 The normalized power Px of a periodic signal xp(t) is given by

 Substituting the FS expansion for xp(t) yields 
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Bandwidth of a Signal

 The bandwidth of a signal is a measure of the frequency 
range that contains significant energy of the signal

 The term significant here implies inclusion of those 
frequencies that represent the signal with acceptable distortion

 The latter is determined by the relevance in a given 
application.

 If the significant energy of the signal lies in the range of 
frequencies f1 < f  < f2, the bandwidth would be f2  f1

 There are many definitions of bandwidth depending on how 
frequencies f1 and f2 are chosen

 For example, if the frequencies f1 and f2 are chosen so that 
99% of the power resides in the frequency band f1 < f  < f2 , 
the quantity f2  f1 is called the 99% power bandwidth
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99% Power Bandwidth Rectangular Pulse Train

 We will assume To = 1 sec and / To = 0.5

 The FS coefficients of a rectangular pulse train are given by

 The normalized average power P is

 The power in various frequency components is given by 
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Example: Power in Various Frequency Components

 For example, power at 
DC frequency

 As the table shows, we 
need to include 21 FS 
coefficients to get 99% 
power in the signal

 Since each spectral 
component is separated 
by 1 MHz, the 99% 
power bandwidth of the 
periodic pulse train is 
~21 MHz.

2 2
0.25 sinc(0) 0.25oC  

nCn Accumulated Power up

to and including  f = nfo

0 0.5 0.25

1 0.6366 0.4526

3 0.212 0.4752

5 0.1273 0.4833

7 0.091 0.4874

9 0.0707 0.4899

11 0.058 0.4916

13 0.0490 0.4928

15 0.0424 0.4937

17 0.0374 0.4944

19 -0.0335 0.4949

21 0.0303 0.4954
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Fourier Transform

 Any continuous-time signal x(t) that has finite “energy”, i.e.,

can be represented in the frequency domain via the Fourier 
transform (FT) 

 In general, X(f) is a complex function of frequency f and can 
be written as

where           and            are, respectively, called the 
magnitude and the phase spectrum of the signal x(t) 
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Fourier Transform (contd)

 The signal x(t) can be recovered from its FT X(f) using the 
inverse Fourier transform formula

 Note that X(f) is a continuous spectrum vs the line spectrum 
produced by FS coefficients Cn for a periodic signal

 Notation

1 1
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FT of Rectangular Pulse
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FT of Complex Exponential Signal 

 This can be verified by substituting in the inverse Fourier 
transform formula as follows:

2 cj f te 
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 The spectrum of a complex exponential signal contains 
energy at only single frequency fc

 Substituting fc = 0 into (*), we obtain the FT of a DC signal 
as
1 ( )f

(*)
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FT of Signum Signal sgn(t) 

 The signun signal sgn(t) can be expressed as

 The FT of sgn(t) is given by
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FT of Unit Step Signal 

 The unit step function u(t) can be expressed as

 Taking the FT of both sides yields
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FT of Unit Impulse Signal 

  the unit impulse signal contains all frequencies with equal 
magnitudes as shown in the Figure
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Basic Fourier Transform Pairs 
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Properties of Fourier Transform 
 There are a number of important properties of the Fourier 

transform which are useful in the analysis and design of 
communication and control systems

 Linearity

 Taking the Fourier Transform of the left hand side yields
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Properties of FT: Conjugate Symmetry 
 For real x(t), 

 Comparing magnitude and phase responses of both sides of 
yields

 Thus             and              are even and odd functions of f, 
respectively.
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Properties of FT

 Time Shifting:

 This can be proved by using the inverse FT formula.

 Note that the magnitude of the FT is unchanged by a time 
shift. However, it introduces a linear phase shift of

 Frequency Translation:

 Taking the Fourier transform of the left hand side yields

  that multiplication of a signal x(t) by            translates its 
frequency spectrum X(f) by the amount fc (to the right)
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 
     

2 oj fte 

)()( 2
c

tfj ffXetx c 

2 2 ( )2( ) ( ) ( )c cj f t j f f tj ft
cx t e e dt x t e dt X f f    

 
   

2 cj f te 
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Properties of FT: Convolution

 From the definition of convolution operation

 If we take the Fourier transform of the right hand side, and 
exchange the order of integration, we get

  the convolution operation in time-domain is equivalent to 
multiplication in the frequency domain

)()()()( fYfXtytx  

 dtyxtytx 



 )()()()(

2 2

2

( ) ( ) ( ) ( )

                                                ( ) ( ) ( ) ( )

j ft j ft

j f

x y t d e dt d x y t e dt

Y f x e d Y f X f

 

 

     

 

    

   

 



           

 

   


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Properties of FT: Multiplication Property

( ) ( ) ( ) ( )x t y t X f Y f 

1 1
( ) ( ) ( ) ( )

2 2

1 1
        ( ) ( )

2 2

c c

c c

Y f f f f f X f

X f f X f f

       
 

   

( ) cos(2 ) ( )cy t f t x t

 This property is the dual of the convolution property. The 
multiplication of two signals results in the convolution of their 
spectra

 Modulation involves multiplication of a signal x(t) by a high-
frequency sinusoidal waveform. That is, 

 Applying the multiplication property

Spectrum X(f ) shifted
by carrier frequency fc
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Properties of FT: Time/Frequency Scaling 

 Assume a > 0.  Using the transformation of variables, u = at, 
we have

 Now with a < 0, substituting u = – |a|t yields

1
( )

f
x at X

a a
    

 

2 2 ( / )1 1
( ) ( ) ( )j ft j f a u f

x at x at e dt x u e du X
a a a

    

 

      
  

2 ( / )2 1
( ) ( ) ( )

1 1
                  

j f a uj ftx at x a t e dt x u e du
a

f f
X X

a a a a

  

 
  

        
   

 
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Properties of Fourier Transform (contd)

 The function x(at), for a > 0, is a time compressed (by a factor 
a) version of x(t). On the other hand, a function X(f/a) 
represents a function X(f) expanded by the same factor a.

 The scaling property therefore states that compressing a signal 
in time domain will stretch its Fourier transform. Similarly 
stretching a time signal will compress its Fourier transform.

 The result is intuitively satisfying since compression in time 
by the factor a > 0 means that the function is varying rapidly 
in time by the same amount

 Consequently, the frequencies of its components will be 
increased by the factor a. The converse can also be justified by 
a similar argument.
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Properties of FT: Duality

 If                           , then 

 Making a change of variable f = –v yields

 If we set t = – f, we get

 Finally, substituting t for  –v, we get

)()( fXtx  ( ) ( )X t x f 

dfefXtx ftj 2)()( 





dvevXtx vtj 2)()( 

 

dvevXfx fvj 2)()( 





)}({)()( 2 tXdtetXfx ftj  



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Example: Duality

 From FT Table

 Using duality property of the FT

( / 2 ) 2 sinc(2 )t f   

2 sinc(2 ) ( / 2 )W tW f W

 ( ) ( )x t X f

( ) ( )X t x f 
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Properties of FT: Differentiation Property

 To prove this, we have

 That is, differentiation in time domain is equivalent to 
multiplication by �j2 f in the frequency domain

)(2)( ffXjtx
dt

d 

 

2 2

2

( ) ( ) ( )

          2 ( )

j ft j ft

j ft

d d d
x t X f e df X f e df

dt dt dt

j fX f e df

 



 

 





    
 



 


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Properties of FT: Parseval’s Relation

 To prove, substituting and exchanging 
the order of integration yields

 We get well-known relationship for the energy of a signal in 
time and frequency domains by letting y(t) = x(t) in Parseval’s 
relation 

dffYfXdttytx 







 )(*)()(*)(

2*( ) *( ) j fty t Y f e df 


 

2

2

( ) *( ) ( ) *( )

                         *( ) ( ) *( ) ( )

j ft

j ft

x t y t dt x t Y f e df dt

Y f x t e dt df Y f X f df





   

  

  

  

    
    

  

  

dffXdttxEx 







 22

)()( (*)
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Energy Spectral Density

 Equation (*) states that the energy of a signal is given by the 
area under the curve

 is called the energy spectral density of x(t)

 Note that the quantity                  represents the energy 
contained in 2 spectral bands of  f Hz centered at frequencies
 fo

 Thus             may be interpreted as the energy contained in the 
spectral components of x(t) centered at frequency f per Hz of  
bandwidth

 thus represents distribution of energy as a function of 
frequency for a signal. So when integrated, it provides the 
energy of the signal

 The energy spectral density of a signal is specified in units 
of Watts-sec/Hz 

2
( )X f

2
( )X f

ffX o 2
)(

2
( )X f

2
( )X f
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Fourier Transform Properties
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Fourier Transforms of Periodic Signals 

 The Fourier transform is strictly defined for finite energy 
signals. However, we can extend its scope by allowing the FT 
to include delta functions

 Since a periodic signal can be expanded into exponential FS, 
its FT can be obtained by taking the FT of the FS term by term

 The FT expansion of a periodic function xp(t) is obtained as

  the FT of a periodic signal consists of impulses located at 
harmonic frequencies of the signal. The weight of each 
impulse equals FS coefficient, i.e., 

 

 

2 2( )

          

o oj nf t j nf t
p n n

n n

n o
n

X f C e C e

C f nf

 



 

 





     
 

 

 



( )p o nX nf C
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Fourier Transforms of Periodic Signals (contd)

 Example: Fourier transform of a cosine wave

 Taking the FT of both sides and using Table, we get

 Similarly, it can be shown that

(2 ) (2 )( ) cos(2 )
2 2

c cj f t j f t
c

A A
x t A f t e e          

)(
2

)(
2

)( c
j

c
j ffe

A
ffe

A
fX    

sin(2 ) ( ) ( )
2 2

j j
c c c

A A
A f t e f f e f f

j j
         
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FT of Periodic Impulse Train 
 The periodic impulse train with period To is given by

 The coefficient in its FS expansion is

 The FS can now be expressed as

 Taking the FT of both sides

( ) ( )p o
n

t t nT 




 

2( ) oj nf t
p o

n

t f e 




 

/2
2 2

/2

1 1 1
( ) ( )

o

o o

o o

T
j nf t j nf t

n p o
o o oT T

C t e dt t e dt f
T T T

   



    

 ( ) ( ) ( )p p o o
n

f t f f nf 




    

FT also a periodic
impulse train
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Time-bandwidth Product

 Recall the scaling property of the Fourier transform, which 
states that the compression in the time domain is equivalent to 
the expansion in the frequency domain, and vice versa

 Thus, the frequency- and time-domain behaviors of a signal 
are inversely related

  a signal cannot be both time-limited and bandwidth-
limited

( / )A t 
A

Time-limited Not Band-limited
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Time-bandwidth Product (contd)

 However, a signal can be “approximately” time-limited and 
band-limited 

 That is, there exist numbers B > 0 and T > 0, such that |x(t)| 
is small for |t|  T and |X(f)| is small for |f|  B

 The product of a signal’s duration and its bandwidth is 
constant. 

 Duration  Frequency Bandwidth = k

 The constant k is determined by the precise definitions of 
duration in the time domain and bandwidth in the frequency 
domain

 For a Gaussian pulse, if we use the RMS definitions of 
duration and bandwidth of a signal, it can be shown that

1

4rms rmsf t


  
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Transmission of Signals Through LTI Systems

 An Linear Time-invariant (LTI) system is completely 
characterized in the time domain by its impulse response h(t)

 Applying the FT to both sides and using convolution property

  that the output of the system in the frequency domain is 
given by multiplying the Fourier transform of the input by the 
system frequency response H(f)  





  dthxthtxty )()()()()(

( ) ( ) ( )Y f X f H f

LTI system ( ) ( ) ( )y t x t h t ( )x t

( ) ( )h t H f )()()( fHfXfY ( )X f
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Frequency Response of LTI Systems

 H(f), in general, is a complex function of f . That is,

where           and              are, respectively, called the
magnitude and the phase responses of the system

 If h(t) is a real function, applying conjugation property of FT

 In the frequency domain, the magnitude and the phase of the 
system input and output are related by

( )( ) ( ) j H fH f H f e 

)( fH ( )H f�

odd function of even function of 

( ) ( ) ,                     ( ) ( )
ff

H f H f H f H f    � �


( ) ( ) ( )Y f X f H f 

( ) ( ) ( )Y f X f H f  � � �
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Example:  First-order RC LP filter

 The first-order RC LP filter is shown in Figure. The transfer 
function of the network is given by

C

R

( )Y f( )X f

3

( ) 1/ 2 1
( )

( ) 1/ 2 1 2

1
         

1 ( / )dB

Y f j fC
H f

X f R j fC j fRC

j f f


 

  
 




32 /
3

1
( ) 2 ( ) ( )dBf t t RC

dBh t f e u t e u t
RC

   
3-dB cutoff
frequency
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Distortionless Transmission

 An LTI system is termed distortionless if it introduces the 
same attenuation to all spectral components and offers linear 
phase response over the frequency band of interest, that is,

 Substituting yields

 Taking the FT of both sides, the output of a distortionless LTI 
system due to an arbitrary input signal x(t) is given by

2
1 2         

( )
0                       otherwise

oj ft
o

ideal

H e f f f
H f

  
 


2( ) ( ) ( )   ( ) oj ft
ideal oY f X f H f H X f e  

)()( oo ttxHty 
delayed and scaled replica of the input
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Group Delay

 The group delay of an LTI system is defined as 

 Represents time delay incurred by a spectral component at 
frequency f as it passes through the LTI system

 The phase response of an ideal filter is linear function of 
frequency as given by

 For a linear phase LTI system, we obtain

  all frequency components of the input signal undergo the 
same time delay through the system  no distortion

1 ( )
( )

2g

d H f
f

df





�
�

1 2( ) 2 ,         ,    = constantideal o oH f ft f f f t   �

21
( ) constant

2
o

g o

ft
f t

df





   
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Ideal Filters 

 One key application of LTI systems is processing of signals in 
order to enhance certain frequency components and to reject 
certain others

 For example, if a signal consists of a low-frequency 
information-bearing message waveform and high-frequency 
noise, we can employ a filter to reject the high frequencies 
and thus remove the noise

 An ideal filter designed to pass certain frequency components 
should have a magnitude response that is constant and phase 
response that is linear over these frequencies called the 
passband of the filter

 The magnitude response of the ideal filter is zero over the 
range of frequencies blocked by the filter  called the 
stopband of the filter
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Ideal Filters (contd)
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Ideal Lowpass Filter

                
( )

0                   otherwise
o

LP

A W f W
H f

  
 


oftj
oLP eWfAfH 2)2/()( 

( ) 2 sinc[2 ( )]LP o oh t WA W t t 

 The magnitude response of an ideal lowpass (LP) filter is

 The passband of the filter is range of frequencies 0   f   W. 
The range of frequencies f  > W is the stopband of the filter

 The frequency response of an ideal LP filter can now be 
written as

 Taking the inverse FT yields
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Ideal Highpass Filter
 The magnitude response of an ideal highpass (HP) filter is

 The range of frequencies  f   W is the stopband of the filter. 
The range of frequencies f  > W is the passband of the filter

 The frequency response of an ideal HP filter can now be 
written as

 Taking the inverse FT yields

0                
( )

                  otherwiseHP
o

W f W
H f

A

  
 


oftj
oHP eWfAfH 2)]2/(1[)( 

  2( ) 1 ( / 2 ) oj ft
HP oH f A f W e  
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Ideal Bandpass Filter

 The amplitude response of an ideal bandpass (BP) filter is

 The range of frequencies  fc  W  |f |  fc + W is the 
passband of the filter. The range of frequencies |f | > fc + W
and |f | < fc  W are the stopband regions of the filter

 The frequency response of an ideal BP filter can now be 
written as

             
( )

0               otherwise
o c c

BP

A f W f f W
H f

     


)()()( cocoBP ffHffHfH 

oftj
oo eWfAfH 2)2/()( 

where
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Ideal Bandpass Filter (contd)

 Ho(f) is a LP filter with impulse response

 Since

we can now write the impulse

response hBP(t) of the BP filter as

( ) 2 sinc[2 ( )]o o oh t WA W t t 

2

2

( ) ( )

( ) ( )

c

c

j f t
o c o

j f t
o c o

H f f h t e

H f f h t e









 

 

 

 

2 2

( ) 4 sinc 2 ( )
2

        4 sinc 2 ( ) cos(2 )

c cj f t j f t

BP o o

o o c

e e
h t WA W t t

WA W t t f t

 



 
   

 
 
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Ideal Bandstop Filter

 The amplitude response of an ideal bandstop (BS) filter is 
defined as

 The range of frequencies  fc  W  |f |  fc + W  is the 
stopband of the filter. The range of frequencies |f | > fc + W
and |f | < fc  W are the passband regions of the filter.

              otherwise
( )

 0               
o

BS
c c

A
H f

f W f f W

     
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Power Density Spectrum
 In the design of communication systems, we are interested in 

power distribution of a power signal in the frequency domain

 The problem in dealing with power signals in the frequency 
domain is that their Fourier transform may not exist as they 
have infinite energy

 To overcome this problem, we define a new function xT(t) by 
truncating x(t) outside the interval t > T/2

 xT(t) has finite energy as long as T is finite. Using Parseval’s 
relation

( )          / 2 / 2
( )

0                  otherwiseT

x t T t T
x t

  
 


2 2
( ) ( )

Tx T TE x t dt X f df
 

 
  
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Power Density Spectrum (contd)

 Since

the average power of signal can be expressed as

 Since x(t) is a power signal,  the integral on the right hand side 
exists in the limit as T. Therefore, we can change the 
order of integration and limit yielding

/2
2 2

/2

1 1
lim ( ) lim ( )

T

x TT T
T

P x t dt X f df
T T



 


  

/2 2 2 2

/2
( ) ( ) ( )

T

T TT
x t dt x t dt X f df

 

  
   

2 2
( ) ( )

lim limT T
x

T T

X f X f
P df df

T T

 

  
  
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Power Spectral Density

 The power spectral density (PSD) of power signal x(t) 
is defined as 

 This allows us to express the normalized average power as

 Again                represents the power contained in 2 spectral 
bands of width  f Hz centered at frequencies  fo

 Thus            may be interpreted as the power contained in 
spectral components of x(t) centered at frequency f per Hz of 
bandwidth. It is specified in units of W/Hz.

( )x fG

2
( )

( ) lim T
x T

X f
f

T
�G

( )x xP f df



  G

( )x of fG

( )x fG
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PSD of Periodic Signals

 For a periodic signal xp(t), the normalized average power is 
given by

 Since        is power contained in the spectral component at     
the PSD           of a periodic signal can be expressed as

 Since FS coefficient                      , we can express the PSD as

2

x n
n

P C




 
2

nC ,of nf

2
( ) ( )x n o

n

f C f nf




 G

( )x fG

2
( ) ( ) ( )x p o o

n

f X nf f nf




 G

( )n p oC X nf
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Time-average Autocorrelation Function 

 The time-average autocorrelation function of a power signal 
x(t) is defined as

 The normalized average power Px of x(t) is related to          by

 It can be shown that the PSD of a power signal x(t) is the FT 
of its time-average autocorrelation function  

/2

/2

1
( ) lim ( ) ( )

T

x
T

T

x t x t dt
T

 




�R

/2 2

/2

1
lim ( ) (0)

T

x xTT
P x t dt

T 
  R

( ) ( )x xf G R

( )x R
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Response of LTI System: Deterministic Inputs

 For a linear system with transfer function H(f), the output y(t) 
in response to a deterministic input signal x(t) is given by

 The PSD of a power signal y(t) can be written as

 Now  

)()()( fHfXfY 

2
( )

( ) lim T
y

T

Y f
f

T
G

( ) ( ) ( )T TY f X f H f

LTI System

( ) ( )h t H f

2
( ) ( ) ( )y xf H f fG G( )x fG

( )X f ( ) ( ) ( )Y f H f X f
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Response of LTI System (contd)

 Substituting yields

  that the output signal PSD in an LTI system depends on the 
magnitude of H(f), and is given by            times the input PSD

 Taking inverse FT of both sides and applying the convolution 
property, we obtain

2 2
2

2

( ) ( ) ( )
( ) lim ( ) lim

          ( ) ( )

T T
y

T T

x

X f H f X f
f H f

T T

H f f

 
 



G

G

2
( )H f

*( ) ( ) ( ) ( )y xh h      R R


