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Chapter 2

Solutions to Exercises

Exercise 2.1. 1. Let r(t) =
√

r2
0 + (vt)2 + 2r0vt cos(φ). Then,

Er(f, t, r(t), θ, ψ)) =
<[α(θ, ψ, f) exp{j2πf(1− r(t)/c)}]

r(t)
.

Moreover, if we assume that r0 À vt, then we get that r(t) ≈ r0 + vt cos(φ).
Thus, the doppler shift is fv cos(φ)/c.

2. Let (x, y, z) be the position of the mobile in Cartesian coordinates, and (r, ψ, θ)
the position in polar coordinates. Then

(x, y, z) = (r sin θ cos ψ, r sin θ sin ψ, r cos θ)

(r, ψ, θ) =
(√

x2 + y2 + z2, arctan(y/x), arccos(z/
√

x2 + y2 + z2)
)

ψ̇ =
xẏ − ẋy

x2 + y2

θ̇ = − żr − zṙ

r2
√

1− (z/r)2

We see that ψ̇ is small for large x2 + y2. Also θ̇ is small for |z/r| < 1 and r large.
If |r/z| = 1 then θ = 0 or θ = π and v <= r|θ̇| so v/r large assures that θ̇ is
small. If r is not very large then the variation of θ and ψ may not be negligible
within the time scale of interest even for moderate speeds v. Here large depends
on the time scale of interest.

Exercise 2.2.

Er(f, t) =
α cos [2πf (t− r(t)/c)]

2d− r(t)
+

2α [d− r(t)] cos [2πf (t− r(t)/c)]

r(t)[2d− r(t)]

−α cos [2πf (t + (r(t)− 2d)/c)]

2d− r(t)

2
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=
2α sin [2πf (t− d/c)] sin [2πf (r(t)− d) /c]

2d− r(t)
+

2α [d− r(t)] cos [2πf (t− r(t)/c)]

r(t)[2d− r(t)]

(2.1)

where we applied the identity

cos x− cos y = 2 sin

(
x + y

2

)
sin

(
y − x

2

)

We observe that the first term of (2.1) is similar in form to equation (2.13) in the
notes. The second term of (2.1) goes to 0 as r(t) → d and is due to the difference in
propagation losses in the 2 paths.

Exercise 2.3. If the wall is on the other side, both components arrive at the mobile
from the left and experience the same Doppler shift.

Er(f, t) =
<[α exp{j2π[f(1− v/c)t− fr0/c]}]

r0 + vt
−<[α exp{j2π[f(1− v/c)t− f(r0 + 2d)/c]}]

r0 + 2d + vt

We have the interaction of 2 sinusoidal waves of the same frequency and different
amplitude.

Over time, we observe the composition of these 2 waves into a single sinusoidal
signal of frequency f(1−v/c) and constant amplitude that depends on the attenuations
(r0 + vt) and (r0 + 2d + vt) and also on the phase difference f2d/c.

Over frequency, we observe that when f2d/c is an integer both waves interfere
destructively resulting in a small received signal. When f2d/c = (2k + 1)/2, k ∈ Z
these waves interfere constructively resulting in a larger received signal. So when f
is varied by c/4d the amplitude of the received signal varies from a minimum to a
maximum.

The variation over frequency is similar in nature to that of section 2.1.3, but since
the delay spread is different the coherence bandwidth is also different.

However there is no variation over time because the Doppler spread is zero.

Exercise 2.4. 1. i) With the given information we can compute the Doppler spread:

Ds = |f1 − f2| = fv

c
| cos θ1 − cos θ2|

from which we can compute the coherence time

Tc =
1

4Ds

=
c

4fv| cos θ1 − cos θ2|

ii) There is not enough information to compute the coherence bandwidth, as it
depends on the delay spread which is not given. We would need to know the
difference in path length to compute the delay spread Td and use it to compute
Wc.
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2. From part 1 we see that a larger angular range results in larger delay spread and
smaller coherence time. Then, in the richly scattered environment the channel
would show a smaller coherence time than in the environment where the reflectors
are clustered in a small angular range.

Exercise 2.5. 1.

r1 =
√

r2 + (hs − hr)2 = r
√

1 + (hs − hr)2/r2 ≈ r(1 +
(hs − hr)

2

2r2
)

r2 =
√

r2 + (hs + hr)2 = r
√

1 + (hs + hr)2/r2 ≈ r(1 +
(hs + hr)

2

2r2
)

r2 − r1 ≈ (hs + hr)
2 − (hs − hr)

2

2r
=

h2
s + h2

r + 2hshr − h2
s − h2

r + 2hshr

2r

=
2hshr

r

Therefore b = 2hshr.

2.

Er(f, t) ≈ Re[α[exp{j2π(ft− fr1/c)]− exp{j2π(ft− fr2/c)]]

r1

=
Re[α[exp{j2π(ft− fr1/c)][1− exp(j2πf(r1 − r2)/c)]

r1

≈ Re[α[exp{j2π(ft− fr1/c)][1− exp(j2πf/c ∗ b/r)]

r1

≈ Re[α[exp{j2π(ft− fr1/c)][1− (1− j2πf/c ∗ b/r)]

r1

=
2πf |α|b

cr2
<[j exp(j∠α) exp[j2π(ft− fr1/c)]]

= −2πf |α|b
cr2

sin[2π(ft− fr1/c) + ∠α]]

Therefore β = 2πf |α|b/c.
3.

1

r2

=
1

r1 + (r2 − r1)
=

1

r1[1 + (r2 − r1)/r1]
≈ 1

r1

(
1− r2 − r1

r1

)
≈ 1

r1

(
1− b

r2
1

)

Therefore if we don’t make the approximation of b) we get another term in
the expansion that decays as r−3. This term is negligible for large enough r as
compared to β/r2.
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Exercise 2.6. 1. Let f2 be the probability density of the distance from the origin
at which the photon is absorbed by exactly the 2nd obstacle that it hits. Let x
be the location of the first obstacle, then

f2(r) = P {photon absorbed by 2nd obstacle at r}
=

∫

x

P {absorbed by 2nd obstacle at r | not absorbed by 1st obstacle at x}
× P {not absorbed by 1st obstacle at x} dx

Since the obstacle are distributed according to poisson process which has mem-
oryless distances between consecutive points, the first term inside the integral is
f1(r − x). The second term is the probability that the first obstacle is at x and
the photon is not absorbed by it. Thus, it is given by (1− γ)q(x). Thus,

f2(r) =

∫ ∞

x=−∞
(1− γ)q(x)f1(r − x)dx

2. Similarly, we observe that fk+1(r) is given by

fk+1(r) =

∫

x

P {absorbed by (k + 1)th obst at r | not absorbed by 1st obst at x}
× P {not absorbed by 1st obstacle at x} dx

=

∫ ∞

x=−∞
(1− γ)q(x)fk(r − x)dx (2.2)

3. Summing up (2.2) for k = 1 to ∞, we get:

∞∑

k=2

fk(r) =

∫ ∞

x=−∞
(1− γ)q(x)

( ∞∑

k=1

fk(r − x)

)
dx
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Thus,

f(r)− f1(r) =

∫ ∞

x=−∞
(1− γ)q(x)f(r − x)dx,

or equivalently,

f(r) = γq(r) +

∫ ∞

x=−∞
(1− γ)q(x)f(r − x)dx (2.3)

4. Using (2.3), we get that

F (ω) = (1− γ)Q(ω) + F (ω)Q(ω), (2.4)

where F and Q denote the Fourier transform of f and q respectively. Since the
q(x) is known explicitly, its Fourier transform can be directly calculated and it
turns out to be:

Q(ω) =
η2

η2 + ω2
.

Substituting thin in (2.4), we get

F (ω) =
γη2

γη2 + ω2
.

Thus, F is of the same form as Q, except for a different parameter η. Thus,

f(r) =

√
γη

2
e−

√
γη|r|

5. Without any loss of generality we can assume that r is positive, then power
density at r is given by

∫ ∞

x=r

f(x)dx =

∫ ∞

x=r

√
γη

2
e−

√
γηxdx

=
1

2
e−

√
γηr.

A similar calculation for a negative r gives power density at distance r to be

e−
√

γη|r|

2
.

Exercise 2.7.
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Exercise 2.8. The block diagram for the (unmodified) system is:

w(t)

²²
Ak

// θ(t) //º¹¸·³´µ¶x // R[·] // h(t) // ÂÁÀ¿»¼½¾+ //º¹¸·³´µ¶x // θ(−t)
t=kT

/
// Bk

√
2ej2πfct

OO

√
2e−j2πfct

OO

1. Which filter should one redesign?
One should redesign the filter at the transmitter. Modifying the filter at the receiver

may cause {θ(t− kT )}k no longer to be an orthonormal set, resulting in noise on the
samples not to be i.i.d. By leaving {θ(t− kT )}k at the receiver as an orthonormal set,
we are assured the the noise on the samples is i.i.d.

Let the modified filter be g(t). The block diagram for the modified system is:

w(t)

²²
Ak

// g(t) //º¹¸·³´µ¶x // R[·] // h(t) // ÂÁÀ¿»¼½¾+ //º¹¸·³´µ¶x // θ(−t)
t=kT

/
// Bk

√
2ej2πfct

OO

√
2e−j2πfct

OO

(Solution to Part 3: Figure of the various filters at passband).
We want to find g(t) such that there is no ISI between samples. Before we continue

to find g(t), we depict the desired simplified block diagram for the system with no ISI:
Ak

// ÂÁÀ¿»¼½¾+ // Bk

wk

OO

For ease of manipulation, we transform the passband representation of the system
to a baseband representation

w(t)

²²
Ak

// g(t) // hb(t) // ÂÁÀ¿»¼½¾+ // θ(−t)
t=kT

/
// Bk

where Hb(f) =

{
H(f + fc) ∈ [−W

2
, W

2
]

0 otherwise

H(f) is assumed bandlimited between [fc − W
2
, fc + W

2
]

We let g(t) =
∑

k gkθ(t− kT ), and redraw the block diagram:
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w(t)

²²
Ak

// gk // θ(t) // hb(t) // ÂÁÀ¿»¼½¾+ // θ(−t)
t=kT

/
// Bk

We now convert the signals and filters from the continuous to discrete time domain:
wk

²²
Ak

// gk // h̃k
// ÂÁÀ¿»¼½¾+ // Bk

where h̃k = θ ∗ hb ∗ θ−|t=kT .

We justify interchanging the order of w(t) and θ(−t), since we know the noise on
the samples is i.i.d.

G(z) = H̃−1(z) gives the desired result.
In summary, g(t) =

∑
k gkθ(t− kT ) where gk is given by G(z) = H̃−1(z), and H̃(z)

is given by the Z-Transform of h̃k = θ ∗ hb ∗ θ−|t=kT

Exercise 2.9. Part 1)

Figure 2.1: Magnitude of taps, W = 10kHz, time = 1 sec. Two paths are completely
lumped together
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Figure 2.2: Magnitude of taps, W = 100kHz, time = 1 sec. Two paths are starting to
become resolved.

Figure 2.3: Magnitude of taps, W = 1MHz, time = 1 sec. Two paths are more resolved.
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Figure 2.4: Magnitude of taps, W = 3MHz, time = 1 sec. Two paths are clearly
resolved.



Tse and Viswanath: Fundamentals of Wireless Communication 11

Part 2) We see that the time variations have the same frequency in both cases
(flat fading in Figure 2.5 and frequency selective fading in Figure 2.7), but are much
more pronounced in the case of flat fading. This is because in frequency selective
fading (large W) each of the signal paths corresponds to a different tap, so they don’t
interfere significantly and the taps have small fluctuations. On the other hand in the
case of flat fading, we sample the channel impulse response with low resolution and
all the signal paths are lumped into the same tap. They interfere constructively and
destructively generating large fluctuations in the tap values. If the model included
more signal paths, then the number of paths contributing significantly to each tap
would vary as a function of the bandwidth W , so the frequency of the tap variations
would depend on the bandwidth, smaller bandwidth corresponding to larger Doppler
spread and faster fluctuations (smaller Tc). Finally we could analyze this effect in the
frequency domain. In frequency selective fading, the channel frequency response varies
within the bandwidth of interest. There is an averaging effect and the resulting signal
is never faded too much. This is an example of diversity over frequency.

Exercise 2.10. Consider the environment in Figure 2.9.
The shorter paths (dotted lines) contribute to the first tap and the longer paths

(dashed) contribute to the second tap. Then the delay spread for the first tap is given
by:

fv

c
| cos φ1 − cos φ2|,

and the delay spread for the second tap is given by:

fv

c
| cos θ1 − cos θ2|.

By appropriately choosing θ1, θ2, φ1 and φ2, we can construct examples where the
doppler spreads for both the taps are same or different.

Exercise 2.11. Let H(f) = 1 for |f | < W/2 and 0 otherwise. Then if h(t) ↔ H(f) it
follows that h(t) = W sinc(Wt). Then we can write:

<{w[m]} =
{

[w(t)
√

2 cos(2πfct)] ∗ h(t) |t=m/W

}

=

[∫ ∞

−∞
w(τ)

√
2W cos(2πfcτ)sinc(W (t− τ))dτ

]

t=m/W

=

∫ ∞

−∞
w(τ)

√
2W cos(2πfcτ)sinc(m−Wτ)dτ

=

∫ ∞

−∞
w(τ)ψm,1(τ)dτ
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Figure 2.5: Flat fading: time variation of magnitude of 1 tap. (x-axis is the time index
m).

Figure 2.6: Flat fading: time variation of phase of 1 tap. (x-axis is the time index m).
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Figure 2.7: Frequency selective fading: time variation of magnitude of 1 tap. Note:
scale of y-axis is much finer here than in the flat fading case. (x-axis displays time
with units of seconds. x-axis label of time index ’m’ is a typo. Should be ’time.’)

Figure 2.8: Frequency selective fading: time variation of phase of 1 tap. (x-axis displays
time with units of seconds. x-axis label of time index ’m’ is a typo. Should be ’time.’
)
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Rx
Tx

φ1

θ1

θ2

φ2 v

Figure 2.9: Location of reflectors, transmitter and receiver

where ψm,1(τ) =
√

2Wcos(2πfcτ)sinc(m−Wτ).
Similarly,

={w[m]} = −
{

[w(t)
√

2 sin(2πfct)] ∗ h(t) |t=m/W

}

= −
[∫ ∞

−∞
w(τ)

√
2W sin(2πfcτ)sinc(W (t− τ))dτ

]

t=m/W

= −
∫ ∞

−∞
w(τ)

√
2W sin(2πfcτ)sinc(m−Wτ)dτ

=

∫ ∞

−∞
w(τ)ψm,2(τ)dτ

where ψm,2(τ) = −√2Wsin(2πfcτ)sinc(m−Wτ).

Exercise 2.12. 1) Let θn(t) denote θ(t− nT ).
Show that if the waveforms {θn(t)}n form an orthogonal set, then the waveforms

{ψn,1, ψn, 2}n also form an orthogonal set, provided θ(t) is band-limited to [−fc, fc].
ψn,1, ψn, 2 are defined as

ψn,1(t) = θn(t) cos 2πfct (2.5)

ψn, 2(t) = θn(t) sin 2πfct

By definition {θn(t)}n forms an orthogonal set

⇐⇒ ∫∞
−∞ θ∗n(t)θm(t)dt = a δ[m− n] for some a ∈ R

⇐⇒ ∫∞
−∞ Θ∗

n(f)Θm(f)df = a δ[m− n] for some a ∈ R, by Parseval’s Theorem(2.6)

where Θn(f) is the Fourier Transform of θn(t).
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We would like to show
1) < ψn,1(t), ψm,1(t) > ∝ δ[m− n] ∀ m,n ∈ Z

waveforms modulated by cos 2πfct remain orthogonal to each other
2) < ψn, 2(t), ψm, 2(t) > ∝ δ[m− n] ∀ m,n ∈ Z

waveforms modulated by sin 2πfct remain orthogonal to each other
3) < ψn,1(t), ψm, 2(t) > = 0 ∀ m,n ∈ Z

waveforms modulated by cos 2πfct are orthog. to waveforms modulated by
sin 2πfct.

We will show these three cases individually:
Case 1)

< ψn,1(t), ψm,1(t) > =

∫ ∞

−∞
ψ∗n,1(t)ψm,1(t)dt

=

∫ ∞

−∞
Ψ∗

n,1(f)Ψm,1(f)df by Parseval’s (2.7)

where

Ψn,1(f) =

∫ ∞

−∞
ψn,1(t)e

−j2πftdt

=

∫ ∞

−∞
θn(t) cos(2πfct)e

−j2πftdt, from (2.5)

= Θn(f) ∗ (
1

2
δ(f − fc) +

1

2
δ(f + fc))

=
1

2
(Θn(f − fc) + Θn(f + fc))

Substituting into (3)

=
1

4

∫ ∞

−∞
[Θ∗

n(f − fc) + Θ∗
n(f + fc)][Θm(f − fc) + Θm(f + fc)]df

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc) + Θ∗
n(f − fc)Θm(f + fc)︸ ︷︷ ︸

=0

+

+ Θ∗
n(f + fc)Θm(f − fc)︸ ︷︷ ︸

=0

+Θ∗
n(f + fc)Θm(f + fc)df

The second and third terms equal zero since θ(t) is bandlimited to [−fc, fc] resulting
in no overlap in the region of support of Θ(f + fc) and Θ(f − fc), as seen in Figure
2.10(b).

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc) + Θ∗
n(f + fc)Θm(f + fc)df
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=
1

4

∫ ∞

−∞
Θ∗

n(f)Θm(f) + Θ∗
n(f)Θm(f)df

since integrals from −∞ to ∞ are invariant to shifts of the integrand along the x-axis.

=
1

4
2

∫ ∞

−∞
Θ∗

n(f)Θm(f)df

=
a

2
δ[m− n], by equation (2.6) (2.8)

∝ δ[m− n]

Case 2)
< ψn, 2(t), ψm, 2(t) >

=

∫ ∞

−∞
ψ∗n, 2(t)ψm, 2(t)dt

=

∫ ∞

−∞
Ψ∗

n, 2(f)Ψm, 2(f)df by Parseval’s

=

∫ ∞

−∞
(

1

2j
)∗[Θ∗

n(f − fc)−Θ∗
n(f + fc)](

1

2j
)[Θm(f − fc)−Θm(f + fc)]df

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc)−Θ∗
n(f − fc)Θm(f + fc)︸ ︷︷ ︸

=0

+

−Θ∗
n(f + fc)Θm(f − fc)︸ ︷︷ ︸

=0

+Θ∗
n(f + fc)Θm(f + fc)df

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc) + Θ∗
n(f + fc)Θm(f + fc)df

=
1

4

∫ ∞

−∞
Θ∗

n(f)Θm(f) + Θ∗
n(f)Θm(f)df

=
1

4
2

∫ ∞

−∞
Θ∗

n(f)Θm(f)df

=
a

2
δ[m− n], by equation (2.6) (2.9)

∝ δ[m− n]

Case 3)
< ψn,1(t), ψm, 2(t) >

=

∫ ∞

−∞
ψ∗n,1(t)ψm, 2(t)dt

=

∫ ∞

−∞
Ψ∗

n,1(f)Ψm, 2(f)df by Parseval’s
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= (
1

4j
)

∫ ∞

−∞
[Θ∗

n(f − fc) + Θ∗
n(f + fc)][Θm(f − fc)−Θm(f + fc)]df

= (
1

4j
)

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc)−Θ∗
n(f − fc)Θm(f + fc)︸ ︷︷ ︸

=0

+

+ Θ∗
n(f + fc)Θm(f − fc)︸ ︷︷ ︸

=0

−Θ∗
n(f + fc)Θm(f + fc)df

= (
1

4j
)

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc)−Θ∗
n(f + fc)Θm(f + fc)df

= (
1

4j
)

∫ ∞

−∞
Θ∗

n(f)Θm(f)−Θ∗
n(f)Θm(f)df

= 0 ∀ m,n ∈ Z
For ψ(t) to be orthonormal, set a

2
= 1 in (2.8) and (2.9), which implies a = 2. We

should scale θn(t) by
√

2.

Part 2) θ̃(t) = 4fcsinc(4fct) is an example θ(t) that is not band-limited to [−fc, fc].
See Figure 2.10(c). For this example, there will be an overlap in the region of support
of Θ̃(f + fc) and Θ̃(f − fc). See Figure 2.10(d). The cross terms Θ̃∗

n(f − fc)Θ̃m(f + fc)
and Θ̃∗

n(f + fc)Θ̃m(f − fc) will no longer = 0 and {ψn,1, ψn, 2}n will no longer by or-
thogonal.

2 take away messages:
1) The orthogonality property of a set of waveforms is unchanged if the waveforms
experience a frequency shift, or in other words are multiplied by ej2πfct.
2) WGN projected onto {ψn,1, ψn, 2}n will yield i.i.d. gaussian noise samples.

Exercise 2.13. Let F[·] denote the Fourier transform operator, ∗ denote convolution,
u(·) the unit step function and

H(f) =





1/j if f > 0
0 if f = 0

−1/j if f < 0

with h(t) ↔ H(f). Then we can write:

=[yb(t)e
j2πfct] =

1

2j
[yb(t)e

j2πfct − (yb(t)e
j2πfct)∗] =

1

2j
F−1[Yb(f − fc)− Y ∗

b (−f − fc)]

=

√
2

2j
F−1[Y (f)u(f)− Y (f)u(−f)] =

√
2

2
F−1[Y (f)H(f)] =

√
2

2
y(t) ∗ h(t)

=

√
2

2

∑
i

[ai(t)x(t− τi(t))] ∗ h(t)
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freq fc −fc 

(a) Frequency range of Θ(f) band-limited
from −fc, fc

fc −fc −2fc 2fc freq 

(b) Frequency range of Θ(f+fc) and Θ(f−
fc). Notice no overlap in region of support.

2fc −2fc freq 

(c) Frequency range of Θ̃(f) not band-
limited from −fc, fc

fc 3fc −fc −3fc freq 

overlapped region of support 

(d) Frequency range of Θ̃(f+fc) and Θ̃(f−
fc). Notice an overlap in region of support.

Figure 2.10: Frequency range of waveforms at baseband and passband.
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=

√
2

2

∑
i

{ai(t)
√

2<[xb(t− τi(t))e
j2πfc(t−τi(t))]} ∗ h(t)

=
1

2

∑
i

{ai(t)[xb(t− τi(t))e
j2πfc(t−τi(t)) + x∗b(t− τi(t))e

−j2πfc(t−τi(t))]} ∗ h(t)

=a
1

2j

∑
i

{ai(t)[xb(t− τi(t))e
j2πfc(t−τi(t)) − x∗b(t− τi(t))e

−j2πfc(t−τi(t))]}

=
∑

i

{ai(t)=[xb(t− τi(t))e
j2πfc(t−τi(t))]}

= =
{[∑

i

ai(t)xb(t− τi(t))e
−j2πfcτi(t)

]
ej2πfct

}

The equality (a) follows because the first term between the braces is zero for neg-
ative frequencies and the second term is zero for positive frequencies.

Yes. Both equations together allow to equate the complex arguments of the < and
= operators, thus allowing to obtain the baseband equivalent of the impulse response
of the channel.

Exercise 2.14.

Exercise 2.15. Effects that make the tap gains vary with time:

• Doppler shifts and Doppler spread: D = fcτ
′
i(t), Tc ∼ 1/D = 1/(fcτ

′
i(t)) The

coherence time is determined by the Doppler spread of the paths that contribute
to a given tap. As W increases the paths are sampled at higher resolution and
fewer paths contribute to each tap. Therefore the Doppler spread decreases for
increasing W and its influence on the variation of the tap gains decreases.

• Variation of {ai(t)}i with time. ai(t) changes slowly, with a time scale of varia-
tion much larger than the other effects discussed. However as W increases and
it becomes comparable to fc assuming that a single gain affects the correspond-
ing path equally across all frequencies may not be a good approximation. The
reflection coefficient of the scatterers may be frequency dependent and for very
large bandwidths we need to change the model.

• Movement of paths from tap to tap. τi(t) changes with t and the corresponding
path moves from one tap to another. As W increases fewer paths contribute to
each tap and the tap gains change significantly when a path moves from tap to
tap. A path moves from tap to tap when ∆τi(t)W = 1 or ∆τi(t)/∆t ·W = 1/∆t.
So this effect takes place in a time scale of ∆t ∼ 1/(Wτ ′i(t)). As W increases
this effect starts taking place in a small time scale and it becomes the dominant
cause of time variation in the channel tap gains.
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The third effect dominates when ∆t < Tc or equivalently when W > fc.

Exercise 2.16.

h`[m] =
N∑

i=1

ai(m/W )e−j2πfcτi(m/W )sinc(`− τi(m/W )W )

Let τ̄ = 1
N

∑N
i=1 τi(0) and ∆τi(m/W ) = τi(m/W )− τ̄ . Then,

h`[m] = e−j2πfcτ̄

N∑
i=1

ai(m/W )e−j2πfc∆τi(m/W )sinc(`− τ̄W −∆τi(m/W )W )

Often in practice fcτ̄ ∼ fcr/c >> 1 1 so it is a reasonable assumption to model
e−j2πfcτ̄ = e−jθ where θ ∼ Uniform[0, 2π] and θ is independent of everything else.
Note that τ̄ does not depend on m so a particular realization of θ is the same for all
components of h. Since e−jθ has uniformly distributed phase, its distribution does not
change if we introduce an arbitrary phase shift φ. So ejφe−jθ ∼ e−jθ.

It follows that

ejφh = ejφe−jθ




∑N
i=1 ai(m/W )e−j2πfc∆τi(m/W )sinc(`− τ̄W −∆τi(m/W )W )∑N

i=1 ai((m + 1)/W )e−j2πfc∆τi((m+1)/W )sinc(`− τ̄W −∆τi((m + 1)/W )W )
...∑N

i=1 ai((m + n)/W )e−j2πfc∆τi((m+n)/W )sinc(`− τ̄W −∆τi((m + n)/W )W )




=d e−jθ




∑N
i=1 ai(m/W )e−j2πfc∆τi(m/W )sinc(`− τ̄W −∆τi(m/W )W )∑N

i=1 ai((m + 1)/W )e−j2πfc∆τi((m+1)/W )sinc(`− τ̄W −∆τi((m + 1)/W )W )
...∑N

i=1 ai((m + n)/W )e−j2πfc∆τi((m+n)/W )sinc(`− τ̄W −∆τi((m + n)/W )W )




=d h

Since this is true for all φ, under the previous assumptions h is circularly symmetric.

Exercise 2.17. 1. h(τ, t) is the response of the channel to an impulse that occurs
at time t − τ , i.e., δ(t − (t − τ)). Replacing x(t) by δ(t − (t − τ)) in the given
expression we obtain:

h(τ, t) =
a√
K

K−1∑
i=0

δ(τ − τθi
(t)).

The projection of the velocity vector v onto the direction of the path at angle θ
has a magnitude:

vθ = |v| cos θ.

1r is the distance between transmit and receive antennas
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The distance travelled by the mobile in the direction θ in time t is vθt, which is
the reduction in the distance between transmitter and receiver for the path of
angle θ. Then,

τθ(t) = τθ(0)− |v| cos θ · t
c

.

2. Td ¿ 1/W means that most of the paths arrive in an interval much smaller than
the sample time of the signal. Since the signal remains approximately constant
over the interval Td, it can be pulled out from the summation in part (a). In this
way we can lump together the influence of all the paths into a single tap h0[m].

We assume that δθ(t) ¿ 1/W , For this we assume that δ0(0) = 0 and δ0(t) ¿
1/W for the time scale of interest. Thus,

h0[m] =

∫ 2π

0

aθe
−j2πfcτθ(m/W )sinc[−τθ(m/W ) ·W ]dθ,

where we use the fact that aθ(t) = aθ,∀t. Finally we note that

lim
t=0

sinc(t) = 1

and since τθ(m/W ) ·W ¿ 1 we obtain:

h0[m] =

∫ 2π

0

aθe
−j2πfcτθ(m/W )dθ.

3. The independence assumption requires that different paths come from difference
scatters. For this to be true even for small variations in angle of arrival θ, it
is necessary that the scatters be located far away from the receiver. How far
depends on the size of the scatters, and the angle difference ∆θ over which we
require the paths to be independent. The identically distributed assumption
requires that the lengths of the paths from transmitter to receiver be comparable
for all angle θ. This occurs when r ¿ R in the following figure.

4. The stationarity of h0[m] can be seen from previous formula and the uniformity
of the phase. To calculate R0[n],

R0[n] = E[

∫ 2π

0

∫ 2π

0

a∗θ1
aθ2e

j2πfc(τθ1
(0)− vm+vn

cW
cos θ1−τθ2

(0)+ vm
cW

cos θ2)dθ1dθ2]
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=

∫ 2π

0

∫ 2π

0

E[a∗θ1
aθ2e

j2πfc(τθ1
(0)−τθ2

(0))]ej2πfc(− vm+vn
cW

cos θ1+ vm
cW

cos θ2)dθ1dθ2

=

∫ 2π

0

E[|aθ|2]e−j2πfc(
vn
cW

cos θ)dθ.

5.

R0[n] =

∫ ∞

−∞
S(f)ej2πfndf

=

∫ Ds/2W

−Ds/2W

4a2W/(Ds

√
1− (2fW/Ds)2)ej2πfndf

=

∫ π

0

2a2ejπnDs cos(θ)/W dθ,

where we use the substitution cos(θ) = 2fW/Ds.

6. From the definition of PSD.

Exercise 2.18. 1. The key difference is that in Clarke’s model, the attenuations
of the signals are random and have the same distribution in all directions from
the receiver, whereas in the present model, they are deterministic and direction
dependent. The key similarity is that in both cases, the phases are i.i.d. in all
directions.

2. The delay spread Td is (4 − 2) km /c = 6.7µs. Therefore the channel is flat if
W ¿ 1/Td = 150 kHz.

3. We assume that only paths that arrive with delay in [`/W − 1/(2W ), `/W +
1/(2W )] contribute to tap `. Let θ be the angle the path makes with the line
between the transmitter and the receiver at the receiver. The paths that arrive
with the desired delay lie in between angles θ1 and θ2 and between −θ1 and −θ2,
where θ1, θ2 are such that the delay of the path is `/W ± 1(2W ), i.e.,

1 + r(θ1) = c(`/W − 1/(2W ))

1 + r(θ2) = c(`/W + 1/(2W ))

where r(θ) =
√

5− 4 cos θ is the distance between the Tx and the scatterer at
the angle θ.

The total power received is

E[|h`|2] = 2

∫ θ2

θ1

G
1

r(θ)2
dθ (2.10)
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4. The received power in the delay range [τ, τ + dτ ] is

2G/(5− 4 cos θ)|dθ|

where cos θ = [5−(cτ−1)2]/4 and sin θdθ = −c(cτ−1)/2dτ . Hence, the received
power is

cG

(cτ − 1)
√

1− (5−(cτ−1)2

4
)2

for cτ between 2 and 4. This gives the power-delay profile.

5. The Doppler shift at angle θ is v cos θ/λ, where λ = c/fc. Thus the Doppler
spread for the tap ` is

+fcv/c| cos θ1 − cos θ2|
.

The power of the received signal in the range of Doppler shifts [f, f + df ] is

2G/(5− 4 cos θ)|dθ|

where cos θ = λ/v · f and sin θdθ = λ/vdf . Hence the Doppler spectrum is

S(f) =
2Gλ/v

(5− 4λf/v)
√

1− (λf/v)2
.

The Doppler spectrum of tap ` picks off a section of this corresponding to the
range of Doppler shifts for the paths that contribute to this tap.

6. No, since the location of the scatterers should determine exactly the phase of the
arriving path, so there cannot be any randomness of the phase once the location
of the scatterers is fixed.

On the other hand, the phase varies rapidly as a function of the scatterer positions
at a spatial scale of the order of λ (cm’s) while the large scale path loss and delay
varies at the scale of kilometers. So what our assumptions are saying is that
we are assuming that the scatters are ”approximately” 1 km from the receiver,
where the approximation is accurate up to the order of λ’s . The randomness at
the small scale validates the random phase assumption.

Exercise 2.19. 1.

fm =
vfc

c

D = 2fm =
2vfc

c
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Tc =
1

4D
=

c

8vfc

b) The antennas should be spaced at least by d = vTc = c/(8fc) to get indepen-
denlty faded signals.

2. The signal arriving at the base station antenna from an angle α relative to the
direction of v′ experiences a Doppler shift

fα =
v′fc cos(α)

c

α ranges from π−arctan(R/d) to π+arctan(R/d). The Doppler shift is maximum
for α = π and minimum for α = π − arctan(R/d) or α = π + arctan(R/d).
Therefore the Doppler spread is

D =
v′fc[1− cos(arctan(R/d))]

c
=

v′fc2[sin(arctan(R/d)/2)]2

c

and the corresponding Tc:

Tc =
1

4D
=

c

v′fc8[sin(arctan(R/d)/2)]2

3. The minimum base station antenna spacing for uncorrelated fading is d = v′Tc =
c/(fc8[sin(arctan(R/d)/2)]2). In practice the base station antenna is located in
a high tower with no obstructions in its vicinity, so most of the scattering takes
place around the mobile. In this case we can assume R << d and approximate
sin(arctan(R/d)/2) ≈ R/2d to get d = (cd2)/(2fcR

2). In this particular setting
this means that the minimum antenna spacing at the base station must be in the
order of d2/R2 larger than that at the mobile to get independently faded signals.



Chapter 3

Solutions to Exercises

Exercise 3.1. We have

Pe = Eh[Q(
√

2|h|2SNR)], (3.1)

=

∫ ∞

0

e−x

∫ ∞

√
2xSNR

1√
2π

e−t2/2dtdx, (3.2)

=
1√
2π

∫ ∞

0

∫ t2/(2SNR)

0

e−t2/2e−xdxdt, (3.3)

=
1√
2π

∫ ∞

0

e−t2/2(1− e−t2/(2SNR))dt, (3.4)

=
1

2
− 1√

2π

∫ ∞

0

e−t2(1+1/SNR)/2dt, (3.5)

=
1

2

(
1−

√
SNR

1 + SNR

)
, (3.6)

where the third step follows from changing the order of integration. Now, for large
SNR, we also have

√
SNR

1 + SNR
≈ 1− 1

2SNR
,

which implies

Pe ≈ 1

4SNR

Exercise 3.2. 1. Let ρ = SNR. For Rayleigh fading |h[0]|2 ∼ Exp(1) so we have:

Pe = E
[
Q

(√
2|h[0]|2ρ

)]
=

∫ ∞

0

∫ ∞

√
2xρ

1√
2π

e−t2/2e−xdtdx

25
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=

∫ ∞

0

∫ t2/(2ρ)

0

1√
2π

e−t2/2e−xdxdt =

∫ ∞

0

1√
2π

e−t2/2
[
1− e−t2/(2ρ)

]
dt

=
1

2

[
1−

√
ρ

1 + ρ

∫ ∞

−∞

√
1 + ρ

2πρ
e−

t2

2
(1+1/ρ)dt

]
=

1

2

[
1−

√
1

1 + 1/ρ

]

We can approximate
√

1/(1 + x) = 1− x/2 + o(x) for x → 0 1. Then,

Pe =
1

2

[
1− 1 +

1

2

1

ρ
+ o(1/ρ)

]
=

1

4ρ
+ o(1/ρ)

and

lim
ρ→∞

Peρ =
1

4

2. We will need the following result:

∫ ∞

0

Q(
√

y)dy =

∫ ∞

0

∫ ∞

√
y

1√
2π

e−t2/2dtdy =

∫ ∞

0

∫ t2

0

1√
2π

e−t2/2dydt =

∫ ∞

0

t2√
2π

e−t2/2dt =
1

2

Let f(·) be the pdf of |h[0]|2. Then,

Pe = E
[
Q

(√
2|h[0]|2ρ

)]
=

∫ ∞

0

Q(
√

2xρ)f(x)dx

Assuming that f(·) is right continuous at 0, that f(0) > 0 and that f(·) is
bounded (this last condtion enables us to use the bounded convergence theorem
to exchange limit and integral):

lim
ρ→∞

Peρ = lim
ρ→∞

∫ ∞

0

Q(
√

2xρ)f(x)ρdx = lim
ρ→∞

∫ ∞

0

Q(
√

y)f

(
y

2ρ

)
1

2
dy

=
f(0)

2

∫ ∞

0

Q(
√

y)dy =
f(0)

4

3. Let g`(·) be the pdf of |h[`]|2, and assume that it is right continuous and strictly
positive at 0, for ` = 1, . . . , L. Let f`(·) be the pdf of

∑`
i=1 |h[i]|2. Then using

the fact that the pdf of the sum of independent random variables equals the
convolution of the corresponding pdfs we can write for x → 0:

f2(x) =

∫ x

0

g1(t)g2(x− t)dt = g1(0)g2(0)x + o(x)

1limx→0 o(x)/x = 0
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f3(x) =

∫ x

0

f2(t)g3(x− t)dt =

∫ x

0

[g1(0)g2(0)t + o(t)]g3(x− t)dt = g1(0)g2(0)g3(0)
x2

2
+ o(x2)

...

fL(x) =

∫ x

0

fL−1(t)gL(x− t)dt =

∫ x

0

[(
L−1∏

`=1

g`(0)

)
tL−2

(L− 2)!
+ o(tL−2)

]
gL(x− t)dt

=

(
L∏

`=1

g`(0)

)
xL−1

(L− 1)!
+ o(xL−1) = βxL−1 + o(xL−1)

where we defined β = [
∏L

`=1 g`(0)]/(L− 1)!. The probability of error is given by:

Pe = E
[
Q

(√
2‖h‖2ρ

)]
=

∫ ∞

0

Q(
√

2xρ)fL(x)dx

Multiplying by ρL, taking limit for ρ → ∞ and assuming that we can exchange
the order of limits and integrals we have:

lim
ρ→∞

Peρ
L = lim

ρ→∞

∫ ∞

0

Q(
√

2xρ)ρLfL(x)dx = lim
ρ→∞

∫ ∞

0

Q(
√

y)ρL−1fL

(
y

2ρ

)
1

2
dy

= lim
ρ→∞

∫ ∞

0

Q(
√

y)
fL

(
y
2ρ

)

(
y
2ρ

)L−1

(y

2

)L−1 1

2
dy =

∫ ∞

0

Q(
√

y)β
(y

2

)L−1 1

2
dy

=
β

2L

∫ ∞

0

∫ ∞

√
y

1√
2π

e−t2/2yL−1dtdy =
β

2L

∫ ∞

0

∫ t2

0

1√
2π

e−t2/2yL−1dydt

=
β

2L

∫ ∞

0

t2L

L

1√
2π

e−t2/2dt =
β

2L

1

2L

∫ ∞

−∞
t2L 1√

2π
e−t2/2dt

=
β

2L

1

2L

(2L)!

L!2L
=

(
2L− 1

L

)
1

4L

L∏

`=1

g`(0)

4. The K parameter of a Ricean distribution is defined as the ratio of the powers in
the specular (or constant) component and the fading component. If the specular
component has amplitude µ and the fading component is CN(0, σ2) and we
normalize the total power to be 1 we obtain:

1 = µ2 + σ2 = σ2(K + 1) ⇒ µ =
√

K
K+1

σ2 = 1
K+1

For Ricean fading with parameter K the pdf of |h[`]|2 is given by (see Proakis
(2.1-140)):

f(y) = (K + 1)e−( K
K+1

+y)(K+1)I0

[√
yK(K + 1)

]
, y ≥ 0
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which evaluated at y = 0 yields f(0) = (K + 1)e−K .

Using the result from part (3) we get:

lim
ρ→∞

Peρ
L =

(
2L− 1

L

)
(K + 1)Le−LK

4L

As K → ∞ the expression above decays exponentially in K and the Ricean
channel converges to the AWGN channel.

Exercise 3.3. Since |h|2 is exponential, for large SNR, we have

P(Eε) ≈ SNR−(1−ε).

Therefore

lim
SNR→∞

logP(Eε)

log SNR
= −(1− ε).

Similarly,

lim
SNR→∞

logP(E−ε)

log SNR
= −(1 + ε).

1. By conditioning on Eε, probability of error can be written as:

Pe = P(error|Eε)P(Eε) + P(error|Ec
ε )P(Ec

ε ).

Now, the for the second term, we see that |h|2SNR > SNRε whenever Ec
ε happens.

Thus, because of the exponential tail of the Q function, the second term goes
to zero exponentially fast and does not contribute to the limit. Also, upper
bounding P(error|Eε) by 1, we get

lim
SNR→∞

log Pe

log SNR
≤ lim

SNR→∞
logP(Eε)

log SNR
,

= −(1− ε).

2. Now, similarly conditioning on E−ε, we get

Pe = P(error|E−ε)P(E−ε) + P(error|Ec
−ε)P(Ec

−ε),

≥ P(error|E−ε)P(E−ε).

Now, we see that |h|2SNR < SNR−ε whenever E−ε happens. Thus, the probability
of error then can be lower bounded by a nonzero constant (e.g. Q(1)). Thus, we
get

lim
SNR→∞

log Pe

log SNR
≥ lim

SNR→∞
log(Q(1)) + log(P(Eε))

log SNR
,

= −(1 + ε).
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3. Combining the last two part, we get

lim
SNR→∞

log Pe

log SNR
= 1.

Exercise 3.4. To keep the same probability of error, the separation between consec-
utive points should be the same for both PAM and QAM. Let this separation be 2a.
Then, the average energy for a PAM with 2k points is given by:

Eav(2
k − PAM) =

1

2k−1

2k−1∑
i=1

(2i− 1)2a2,

=
a2

3
(22k − 1).

Since a 2k QAM can be thought as two independent 2k/2 PAMs, we get that the average
energy for a QAM with 2k points is:

Eav(2
k −QAM) = 2Eav(2

k/2 − PAM),

=
2a2

3
(2k − 1).

Thus, the loss in energy is given by:

10 log

(
2k + 1

2

)
,

which grows linearly in k.

Exercise 3.5. Consider the following scheme which works for both BPSK and QPSK.
We have

y[m] = hx[m− 1]u[m] + w[m],

y[m− 1] = hx[m− 1] + w[m− 1].

Substituting the value of hx[m− 1] from the second equation into the first, we get

y[m] = y[m− 1]u[m] + w[m]− u[m]w[m− 1],

y[m] = h̃u[m] + w̃[m].

Where w̃[m] is CN (0, 2N0) and is independent of the input (because of symmetry of
w[m − 1]). The effective channel h̃ is CN (0, a2 + N0) and is known at the receiver.
Thus, the performance is same as the performance on a coherent channel with signal
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to noise ratio given by (SNR + 1)/2. Thus, the probability of error for BPSK is given
by

1

2(1 + SNR)
,

and the probability of error for QPSK is given by:

1

(1 + SNR)
.

Exercise 3.6. 1. Let ρ = SNR.

Pe = E
[
Q

(√
2‖h[0]‖2ρ

)]
=

∫ ∞

0

∫ ∞

√
2xρ

1√
2π

e−t2/2 xL−1

(L− 1)!
e−xdtdx

=

∫ ∞

0

∫ t2/(2ρ)

0

1√
2π

e−t2/2 xL−1

(L− 1)!
e−xdxdt (3.7)

(a)
=

∫ ∞

0

1√
2π

e−t2/2

[
1−

L−1∑

k=0

(
t2

2ρ

)k
e−t2/(2ρ)

k!

]
dt

=
1

2

[
1−

√
ρ

1 + ρ

L−1∑

k=0

1

k!(2ρ)k

∫ ∞

−∞

√
1 + ρ

2πρ
e−

t2

2
(1+1/ρ)dt

]

(b)
=

1

2

[
1−

√
ρ

1 + ρ

L−1∑

k=0

1

k!(2ρ)k

(
ρ

1 + ρ

)k
(2k)!

k!2k

]
(3.8)

=
1

2

[
1−

L−1∑

k=0

(
2k
k

)
µ

(
1− µ

2

)k (
1 + µ

2

)k
]

where µ =
√

ρ/(1 + ρ). Also (a) follows from the equivalence between the dis-
tribution functions of the Gamma and Poisson random variables, and (b) results
from the formula for the even moments of the standard Gaussian distribution
with proper scaling.

2. We start with the sufficient statistics:

r
(`)
A = h[`]x1 + w

(`)
A , ` = 1, 2, . . . , L

r
(`)
B = h[`]x2 + w

(`)
B , ` = 1, 2, . . . , L (3.9)

where x1 = ‖xA‖ and x2 = 0 if xA is transmitted, and x1 = 0 and x2 = ‖xB‖ if
xB is transmitted. As in the notes assume ‖xA‖2 = ‖xB‖2 = Eb.



Tse and Viswanath: Fundamentals of Wireless Communication 31

Since we are analyzing coherent reception, the receiver knows h and can further
project onto h/‖h‖ obtaining the new sufficient statistics:

r̃A =
h

‖h‖rA = ‖h‖x1 + w̃A

r̃B =
h

‖h‖rb = ‖h‖x2 + w̃B (3.10)

where w̃A and w̃B are independent CN(0, N0) random variables. We can finally
compare <(r̃A) and <(r̃B) to decide whether xA or xB was transmitted.

The error probability is given by:

Pe = E [Pr (<{r̃A} > <{r̃B} | xB)]

= E
[
Pr

(
<{w̃A − w̃B} > ‖h‖

√
Eb

)]
= E

[
Q

(√
2L‖h‖2

Eb

2LN0

)]
(3.11)

Since
√

Lh ∼ CN(0, IL) if follows that the formula of part (1) still holds by
replacing ρ → Eb/(2LN0), which results in the desired answer.

Exercise 3.7. 1. We have (for simplicity we denote the squared-distances as d1

and d2)

P[xA → xB] = Eh1,h2

[
Q

(√
SNR(|h1|2d1 + |h2|2d2)

2

)]

=
1√
2π

∫ ∞

0

∫ ∞

0

∫ ∞q
SNR(xd1+yd2)

2

e−t2/2e−xe−ydtdxdy

=
1√
2π

∫ ∞

0

∫ 2t2/(d2SNR)

0

∫ (2t2/SNR−d2y)/d1

0

e−xdxe−ydye−t2/2dt

=
1√
2π

∫ ∞

0

∫ 2t2/(d2SNR)

0

(1− e−(2t2/SNR−d2y)/d1)e−ydye−t2/2dt

=
1√
2π

∫ ∞

0

(
1− e−2t2/(d2SNR) − e−2t2/d1SNR

1− d2/d1

(1− e−(1/d2−/d1)2t2/SNR)

)
e−t2/2dt,

= 0.5 +
1√

2π(d2 − d1)

∫ ∞

0

e−t2/2(d1e
−2t2/(d1SNR) − d2e

−2t2/(d2SNR))dt,

= 0.5 +
0.5

d2 − d1

(
d1√

1 + 4/(d1SNR)
− d2√

1 + 4/(d2SNR)

)
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2. For the high SNR scenario, we get (using Taylor series)

1√
1 + 4/(d2SNR)

= 1− 2/(d2SNR) + 6/(SNR2d2
2).

Which implies

P[xA → xB] = 3/(d1d2SNR2).

Exercise 3.8. 1. For QPSK over an AWGN channel Pcorrect =
[
1−Q

(√
2a2

N0

)]2

so

Pe = 1− Pcorrect = 2Q

(√
2a2

N0

)
−

[
Q

(√
2a2

N0

)]2

To compare the performance to that of a scheme that uses only real symbols
we fix the bit rate (2 bits per channel use) and total transmitted power. For
4-PAM with signal points located in {±b,±3b} the symbol error probability is
(see Proakis (5.2-42)):

Pe =
3

2
Q

(√
2b2

N0

)

The average transmitted power is 5b2 so normalizing the total transmitted power
to 1 we have a = 1/

√
2, b = 1/

√
5. The power loss of 4-PAM over QPSK is

5/2 = 4dB.

2. The conditional probability of error of QPSK conditioned on the channel real-
ization h is:

Pe|h = 2Q




√
2a2‖h‖2

N0


−


Q




√
2a2‖h‖2

N0







2

Averaging over the distribution of ‖h‖2, noting that the second term of the above
expression does not affect the high SNR error performance, upper bounding the
Q function as done in the lectures, and using the characteristic function of the
exponential distribution to evaluate the expectations we obtain:

Pe = E
[
Pe|h

] ≤ E


2Q




√
2a2‖h‖2

N0





 ≤ E

[
2e
− ‖h‖2a2

N0

]
= 2

L∏

`=1

E

[
e
− |h[`]|2a2

N0

]

= 2

(
1

1 + a2/N0

)L

= 2

(
1 +

SNR

2

)−L



Tse and Viswanath: Fundamentals of Wireless Communication 33

where SNR = 2a2/N0 is the signal to noise ratio.

For 4-PAM we can find the conditional error probability conditioned on h using
the result of question 4.b) of homework 2 (which was derived for binary antipodal
signaling but can easily be extended for 4-PAM) and scaling appropriately by b:

Pe|h =
3

2
Q




√
2b2‖h‖2

N0




Taking expectation over h and bounding as before we get:

Pe ≤ 3

2

(
1

1 + b2/N0

)L

=
3

2

(
1 +

SNR

5

)−L

Therefore we get in both cases the same diversity gain, but the SNR performance
is degraded by 4dB in the 4-PAM case.

3. Let A = {a(1+j), a(1−j), a(−1+j), a(−1−j)}, B = {x ∈ C2 : x1 ∈ A, x2 ∈ A}.
Then the transmitted symbols are in D = {Ux : x ∈ B}, for some fixed unitary
matrix U ∈ C2x2. Let x = [x[1], x[2]]T be one of such symbols. Then the received
signal is:

y[`] = h[`]x[`] + z[`], ` = 1, 2

from which we can extract the sufficient statistics:

r[`] =
h[`]∗

|h[`]|y[`] = |h[`]|x[`] + z̃[`], ` = 1, 2

where z =d z̃. Let v[`] = |h[`]|x[`] for ` = 1, 2 be the modified symbol as seen at
the receiver.

We are interested in the pairwise error probability, that is the probability of
detecting a symbol x2 when the transmitted symbol is x1. The pairwise error
probability conditioned on the channel realization h depends only on ‖v1−v2‖2

through the expression:

P(x1→x2)|h = Q




√
‖v2 − v1‖2

2N0




which can be rewritten and upper bounded as:

P(x1→x2)|h = Q




√
|h[1]|2|x2[1]− x1[1]|2 + |h[2]|2|x2[2]− x1[2]|2

2N0
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≤ exp

[
−|h[1]|2|x2[1]− x1[1]|2 + |h[2]|2|x2[2]− x1[2]|2

4N0

]

Taking expectation over h and using the characteristic function of the exponential
distribution to evaluate it we obtain:

P(x1→x2) ≤ E

{
exp

[
−|h[1]|2|x2[1]− x1[1]|2 + |h[2]|2|x2[2]− x1[2]|2

4N0

]}

= E

{
exp

[
−|h[1]|2|x2[1]− x1[1]|2

4N0

]}
E

{
exp

[
−|h[2]|2|x2[2]− x1[2]|2

4N0

]}

=

[
4N0

1 + |x2[1]− x1[1]|2
] [

4N0

1 + |x2[2]− x1[2]|2
]

≤ 16N0

|x2[1]− x1[1]|2|x2[2]− x1[2]|2

We see that the pairwise error probability depends only on the product distance
|x2[1]− x1[1]|2|x2[2]− x1[2]|2. The rotation matrix U should be chosen in such a
way as to maximize the minimum product distance between any pair of codewords
in the constellation D.

Exercise 3.9.

Exercise 3.10. 1. The code can be represented by a permutation of the 16-point
QAM. What is transmitted on the second subchannel can be obtained as a simple
permutation of what is transmitted on the first sub-channel.

2. Data rate = 2 bits/channel use (since all the information is contained in one of
the QAMs itself).

3. Since the product distance is non-zero, the diversity gain is 2. The minimum
product distance is given by by 64a4 where 2a is the minimum distance between
the QAM symbols. Then, by normalizing the average receiver SNR to be 1 per
time symbol, we get:

2× 2× (4× 20a2)/16 = 1,

a2 = 0.05.

Therefore, the product distance is given by 0.32.

4. The power used for the rotation code is 4a2 per time and that of the permutation
code is 20a2, but for a fair comparison of power used, we need to normalize by
the optimal product distance of the rotation code. Numerical results indicate
that the rotation code outperforms a permutation code by a factor of 1.05.
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Exercise 3.11. 1.

P {xA → xB} ≤ [
1

1 + SNR
]d

where d is the Hamming distance between the binary codewords xA and xB. The
diversity gain of the code is the minimum Hamming distance dmin between the
codewords .

2. It’s 2. Same diversity gain as the repetition code but higher rate 3/2 rather than
1/2.

3. The probability a symbol gets decoded incorrectly is of the order of SNR−1. If
ddmin/2e errors are made, then there is a significant probability (i.e., the prob-
ability does not decay with SNR) that an overall error is made, as an incorrect
codeword may be closer to ĉ than the transmitted codeword. We are ok if fewer
than that is made. Hence, the diversity gain is ddmin/2e.
For the example, the diversity is only 1.

4. The typical error event for each symbol is when the channel is in a deep fade. If
we declare an erasure whenever the channel is in a deep fade, then the typical
error is that there are only erasures and no hard decision errors. We can decode
whenever the number of erasures is less than dmin, since there is at most one
codeword that is consistent with the erasure pattern. Hence the diversity gain is
back to dmin, same as soft decision decoding.

How do we know the channel is in deep fade? Heuristically, when |h`|2 < 1/SNR.
More rigorously, we can fix a ε > 0 and use the threshold |h`|2 < 1/SNR1−ε to
decide on an erasure. This will give us a diversity gain of dmin(1 − ε). But we
can choose ε arbitrarily close to zero so we can get close to the desired diversity
gain.

Exercise 3.12. 1. For repetition coding, probability of error is given by

P
{|h|2 < 1/SNR

}
.

Now, let the singular value of decomposition of Kh be

Kh = UΛU∗.

Now, define: h̃ = U∗h. Then |h̃| = |h| and h̃ has i.i.d. complex Gaussian entries
with variance given by the singular values of Kh. Thus, the diversity order is
given by the number non-zero singular values of Kh.
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2. We can write the time diversity channel as:

y = [h1, h2, · · · , hL]




x1 0 · · · 0
0 x2 0 0

0 0
. . . 0

0 0 0 xL


 + w,

= [h1, h2, · · · , hL]K
−1/2
h K

1/2
h




x1 0 · · · 0
0 x2 0 0

0 0
. . . 0

0 0 0 xL


 + w,

Now, [h1, h2, · · · , hL]K
−1/2
h is i.i.d. Gaussian and is similar to a standard MISO

channel. Thus the code design criterion is given by the determinant of K0.5
h (XA−

XB)(XA −XB)∗K0.5∗
h . As Kh is a fixed matrix and only contributes a constant

we can eliminate it from the code design criterion. Now, in our case XA and
XB are restricted to be diagonal which implies that the difference determinant
is the the product distance. Thus, the criterion remains unchanged. Note, that
here we have assumed Kh is full rank. Otherwise, one will have to work with the
corresponding reduced problem by ignoring some of the his.

3. As seen in the previous part, the criterion remains unchanged.

Exercise 3.13. The channel equation is y = hx + w. Let l = arg maxi |h[i]|. The
selection combiner bases its decision on the lth branch only discarding the rest so the
decision is based on y[`] = h[`]x + w[`].

Let {xi}L
i=1 be i.i.d. Exp(1) random variables, and x = maxi xi. Then the pdf of

x, f(·), for x → 0 is given by:

f(x) = L(1− e−x)L−1e−x = L[1− (1− x + o(x))]L−1[1− x + o(x)]

= LxL−1 + o(xL−1)

Noting that |h[`]|2 has the above pdf, we can use the derivation of Ex. 3.2, part 3)
replacing β with L:

lim
ρ→∞

Peρ
L =

L

4L

(2L− 1)!

L!
=

(2L− 1)!

4L(L− 1)!

We observe that this scheme still achieves a diversity gain of L but the error per-
formance degrades by the factor L/β = L!/(

∏L
i=1 gi[0]) = L! with respect to that of

optimal combining.

Exercise 3.14.
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Exercise 3.15. 1. We obtain the same diversity gain over the MISO channel (as-
suming the same statistical characterization of the fading gains) as we have op-
erationally converted the MISO channel into a parallel channel. Also, since the
determinant of a diagonal matrix is the product of its diagonal elements, the
determinant metric for the MISO channel is same as the product distance metric
of the time diversity code.

2. For the rotation code the worst case pairwise error probability is given by

16

min δij

SNR−2,

where the optimal δij is given by 16/5, which gives 5/SNR2 as the upper bound
for the rotation code.

On the other hand, for Alamouti scheme, the worst case probability of error is
given by:

16

SNR2 det(XA −XB)2
.

If u1 and u2 are the BPSK (+/−a) symbols used for the Alamouti scheme, then
the average power per time symbol is given by 2a2. The determinant is given by
u2

1 +u2
2, thus the worst case determinant is given by 4a2. Thus, after normalizing

we get worst case probability of error is given by 4/SNR2. Thus, the Alamouti
scheme is better.

For QPSK symbols, we are just using an additional degree of freedom which will
change the power used for both the schemes, but the relative difference in the
worst case error performance (a factor of 1.25) remains the same.

3. See Figure 3.1.

Exercise 3.16. 1. We have

y = Ad + w,

=
∑

i

aidi + w.

Since A is orthogonal, all the ais are orthogonal, thus for detecting di, we can
project along ai:

a∗i y = ||ai||2di + a∗i w. (3.12)

Since A is orthogonal, the noise a∗i w is independent of other noise terms (and
hence the other projections).Thus, each of the dis can be decoded separately.
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Figure 3.1: The error probability of uncoded QAM with the Alamouti scheme and
that of a permutation code over one antenna at a time for the Rayleigh fading MISO
channel with two transmit antennas: the permutation code is only about 1.5 dB worse
than the Alamouti scheme over the plotted error probability range.

2. If ||am|| = ||h||, then we can normalize the equation (3.12) and get a fading
coefficient of ||h|| which implies a full diversity gain for each symbol.

3. We have

h∗X = dtAt,

which along with orthogonality and the full diversity property of A implies that

h∗XX∗h = ||d||2||h||2IL,

h∗(XX∗ − ||d||2IL)h = 0,

for every h. Thus, XX∗ must be ||d||2IL.

Exercise 3.17.

Exercise 3.18. First, lets calculate the deep fade probability for Ricean fading which
we will use for calculating both diversity order and product distance criterion. Let

h = Aeiθ + n,
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where A is a fixed number and θ is uniform in [0, 2π] and n is CN (0, 1). Since we
are interested only in the |h|2 whose distribution does not depend on θ (because n is
circularly symmetric), without any loss of generality, we can take θ = 0. Then we can
write h as

h = A + nR + jnI ,

where n = nR + jnI and nR and nI are i.i.d. Gaussian. Then

P
{|h|2 < 1/SNR

}
= P

{
(A + nR)2 + (nI)

2 < 1/SNR
}

,

≈ P
{
(A + nR)2 < 1/SNR and (nI)

2 < 1/SNR
}

,

≈ e−A2/4

√
SNR

1√
SNR

,

≈ e−A2/4

SNR
.

1. Now, the deep fade event for a time diversity channel is when all the sub-channels
are in deep fade. The probability of which is given by

e−LA2/4

SNRL
.

Thus, the diversity order does not change for Ricean fading.

2. For a pairwise code design criterion, we want to calculate

P

{∑
i

|hi|2d2
i < 1/SNR

}
≈

∏
i

P
{|hi|2d2

i < 1/SNR
}

,

≈ e−LA2/4

SNRLd2
1d

2
2 · · · d2

L

.

Thus, we get the same product distance criterion for Ricean fading as well.

Exercise 3.19. 1. Let H be the fading matrix for the MIMO channel. Then the
channel model can be written as:

Y = HX + W.

Now, this channel model can be rewritten as a MISO channel with block-length
nrN . Let X̃ and h be

X̃ =



X 0 0

0
. . . 0

0 0 X


 ,
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h =
[

H(1, 1) · · · H(1, L) H(2, 1) · · · · · · H(nr, L)
]
.

Then the received signal can be rewritten as

y = hX̃ + w,

with y and w appropriately defined in term of Y and W. Then the probability
of pairwise error can be written as:

E


Q




√
SNRh(X̃A − X̃B)(X̃A − X̃B)∗h∗

2







2. Since we have reduced the MIMO problem with i.i.d. Rayleigh fading to a MISO
problem with i.i.d. Rayleigh fading, probability of pairwise error can be upper
bounded as:

P(XA → XB) ≤ 4Lnr

SNRLnr det
(
(X̃A − X̃B)(X̃A − X̃B)∗

) ,

=

(
4L

SNRL det ((XA −XB)(XA −XB)∗)

)nr

,

where the last step follows from the diagonal structure of X̃A and X̃B.

3. Thus, the code design criterion of maximizing the minimum determinant remains
unchanged.

Exercise 3.20. Using the same notation as in the text, and using a subindex to denote
the receive antenna (either 1 or 2) we have:




y1[1]
y1[2]∗

y2[1]
y2[2]∗


 =




h11 h21

h∗21 −h∗11

h12 h22

h∗22 −h∗12




[
u1

u2

]
+




w1[1]
w1[2]∗

w2[1]
w2[2]∗


 (3.13)

where hij is the complex channel gain from transmit antenna i to receive antenna j.
In vector notation we can rewrite (3.13) as y = Hu + w, where w ∼ CN(0, N0I4).
Noting that the columns of H (which we call hi) are orthogonal, we can project the
(slightly modified) received vector y onto the normalized columns of H to obtain the
2 sufficient statistics:

ri =
h∗i
‖hi‖y = ‖h‖ui + w̃i (3.14)

for i = 1, 2, where w̃i ∼ CN(0, N0) independent across i, and ‖h‖ = ‖h1‖ = ‖h2‖ is
the effective gain.
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Exercise 3.21. 1. For spatial multiplexing, each stream comes from a BPSK con-
stellation (+/− a). Then, to normalize the average transmit power to 1, we get
a =

√
0.5. Then, the probability of pairwise error is upper bounded as:

P(x1 → x2) ≤ 16

SNR2||x1 − x2||4
,

≤ 16

SNR2(2a)4
,

≤ 4

SNR2 .

For the Alamouti scheme, we should be using the same rate. Thus, each symbol
should come from a four point PAM (+/ − a, +/ − 3a). Then to normalize the
average transmit power we have:

1

4
2
(
2a2 + 18a2

)
= 1,

a2 = 1/10.

Now, the probability of pair-wise error is upper bounded by:

P(XA → XB) ≤
(

42

SNR2 det ((XA −XB)(XA −XB)∗)

)2

,

≤ 44

SNR4((u1a − u1b
)2 + (u2a − u2b

)2)2
,

≤ 256

SNR444a8
,

≤ 10000

SNR4 .

For SNR > 50, Alamouti scheme outperforms the spatial multiplexing scheme.

2. For general R, the only thing that changes is the value of the minimum distance
between the points. For a 2R/2 point PAM in case of spatial multiplexing, the
minimum distance is given by:

a2 =
3

2(2R − 1)
.

Then, the probability of error is upper bounded by:

P(x1 → x2) ≤ 16

SNR2(2a)4
,
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≤ 4(2R − 1)2

9SNR2 .

For the Alamouti scheme, the minimum distance is given by:

a2 =
3

2(22R − 1)
.

Thus, the probability of error is given by

P(XA → XB) ≤ 1

SNR4a8
,

=
16(22R − 1)4

81SNR4 .

The SNR threshold for general R turns out to be approximately 0.6623R which
increases exponentially in R.

Exercise 3.22. When using QAMs, the only thing that changes is the minimum
distance. For the spatial multiplexing scheme, the QAM constellation size is 2R/2.
Thus, energy for the the 2R/2 QAM is given by

2a2 2R/2 − 1

3
.

Thus, to normalize the total transmit power per unit time, we get:

a2 =
3

4(2R/2 − 1)
.

Then, the probability of error is upper bounded by:

P(x1 → x2) ≤ 1

SNR2a4
,

≤ 16(2R/2 − 1)2

9SNR2 .

For the Alamouti scheme, the minimum distance is given by:

a2 =
3

4(2R − 1)
.

Thus, the probability of error is given by

P(XA → XB) ≤ 1

SNR4a8
,

=
256(2R − 1)4

81SNR4 .
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Exercise 3.23. 1. Let t = min(m, k). Consider the repetition scheme in which we
transmit the same symbol over a different antenna at each time until either we
run out of antennas (in which case we can cycle again over the same antennas)
or the block of lenght k ends. We further repeat the transmission n times over
different blocks of length k. The antennas are used one at a time.

If X is the matrix representing the transmitted codeword, with X(i, j) denoting
the signal transmitted through antenna i at time j (1 ≤ i ≤ m, 1 ≤ j ≤ kn) the
codewords of the above repetition scheme are of the form:

X =




1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0
...

...
. . .

...
...

...
. . .

... · · · ...
...

. . .
...

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1


 x

where x is the scalar symbol we want to transmit and for simplicity we have
assumed m = k.

From the channel model, we see that the same symbol is transmitted over t · n
independent channel realizations, resulting in a diversity gain of t·n = min(m, k)·
n. We will see in the next part that this simple repetition code achieves the
maximum possible diversity gain.

2. The channel model is:
y[i]T = h[i]TX[i] + z[i]

where i, 1 ≤ i ≤ n is the block index, y[i] ∈ Ck is the received signal for block
i, h[i] ∈ Cm is the channel vector assumed constant for block i and independent
across blocks, X[i] ∈ Cmxk is the part of the codeword transmitted during the
block i, and z[i] is i.i.d. white Gaussian noise.

At the receiver the effective received codeword is:

v =
[
h[1]TX[1],h[2]TX[2], · · · ,h[n]TX[n]

]T ∈ Ckn

Conditioned on the channel realization h[1],h[2], . . . ,h[n], the pairwise error
probability depends only on ‖v1 − v2‖2 through the expression:

P(X1→X2)|h = Q




√
‖v2 − v1‖2

2N0




which can be rewritten and upper bounded as:

P(x1→x2)|h = Q




√√√√
n∑

i=1

‖h[i]T (X2[i]−X1[i])‖2

2N0
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≤
n∏

i=1

exp

[
−‖h[i]T (X2[i]−X1[i])‖2

4N0

]

By taking expectations over h[i], i = 1, 2, . . . , n and using the fact that different
blocks experience independent fadings we obtain:

P(x1→x2) ≤
n∏

i=1

E

{
exp

[
−‖h[i]T (X2[i]−X1[i])‖2

4N0

]}

Let A[i] = (X2[i] −X1[i])(X2[i] −X1[i])
∗ 2 . Since A[i] is positive semidefinite

it can be expressed as A[i] = V[i]Λ[i]V[i]∗ where V[i] is unitary and Λ[i] =
diag(λ2

1[i], . . . , λ
2
m[i]).

Then we have:

‖h[i]T (X2[i]−X1[i])‖2 = h[i]TV[i]Λ[i]V[i]∗h[i]∗T = h̃[i]TΛ[i]h̃[i]∗T

=
m∑

`=1

|h̃`[i]|2λ2
` [i]

where h̃[i]T = h[i]TV[i] has the same distribution as h[i]T because the entries of
h[i] are i.i.d. CN(0, 1) and V[i] is unitary.

Therefore letting ti = rank(A[i]) ≤ min(m, k),

P(x1→x2) ≤
n∏

i=1

m∏

`=1

E

{
exp

[
−λ2

` [i]|h`[i]|2
4N0

]}
=

n∏
i=1

m∏

`=1

1

1 + λ2
` [i]/4N0

≤
n∏

i=1

ti∏

`=1

4N0

λ2
` [i]

where we have assumed λ2
1[i] ≥ λ2

2[i] ≥ · · · ≥ λ2
ti
[i] > 0 for i = 1, 2, . . . , n.

Finally we get the pairwise code design criterion: choose the code so that A[i]
is full rank for all 1 ≤ i ≤ n and for all pairs of codewords (which assures a
maximum diversity gain equal to n ·min(m, k)) and among those codes, choose
the one that maximizes the minimum product

∏n
i=1

∏ti
`=1 λ2

` [i] =
∏n

i=1 det(A[i])
over all pairs of codewords.

Note that the repetition code proposed in a) with x = ±1 achieves full diversity
gain.

2A[i] depends on the pair of codewords considered. To make the notation simpler we avoided using
more indices to explicitly show this dependence.
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For pure time diversity we set m = 1 in which case the matrices A[i] reduce
to complex scalars with eigenvalues |A[i]| = ‖x2[i] − x1[i]‖2 and the pairwise
error probability depends on the product distance between the pair of codewords∏n

i=1 ‖x2[i]− x1[i]‖2.

For pure spatial diversity we set n = 1 in which case there is only one matrix
A for each pair of codewords. The design criterion reduces to choosing the code
such that A is full rank for all pair of codewords, and among those codes that
satisfy this, choose the one that maximizes the minimum det(A) for all pair of
codewords. This criterion is the one obtained in class.

Exercise 3.24. 1. Assume uniform scattering around the mobile. In this case the
fading correlation is independent of the direction of movement, so we can assume
that the mobile is moving in the same direction as where the second antenna
would be located. The mobile reaches the location of the second antenna after
traveling a distance d, after a time interval d/v where v is the speed of movement.
The correlation of the fading gains between these 2 locations is given by R[bd/v ∗
W c], where 1/W is the sampling interval of the discrete time model.

The fading gains are zero mean, circularly symmetric jointly complex Gaussian,
so their joint distribution is completely determined by their correlation matrix.
Letting h = [h1h2]

T be the gains at the locations of the 2 antennas at a given
time, we have:

h ∼ CN (0,Kh) (3.15)

where

Kh =

[
R[0] R[bd/v ·W c]

R[bd/v ·W c]∗ R[0]

]
(3.16)

2. The received signal at the 2 antennas is y[n] = hx[n] + w[n] where w[n] ∼
CN(0, N0I2). Conditioned on h the error probability for BPSK is Q(

√
2‖h‖2SNR)

and the average error probability is:

Pe = E
[
Q(

√
2‖h‖2SNR)

]
(3.17)

where the expectation is taken with respect to the distribution of h which was
found in part (1).

3. The problem of directly doing a high SNR approximation in the computation of
(3.17) is that the 2 components of h are correlated. However, noting that any
nonsingular transformation of y[n] is a sufficient statistic, we can do a transfor-
mation that decorrelates the entries of h.

Let Kh = UΛU∗ where U is unitary and Λ is diagonal with non-negative entries.
We can always find this decomposition because Kh is positive semidefinite. Then
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define ỹ[n] = U∗y = U∗h[n]x[n] + U∗w[n] = h̃[n]x[n] + w̃[n]. It follows that
h̃[n] ∼ CN(0,Λ) and w̃[n] ∼ CN(0, N0I2). Now we can use the error probability
expression found in b) but with uncorrelated fading gains, which in the case of
circularly symmetric complex Gaussian random variables implies independence,
and use a high SNR approximation for the Q function:

Pe = E
[
Q

(√
2‖h̃‖2SNR

)]
≈ E

[
e−‖h̃‖

2SNR
]

= E
[
e−|h̃1|2SNR

]
E

[
e−|h̃2|2SNR

]
=

1

(λ1SNR + 1)

1

(λ2SNR + 1)
(3.18)

where λ1 and λ2 are the diagonal elements of Λ (the eigenvalues of Kh). These
eigenvalues can be computed explicitly. Assuming R[0] = 1 and letting ρ =
R[bd/v · W c] we obtain λ1 = 1 + |ρ| and λ2 = 1 − |ρ|. If |ρ| > 0 then λi > 0
(i = 1, 2), and we can further approximate (3.18) for high SNR:

Pe ≈ 1

λ1λ2SNR2 =
1

(1− |ρ|2)SNR2 (3.19)

In this case we get a diversity gain of 2 and the correlation between antennas
increases the error probability by the factor 1/(1 − |ρ|2) as compared to the
uncorrelated antenna case. If on the other hand |ρ| = 1 (perfect correlation
between antennas) then λ2 = 0 and Pe ≈ 1

2SNR
. In this case the diversity gain

reduces to 1.

As we increase the antenna separation d the correlation |ρ| decreases since the
correlation function R[m] is monotonically decreasing, and the probability of
error decreases.

Exercise 3.25. We have

yt =
[

h1 h2 · · · hL

]



x[1] x[2] x[3] · · ·
0 x[1] x[2] x[3]

0 0
. . . . . .

0 0 0 x[1]


 + w

Now, we want to argue that the typical decoding error is when all the channel gains
his are small (i.e. |hi|2 < 1/SNR). Consider the following sub-optimal decoder:

• Suppose |h1|2 > 1/SNR1−ε: then using the first received symbol alone, we can
decode x[1] and then using the second symbol, after subtracting of x[1], decode
x[2] and so on.



Tse and Viswanath: Fundamentals of Wireless Communication 47

• Now suppose |h1|2 < 1/SNR but |h2|2 > 1/SNR1−ε, then we use the second
received symbol to decode x[1]. Note that since the first channel tap is small the
interference caused in the second symbol because of x[2] is also small, and hence
we can decode x[1] using the second received symbol. Similarly, we can use the
third symbol to decode x[2].

• And so on for |h1|2, |h2|2, · · · , |hm|2 < 1/SNR and |hm+1|2 > 1/SNR1−ε: we use
the m + 1th symbol to decode x[1].

For this sub-optimal decoder because of the tail behavior of the Q-function, even if
one of the channels gains is larger that 1/SNR1−ε, then the probability of error decays
exponentially in SNR. Thus, typically error happens only when all the channel gains
are small which gives us a best possible diversity order of L.

Exercise 3.26. 1. With x[0] = ±1,

det(XA −XB)(XA −XB)∗ ≥ 4L

and
P {XA → XB} ≤ SNR−L

for any pair of codewords that differ in the first component. Hence by the union
bound, the probability of error p0 on the first symbol is

p0 < 2(L−1)SNR−L ≈ (
1

2SNR
)L.

2. To get the same rate using the naive scheme, one has to use 2L- PAM. The
distance between constellation points is of the order of 2−L. Hence , the error
probability is of the order of [

4 · 2L

SNR

]L

Hence, the first scheme uses a factor of 2−(L+1) less energy than the naive scheme
for the same error probability. This coding gain is exponential in L (linear in L
in dB.)

3. Even if we are trying to calculate the error probability for a middle stream, the
determinant is still lower bounded by 4L (consider the first non-zero stream).
Then, the probability of error is upper bounded by: 2(N−1)SNR−L.

Exercise 3.27. 1. The channel matrix is

[
h0 0
h1 h0

]
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2. The ZF equalizer would only look at y[0] since there is interference on the y[1]
component. But then it makes an error whenever h0 is in deep fade. Hence, its
diversity is 1. This is less than the diversity gain of 2 for the ML approach.

Exercise 3.28. The DFT of the fading coefficients {h`}L−1
`=0 after extending the se-

quence adding N − L zeros is:

h̃n =
1√
N

L−1∑

`=0

h`e
−j2π`n/N (3.20)

for n = 0, 1, . . . , N − 1. Since {h`}L−1
`=0 are i.i.d. CN(0, 1/L) it follows that {h̃n}N−1

n=0

are circularly symmetric jointly complex Gaussian, so their statistics are completely
specified by the correlation function

R[r] = E[h̃n+rh̃
∗
n] =

1

N

L−1∑

`=0

L−1∑
m=0

E[hmh∗` ]e
−j 2π

N
[m(n+r)−nl]

=
1

NL

L−1∑

`=0

e−j 2π
N

`r =
1

NL

sin
(

πrL
N

)

sin
(

πr
N

) e−j
rπ(L−1)

N (1− δ[r]) +
1

N
δ[r] (3.21)

valid of |r| ≤ (N − 1)/2.
The coherence bandwidth is given by Wc = W/(2L) and the tone spacing is W/N , so

the coherence bandwidth expressed in number of tones is N/(2L). We expect the gains
of the carriers separated by more than the coherence bandwidth to be approximately
independent. To state this more precisely, we want to show that |R[r]| ¿ R[0] for
αN/(2L) ≤ |r| ≤ (N −1)/2, where we have assumed N to be odd for simplicity, and α
is some constant, say 10. Note that the carrier gains are periodic in n so the correlation
function is also periodic in r with period N , so we need to consider values of r only
within one period.

To prove this statement we need to upper bound |R[r]| for αN/(2L) ≤ |r| ≤
(N − 1)/2. We first note that | sin (

πrL
N

) | ≤ 1 and | sin(x)| ≥ 2|x|/π for |x| ≤ π/2,
so sin

(
πr
N

) ≥ 2|r|/N ≥ α/L in the range of interest. Therefore for αN/(2L) ≤ |r| ≤
(N − 1)/2,

|R[r]| ≤ 1

NL

L

α
=

1

αN
=

1

α
R[0] (3.22)

It follows that the correlation decays at least as α−1 for tones separated by α times
the coherence bandwidth.

Exercise 3.29. In outdoor environments the difference in the distances travelled by
different paths is of the order of a few hundred meters. For example, for a path
difference of 300m the delay spread is 1µs, so we can say in general that Td is in the
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order of a microsecond. On the other hand Tc ∼ 1/(4D) ∼ 4.5ms for a mobile speed of
60km/h and a carrier frequency of 1GHz. We see that Tc >> Td in typical scenarios.

OFDM: OFDM assumes that the channel remains constant during the transmis-
sion of an OFDM block, which requires N ¿ TcW . The overhead (both in time and
power) incurred by the use of the cyclic prefix is L/(L + N), where L = TdW is the
number of taps. To have small overhead we need L ¿ N , and this implies Td ¿ Tc.
Thus the underspread condition is required for a small overhead.

DSSS: The Rake receiver requires the channel to remain constant during the trans-
mission of the spreading sequence of length n, so n ¿ TcW . Also we require n À L
for the ISI to be negligible. These two conditions together require that Td ¿ Tc.

Channel Estimation: In both systems we need to estimate the channel. We
define Lcrit = KE/N0 as a threshold for determining the channel estimation perfor-
mance. The channel estimation error is small when L ¿ Lcrit, or equivalently when
Td ¿ KE/(WN0). Also K ¿ TcW for the channel to remain constant during the
measurement interval. Thus we need Td ¿ TcE/N0. A large ratio Tc/Td makes the
channel estimation easier by requiring a smaller SNR.

Note that in the case of OFDM we have control over the number of carriers over
which we spread our energy, so it is possible to have small estimation error even when
the condition L ¿ Lcrit is not met.

Exercise 3.30. 1. We know that the taps h`[i]’s are circularly symmetric. For
fixed time i and different values of ` the taps are independent random variables.
This follows because the different taps correspond to different signal paths which
experience independent reflections (attenuations and phase shifts). The complex
gain of the nth carrier at the ith OFDM symbol, for an OFDM block length of N
and L taps is given by:

h̃n[i] =
1√
N

L−1∑

`=0

h`[i]e
−j2π`n/N (3.23)

The multiplication by the complex exponential does not modify the distribution
of h`[i]. Also, since the L terms in the sum are independent, the multiplica-
tion by the complex exponentials does not modify the joint distribution of the
different terms, and hence does not modify the distribution of the sum. Since
the dependence on n only appears through the complex exponential, and we can
remove the complex exponentials without modifying the distribution of h̃n[i], it
follows that the {h̃n[i]}N

n=1 are identically distributed for fixed i.

2. From the text, we know that the effect of movement of paths from tap to tap is
negligible compared to the variation of the taps due to Doppler spread whenever
fc À W . Making this assumption the movement of paths between taps occurs in
a time scale much larger than the variation due to Doppler shifts, and therefore
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we have that the processes {h`[m]]}m are independent across `. Now we can use
an argument similar to that of part (1) but using vectors.

Let h̃n = [h̃n[1] . . . h̃n[r]]T , n = 1, 2, . . . , N , and h` = [h`[1]h`[2] . . . h`[r]]
T , ` =

0, 1, . . . , L− 1. We can write:

h̃n =
1√
N

L−1∑
n=0

h`e
−j2πn`/N (3.24)

We can use the result of Exercise 2.16 to conclude that the vectors h`, ` =
0, 1, . . . , L − 1 are circularly symmetric. Hence the distribution of each of the
terms in the above sum is not modified by the product with the complex exponen-
tial. Also the initial observation implies that the vectors h`, ` = 0, 1, . . . , L − 1
are independent, and therefore the sum (3.24) is not modified by the product
with the complex exponentials. Since the dependence on n is only through the
complex exponentials, and these can be removed without modifying the distri-
bution of the sum, it follows that {h̃n}N

n=1 are identically distributed. Since r is
arbitrary the result follows.

Exercise 3.31. Let r = (rT
ArT

B)T , where rA and rB are as defined in Exercise 3.6.
Define

C =
(Eb

L
+ N0

)
IL, D = N0IL, ΣA =

[
C 0
0 D

]
, ΣB =

[
D 0
0 C

]
(3.25)

Then (r | xA) ∼ CN(0,ΣA) and (r | xB) ∼ CN(0,ΣB), so noting that detΣA =
detΣB the log-likelihood ratio is given by:

L(r) = log

[
p(r | xA)

p(r | xB

]
= r∗(Σ−1

B −Σ−1
A )r = (‖rA‖2 − ‖rB‖2)

Eb

N0(Eb + LN0)
(3.26)

By comparing the log-likelihood ratio to 0 we obtain the decision rule (3.63) of the
notes.

We now compute the error probability:

Pe = Pr
[‖rA‖2 > ‖rB‖2 | xB

]
= Pr

[
‖wA‖2 > ‖

√
Ebh + wB‖2

]
(3.27)

‖wA‖2 and ‖√Ebh+wB‖2 have χ2 distributions with densities f1(x) = 1
NL

0 (L−1)!
xL−1e−x/N0

and f2(x) = 1
(N0+Eb/L)L(L−1)!

xL−1e−x/(N0+Eb/L) for x ≥ 0. Letting T = ‖wA‖2−‖√Ebh+

wB‖2 with density:

fT (t) =

∫ ∞

−∞
f1(l)f2(l − t)dl (3.28)
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we can express the error probability by:

Pe = Pr [T > 0] =

∫ ∞

0

∫ ∞

t

1

(L− 1)!2
lL−1(l − t)L−1

[N0(N0 + Eb/L)]L
e−l/N0e

− l−t
N0+Eb/L dldt

=

∫ ∞

0

∫ ∞

0

1

(L− 1)!2
(s + t)L−1sL−1

[N0(N0 + Eb/L)]L
e−(s+t)/N0e

− s
N0+Eb/L dsdt

=
1

(L− 1)!2

L−1∑

k=0

(
L− 1

k

) ∫ ∞

0

∫ ∞

0

sktL−1−ksL−1

βL
e−t/N0e

−s
�

1
N0

+ 1
N0+Eb/L

�
dsdt(3.29)

=
1

(L− 1)!2

L−1∑

k=0

(
L− 1

k

)
(L + k − 1)!

αL+k

∫ ∞

0

tL−1−k

βL
e−t/N0dt (3.30)

=
1

(L− 1)!2

L−1∑

k=0

(
L− 1

k

)
(L + k − 1)!

αL+k

(L− 1− k)!

βL
NL−k

0 (3.31)

=

(
N0

αβ

)L L−1∑

k=0

(
L + k − 1

k

)(
1

N0α

)k

where we have defined α =
(

1
N0

+ 1
N0+Eb/L

)
and β = N0(N0 + Eb/L). Here (3.29) is

obtained by the binomial expansion formula, and (3.30) and (3.31) follow by integrating
the χ2 densities over their domains. This last formula is just what is required.

Exercise 3.32. Define r
(`)
A and r

(`)
B by:

r
(`)
A = h[`]x1 + w

(`)
A , ` = 1, 2, . . . , L

r
(`)
B = h[`]x2 + w

(`)
B , ` = 1, 2, . . . , L (3.32)

where x1 = ‖xA‖ and x2 = 0 if xA is transmitted, and x1 = 0 and x2 = ‖xB‖ if xB is
transmitted.

Define r
(`)
k as in (3.152) in the text. Then the channel estimates are:

ĥ[`] =
E/N0

KE/N0 + L

1√E
(
K
√
Eh[`] + w̃(`)

)
(3.33)

= ah[`] + w̄(`) (3.34)

for ` = 0, 1, . . . , L − 1, where w̃(`) ∼ CN(0, KN0), i.i.d., a = KE/N0

KE/N0+L
and w̄(`) ∼

CN
(
0, KE/N0

(KE/N0+L)2

)
, i.i.d..

The coherent receiver projects rA and rB onto ĥ obtaining:

yA = ĥ∗ArA = a‖h‖2x1 + w̄∗hx1 + (ah + w̄)∗wA
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yB = ĥ∗BrB = a‖h‖2x2 + w̄∗hx2 + (ah + w̄)∗wB

(3.35)

where x1 = ‖xA‖ and x2 = 0 if xA is transmitted, and x1 = 0 and x2 = ‖xB‖ if xB is
transmitted. We assume ‖xA‖2 = ‖xB‖2 = Eb = E . Also wA and wB are independent
CN(0, N0IL) random vectors, independent of everything else.

The probability of error is given by:

Pe = Pr (<{yA} > <{yB} | xB)

= Pr
[
<{(ah + w̄)∗wA} > <{a‖h‖2

√
E +

√
Ew̄∗h + (ah + w̄)∗wB}

]

= Pr

[
<

{
(ah + w̄)∗

(
wA −wB√E

)}
> <{a‖h‖2 + w̄∗h}

]
(3.36)

Since it is hard to compute the above probability explicitly, we opt for computing
it approximately by simulation.
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Figure 3.2: Probability of error as a function of the number of paths for E/N0 = 10dB and K = 5.

We see in Figure 3.2 that the probability of error starts degrading for L ≈ 15.
For this particular choice of the parameters Lcr = KE/N0 = 50 so for L À Lcr the
performance of the detector is very poor.

Exercise 3.33.



Chapter 4

Solutions to Exercises

Exercise 4.1. 1. For this example C=7 and M=10. The maximal allowable subsets
are enumerated as below,

S1 = {7}
S2 = {1, 3}
S3 = {1, 4}
S4 = {1, 5}
S5 = {2, 4}
S6 = {2, 5}
S7 = {2, 6}
S8 = {3, 5}
S9 = {3, 6}

S10 = {4, 6}

2. The matrix A can be represented as,

A =




0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0




Exercise 4.2. 1. Let Ti(r) be the average traffic per channel supported in the cell i.
Then since the average traffic supported cannot exceed the actual traffic present

53
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in cell i we have,

Ti(r) ≤ Average traffic per channel in cell i

= pir.

Therefore adding over all the cells we have,

T (r) =
C∑

i=1

Ti(r),

=
C∑

i=1

pir,

=

∑C
i=1 piB

N
,

=

∑C
i=1

∑N
l=1 I {Channel l used in cell i}

N
,

where I { Channel l used in cell i} is the indicator function which is equal to 1 if

channel l is used in cell i and zero otherwise. Exchanging the order of summation,
we have,

T (r) ≤ 1

N

N∑

l=1

C∑
i=1

I{ Channel l used in cell i}

Now each channel l is assigned to a subset of one of the maximal sets (note
that it does not have to be a strict subset). Lets assume that the channel l is
assigned to a subset of the maximal set Sl which corresponds to the column j in
the adjacency matrix. Therefore,

T (r) ≤ 1

N

N∑

l=1

∑
i∈Sl

1,

=
1

N

N∑

l=1

C∑
i=1

aij,

≤ 1

N

N∑

l=1

max
j=1,...,M

C∑
i=1

aij,

≤ 1

N
N max

j=1,...,M

C∑
i=1

aij,
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= max
j=1,...,M

C∑
i=1

aij.

2. As noted in part (1) above: Let Ti(r) be the average traffic per channel supported
in the cell i. Then since the average traffic supported cannot exceed the actual
traffic present in cell i we have,

Ti(r) ≤ Average traffic per channel in cell i

= pir.

Then, summing over all the cells, we get

Ti(r) ≤
C∑

i=1

pir = r.

3. To combine the two upper bounds, simply choose a set of numbers yi ∈ [0, 1] for
i = 1, . . . , C and observe that

Ti(r) ≤ pir = yipir + (1− yi)pir.

Then, summing over all i = 1, . . . , C and applying the bound from part (1) to
the second term and bound from part (2) to the first term, we obtain

Ti(r) ≤
C∑

i=1

yipir + max
j=1,...,M

C∑
i=1

(1− yi)aij.

Exercise 4.3.

Exercise 4.4. 1.

s(t) = R
[ ∞∑

n=0

x[n]sinc

(
t− nT

T

)
exp(j2πfct)

]

= R
[ ∞∑

n=0

sinc

(
t− nT

T

)
exp(j2πfct + θn)

]

where x[n] = exp(jθn) and θn is uniformly distributed on [0, 2π] and independent
across time samples n.

Now, the average power in s(t) over a symbol period is given by

Pav = E
[

1

T

∫ T

0

|s(t)|2dt

]
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|s(t)|2 =

( ∞∑
n=0

sinc

(
t− nT

T

)
cos(2πfcT + θn)

)2

=
∞∑

n=0

∞∑
m=0

sinc

(
t− nT

T

)
cos(2πfcT + θn)sinc

(
t−mT

T

)
cos(2πfcT + θm)

By independence of θn and θm for n 6= m we have that

E[|s(t)|2] =
∞∑

n=0

sinc2

(
t− nT

T

)
E[cos2(2πfct + θn)]

=
∞∑

n=0

1

2
sinc2

(
t− nT

T

)

Observe that the series above is uniformly (and absolutely) convergent on 0 ≤ t ≤
T . To see this note that

∞∑
n=0

sinc2

(
t− nT

T

)
=

∞∑
n=0

sin2
(

t
T
− n

)
(

t
T
− n

)2

≤
∞∑

n=0

1(
t
T
− n

)2 ≤
∞∑

n=1

1

n2

Hence, we can interchange the summation and integration in computing the average
power:

Pav =
1

T

∫ T

0

{ ∞∑
n=0

1

2
sinc2

(
t− nT

T

)}
dt =

1

2T

∞∑
n=0

∫ T

0

sinc2

(
t− nT

T

)
dt

=
1

2

∞∑
n=0

∫ −n+1

u=−n

sinc2(u)du =
1

2

∫ 1

0

sinc2(u)du +
1

2

∫ ∞

0

sinc2(u)du

where u = t−nT
T

. Using Parseval’s identity, the energy in sinc(u) is the same as the
energy in its Fourier transform rect(f) so

Pav =
1

4
+

1

2

∫ 1

0

sinc2(u)du

Using MATLAB, the above quantity can be calculated to be Pav ≈ 0.476.

To estimate the peak-power as a function of T , suppose that the maximum of |s(t)|2
over [0, T ] occurs at some t0 ∈ [0, T ]. Then we can write:

max
0≤t≤T

|s(t)|2 =

( ∞∑
n=0

sin
(
π

(
t0−nT

T

))
(
π t0−nT

T

) cos(θn)

)2

,
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where we have used the fact that 2πfcT is an integer. The time t0 is a random variable
since θn is random. However, we can obtain the following simple upper bound by
expanding the above expression:

max
0≤t≤T

|s(t)|2 ≤ 1

π2

∞∑
n=2

∞∑
m=2

cos θn cos θm(
t0
T
− n

) (
t0
T
−m

)

+
∞∑

n=0,1

∞∑
m=0,1

sin
(
π

(
t0
T
− n

))

π
(

t0
T
− n

) sin
(
π

(
t0
T
−m

))

π
(

t0
T
−m

) cos θn cos θm, (4.1)

≤ 1

π2

∞∑
n=2

∞∑
m=2

cos θn cos θm

(1− n) (1−m)
(4.2)

+
∞∑

n=0,1

∞∑
m=0,1

cos θn cos θm,

In the first inequality above, the first term was obtained by upper bounding sin
(
π

(
t
T
− n

))
by 1. In the second inequality, we use the observation that sinc

(
t
T
− n

)
is maximized

at t = nT (and this is feasible since n = 0, 1) where it evaluates to 1, to obtain the
second term. The first term is upper bounded by noting that the minimum of | t

T
−n|,

for n 6= 0, 1, occurs when t = T .
Now, taking the expectation of the above upper bound over the distribution of the

data symbols and observing that θn and θm are independent for n 6= m, we get that:

E
[

max
0≤t≤T

|s(t)|2
]
≤ 1

2π2

∞∑
n=2

1

(n− 1)2
+ 1.

Hence

PP := E
[

max
0≤t≤T

|s(t)|2
]
≤ 1

2π2

π2

6
+ 1 ≈ 1.083.

The Peak-to-average-power ratio PP
Pav

is then approximately 2.77. Also, from (4.1), we
see that as T →∞, the peak-power approaches this value.

Exercise 4.5. From equation (4.31), for each k = 1, . . . , K, we get,

GPkgk,ck
≥ βk

∑

n 6=k

Pngn,ck
+ N0wβk

Pk − 1

G

∑

n 6=k

Pn
βkgn,ck

gk,ck

≥ N0wβk

gk,ck



Tse and Viswanath: Fundamentals of Wireless Communication 58

Using the notation p to denote the vector (P1, . . . , PK), we can rewrite the above K
inequalities as,

(Ik − F)p = b

where,

b = N0W

(
β1

g1,c1

, . . .
βK

gK,cK

)

and F is a K ×K matrix given by,

fij =

{
0 if i = j
gj,ci

βi

Ggi,ci
if i 6= j

Exercise 4.6. 1. To see that F is irreducible, simply take m = 2 and observe that,
for K ≥ 3, we have that Fm is a matrix with strictly positive entries. Hence, by
definition, F is irreducible.

2. The reference [106] gives an in-depth treatment of non-negative matrices.

3. The following proof is taken from [106]. First we show that (a) implies (b).
Suppose that, for a given strictly positive constraint b > 0, there exists a strictly
positive solution p > 0 to (4.32), i.e.,

(I− F)p ≥ b.

Then, b + Fp ≤ p, and hence Fp < p. Now, since F is irreducible and non-
negative it has a unique left (and right) strictly positive eigenvector xT > 0
associated with the Perron-Frobenius eigenvalue r. Pre-multiplying both sides of
the inequality p > Fp by this eigenvector, we get that

xTp > xTFp = r xTp,

and hence we conclude that r < 1.

Now, we show that (b) implies (c). Suppose that the Perron-Frobineus eigenvalue
r < 1. Hence, all other eigenvalues λi satisfy |λi| < 1 for i = 1, . . . , K − 1. Here,
for simplicity, we assume that all the eigenvalues are distinct. The arguments
are only slightly more technical if this condition is violated. We can express
F = B−1ΛB−1, for some matrix B, where Λ = diag(r, λ1, . . . , λK). Hence, we
can write

Fn = B−1diag(rn, λn
1 , . . . , λ

n
K)B,
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for n ≥ 1 integer. Thus, we see that rn → 0, and λn
i → 0, for all i, as n → ∞.

Hence, Fn → 0 elementwise. Recall the following matrix lemma: If Fn → 0
elementwise, then (I− F)−1 exists and

(I− F)−1 =
∞∑

n=0

Fn, (4.3)

where the convergence takes place elementwise. Also observe that, by irreducibil-
ity, for any pair (i, j), (Fn)ij > 0 for some n as a function of (i, j). Hence, the
right-hand side of (4.3) is a strictly positive matrix. Hence we conclude that
(I− F)−1 > 0. Hence we have established (c).

To prove that (c) implies (a), note that if (I − F)−1 > 0, then (I − F)−1b > 0,
for any b > 0. Let p = (I− F)−1b and hence p > 0. Thus, we have proved the
equivalence of the three statements (a), (b) and (c).

Exercise 4.7. 1. Given that
(
c, t(1)

)
is feasible, we know that there exists a vector

p(1) of powers such that user k’s εb/I0 meets the target level of β
(1)
k . If β

(1)
k ≥ β

(2)
k

then the same vector of powers, p(1) will satisfy the threshold requirements for
each mobile as the cell allocation remains unchanged. Hence

(
c, t(2)

)
is also

feasible.

2. The feasibility of
(
c(3), t(3)

)
is evident from the definition of β

(3)
k . Now it remains

to be shown that β
(3)
k ≥ βk. Let us consider a particular user r. Without loss of

generality, assume that p
(1)∗
r ≤ p

(2)∗
r . Then the new assignment will be c

(3)
r = c

(1)
r .

Therefore,

β(3)
r =

g
r,c

(3)
r

p
(1)∗
r

N0W +
∑
k 6=r

g
k,c

(3)
k

p
(3)∗
k

=
g

r,c
(3)
r

p
(1)∗
r

N0W +
∑

k 6=r and k∈I1

g
k,c

(3)
k

p
(3)∗
k +

∑
k 6=r and k∈I2

g
k,c

(3)
k

p
(3)∗
k

where I1 = {k|p(1)∗
k ≤ p

(2)∗
k } and I2 = {k|p(2)∗

k ≤ p
(1)∗
k }. Therefore with the

corresponding cell assignment we have,

β(3)
r =

g
r,c

(3)
r

p
(1)∗
r

N0W +
∑

k 6=r and k∈I1

g
k,c

(1)
k

p
(1)∗
k +

∑
k 6=r and k∈I2

g
k,c

(2)
k

p
(2)∗
k
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On comparing the above expression for β
(3)
r with βr we see that the numerator

remains the same in both the cases but the denominator in β
(3)
r is reduced due to

the new cell assignment. Hence it follows that β
(3)
r ≥ βr for all mobiles 1 ≤ r ≤ K

3. Given that uplink communication is feasible we know that there exists at least
one vector of powers, p(1)∗ such that the threshold requirements are made. If
this is the only solution possible then its trivially the unique coordinate-wise
minimum vector of power that allows successful communication. On the other
hand if there is another vector of powers which is feasible, say p(2)∗, then using
the cell and power allotment in part (2) we get a new power vector p(3)∗ each
coordinate of which is less than or equal to the coordinates of p(2)∗ and p(2)∗.
Now applying the algorithm in part (2) to p(3)∗ and the other feasible vectors
and proceeding in a similar fashion as above, we can conclude that there is a
coordinate-wise minimum vector of powers.

Exercise 4.8. 1. (a) From the definitions, gnl ≥ 0 for all n and l ∈ Sn, and

I
(m)
nl ≥ 0 for all n,l ∈ Sn if p

(m)
n ≥ 0 for all n. Hence

p(m+1)
n = min

l∈Sn

βnI
(m)
nl

Ggnl

≥ 0

Thus I(p) ≥ 0 for every p ≥ 0.

(b) Suppose p ≥ p̃ (component-wise dominance). Then we have that

I
(m)
nl =

∑

k 6=n

gklp
(m)
k + N0W ≥

∑

k 6=n

gklp̃
(m)
k + N0W := Ĩ

(m)
nl

Hence

I(p) = min
l∈Sn

βnI
(m)
nl

Ggnl

≥ min
l∈Sn

βnĨ
(m)
nl

Ggnl

= I(p̃).

(c) Assume α > 1

I(αp) = min
l∈Sn

βnI
(m)
nl (αp)

Ggnl

I
(m)
nl (αp) =

∑

k 6=n

gklαp
(m)
k + N0W <

∑

k 6=n

gklαp
(m)
k + αN0W = αI

(m)
nl (p)

Hence

I(αp) < αI(p).
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2. Suppose I has a fixed point p1, i.e., I(p1) = p1. Assume that there exists another
fixed point p2 ≥ 0 such that p1 6= p2. Then, without loss of generality, we can
assume that there exists at least one j ∈ {1, . . . , K} such that p1(j) < p2(j).

Now, observe that α := maxj∈{1,...,K}
p2(j)
p1(j)

> 1. Let i = arg maxj∈{1,...,K}
p2(j)
p1(j)

and

so p2(i) = αp1(i). Consequently αp1 ≥ p2. Hence, we have that

αp1 = αI(p1) > I(αp1) ≥ I(p2) = p2.

But, by definition, α is such that αp1(i) = p2(i). Hence we have contradiction
and it must be that p1 = p2.

3. Suppose p∗ is the unique fixed point of I. Since p∗(j) > 0 for all j, given any
initial p, we can find α ≥ 1 such that αp∗ ≥ p. Now, from question part (1),
(c), I(αp∗) < αI(p∗) = αp∗. Now take z to be the all-zero vector. It is clear
that z ≤ p ≤ p∗. By part (b) of question 1, we know that I(n)(z) ≤ I(n)(p) ≤
I(n)(αp∗).

Claim 1: I(n)(αp∗) → p∗ as n →∞.

Proof: From above we have I(αp∗) < αp∗. Assume that I(n)(αp∗) < I(n−1)(αp∗).
Then by part (b) of question 1, we have that I(I(n)(αp∗)) ≤ I(I(n−1)(αp∗)), i.e.,
I(n+1)(αp∗) ≤ I(n)(αp∗). Hence I(n)(αp∗) is a decreasing sequence (component-
wise). It is also bounded away from zero so it must converge to the unique fixed
point p∗.

Claim 2: I(n)(z) → p∗ as n →∞.

Proof: Clearly z < p∗ and I(z) ≥ z. Suppose that z ≤ I(z) ≤ . . . I(n)(z) ≤ p∗.
Then by part (b) of question 1, we have p∗ = I(p∗) ≥ I(I(n)(z)) ≥ I(I(n−1)(z)) =
I(n)(z). In other words we have shown that p∗ ≥ I(n+1)(z) ≥ z. Therefore,
the sequence I(n)(z) is nondecreasing and bounded above by p∗ hence it must
converge to p∗.

Combining Claim 1 and Claim 2 together, we get that I(n)(p) → p∗ for any
initial vector p.

4. Using the identical argument as in the proof of Claim 1, we observe that I(n)(p)
is a decreasing sequence that converges to the fixed point p∗ for any feasible
vector p. Hence it follows that p ≥ p∗ for any feasible vector p. In other words,
the fixed point p∗ is the solution to p ≥ I(p) corresponding to the minimum
total transmit power.

Exercise 4.9.
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Exercise 4.10. 1. We assume that there is only 1 base station. The set of feasible
power vectors is given by:

A =

{
(P1, P2, . . . , PK) :

GPkgk,1∑
j 6=k Pjgj,1 + N0W

≥ β ∧ 0 ≤ Pk ≤ P̂ , k = 1, 2, . . . , K

}

2. For K=2 we need:

0 ≤ P1 ≤ P̂ , 0 ≤ P2 ≤ P̂ ,
GP1g1,1

P2g2,1 + N0W
≥ β ⇒ G

β

g1,1

g2,1

P1 − β

G

N0W

g2,1

≤ P2

GP2g2,1

P1g1,1 + N0W
≥ β ⇒ β

G

g1,1

g2,1

P1 − N0W

g2,1

≥ P2

For example let N0W
g2,1

= 1, g1,1 = g2,1, P̂ = 5, for G
β

= 2 the set A of feasible

power vectors is shown in figure 4.1.

For this example the set of feasible power vectors is non-empty, with componen-
twise minimum solution (P ∗

1 , P ∗
2 ) = (1, 1). Clearly if P̂ < 1, A = ∅. For a more

interesting example of an outage situation, let G
β

= 1 with the above choices for
the other parameters. As shown in Figure 4.2 the feasible set of power vectors is
empty.

3. For the parameters g1,1 = g2,1 = 1, G = 2, N0W = 1 and β = 1 we have that the
component-wise minimum feasible power vector is (P ∗

1 , P ∗
2 ) = (1, 1). We plot in

Figure 4.3 the evolution of P1 and P2 over time when the power control algorithm
is run with a probability of error of 10−3 in the power control bit for each user.

4. We first redo part (1). Let K be the number of users, M the number of base
stations, and gk,m the gain from user k to base station m. Then the set A of
feasible power vectors to support a given Eb/N0 = β requirement under soft
handoff in the uplink can be expressed as:

A = {(P1, P2, . . . , PK) :
GPkgk,m∑N

j=1
j 6=k

Pjgj,m + N0W
≥ β, for some m, 1 ≤ m ≤ M,(4.4)

0 ≤ Pk ≤ P̂ , k = 1, 2, . . . , K}
which can be specialized for the case of 2 base stations by choosing M = 2.

We now redo part (2).

Let A =
{

(P1, P2) : P2 ≤ 1
g2,1

(
GP1g1,1

β
−N0W

)}
, B =

{
(P1, P2) : P2 ≤ 1

g2,2

(
GP1g1,2

β
−N0W

)}
,

C =
{

(P1, P2) : P2 ≥ β
Gg2,1

(P1g1,1 + N0W )
}

, D =
{

(P1, P2) : P2 ≥ β
Gg2,2

(P1g1,2 + N0W )
}

,
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−1

mn(P ∗
1 , P ∗

2 ) = (1, 1)

mnP2

mnP1

mnP2 = 2P1 − 1

mnP2 = 1
2
P1 + 1

2
mnA

Figure 4.1: Set A of feasible power vectors for M=1 and K=2. The figure corresponds
to N0W

g2,1
= 1, g1,1 = g2,1, P̂ = 5, and G

β
= 2. Here (P ∗

1 , P ∗
2 ) is the componentwise

minimum power vector in the feasible set.
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mnA = ∅
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Figure 4.2: Empty set A of feasible power vectors for M=1 and K=2. The figure
corresponds to N0W

g2,1
= 1, g1,1 = g2,1, P̂ = 5, and G

β
= 1.
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Figure 4.3: Trajectory of power updates over time for a power control bit error probability of 10−3.

E =
{

(P1, P2) : 0 ≤ P1 ≤ P̂ , 0 ≤ P2 ≤ P̂
}

. Then for K = M = 2 we can express

A asA = ((A∪B)∩(C∪D))∩E. For the case of G/β = 2, g1,1 = g1,2 = g2,1 = 1/4,

g2,2 = 1/2, P̂ = 5, and N0W = 1, the corresponding set of feasible power vectors
is shown in Figure 4.4. We see that there is a componentwise minimum power
vector (P1, P2)

∗ = (20/7, 12/7) in the feasible set.

Also if G/β < min
(√

g1,1g2,2

g1,2g2,1
,
√

g1,2g2,1

g1,1g2,2

)
then A = ∅.

5. With the parameter choices of part (4) we plot in Figure 4.5 the evolution of P1

and P2 over time when the power control algorithm is run with a probability of
error of 10−3 in the power control bit for each user.

6. This is not true. What determines the choice of base station is the signal to
interference plus noise ratio (SINR), and not the channel gain. If the channel
gain from a given user to a particular base station is large but that base station
is supporting many users, then the SINR may be small, even smaller than β, in
which case the given base station cannot be chosen. On the other hand there
can be another base station for which the channel gain is not so large, but if the
interference seen by this user in the base station is small, then the SINR can be
large, possibly exceeding β, in which case the base station can be chosen to serve
the user.

Exercise 4.11. 4. We analyze the CDMA system first. The cell model for this
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Figure 4.4: Set A of feasible power vectors for M = K = 2. The figure corresponds to G/β = 2,
g1,1 = g1,2 = g2,1 = 1/4, g2,2 = 1/2, and N0W = 1. Here (P1, P2)∗ is the componentwise minimum
power vector in the feasible set.

problem is shown in figure 4.6.
Here it is assume that users are perfectly power controlled in their respective cells.

Therefore the received power at each base station from the users in the cell is equal to
some constant Q, independent of the user. Neglecting noise we have

GQ

(k − 1)Q +
∑K

k=1 Q(
r2,k

r1,k
)α
≥ β (4.5)

for any user of cell ]1 that it is not in the outage. Then

G ≥ β

[
k − 1 +

K∑

k=1

(
r2,k

r1,k

)α

]

⇒
K∑

k=1

(
r2,k

r1,k

)α ≤ G

β
− (K − 1)

If this condition is not met there is an outage. Then

Pout = Pr{
K∑

k=1

(
r2,k

r1,k

)α >
G

β
− (K − 1)}
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Figure 4.5: Trajectory of power updates over time for 2 base stations, for a power control bit error
probability of 10−3.

Let X =
∑K

k=1(
r2,k

r1,k
)α. For large K we approximate X by a Gaussian random variable

with mean µ = E(X) and standard deviation σ =
√

var(X). We first note that

{ r2,k

r1,k
}k are iid. Then µ = KE

[
(

r2,k

r1,k
)α

]
and σ =

√
Kvar

(
(

r2,k

r1,k
)α

)
. It is not possible

to obtain a closed form expression for µ and σ for general α. We will approximate r1,1

by E(r1,1) = d then

µ ≈ KE

[
(
r2,k

r1,k

)α

]
=

2K

dα

∫ d
2

0

1

d
rα
2,1dr2.1

=
2K

dα

1

d

(
d

2

)α+1
1

α + 1
=

K

2α

1

α + 1

and

σ2 ≈ K

d2α

[
2

∫ d
2

0

1

d
r2α
2,1 dr2,1 −

(
d

2

)2α
1

(α + 1)2

]

=
K

d2α

[
2
1

d

(
d

2

)2α+1
1

2α + 1
−

(
d

2

)2α
1

(α + 1)2

]

=
K

22α

[
1

2α + 1
− 1

(α + 1)2

]
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Figure 4.6: Cell model for Exercise 4.11

Then

Pout ≈ Q

{[
G

β
− (K − 1)− µ

]
1

σ

}

⇒
[
G

β
− (K − 1)− µ

]
1

σ
≈ Q−1(Pout)

Replacing G = W
R

, µ and σ we have

[
W

Rβ
− (K − 1)−K

2−α

α + 1

]
2α

√
K

[
1

2α + 1
− 1

(α + 1)2

]− 1
2

= Q−1(Pout)

or
W

RK
=

[
Q−1(Ppout)

1√
K2α

[
1

2α + 1
− 1

(α + 1)2

] 1
2

+
2−α

α + 1
+ 1− 1

K

]
β

Therefore the spectral efficiency f = RK
W

is given by

f =
RK

W
=

1

β

[
Q−1(Ppout)

1√
K2α

[
1

2α + 1
− 1

(α + 1)2

] 1
2

+
2−α

α + 1
+ 1− 1

K

]−1

(4.6)

Now as K and W go to ∞ we obtain

lim
K,W→∞

=
1

β

[
1 +

1

2α(α + 1)

]−1

Also as α increases, f increases to 1
β
.
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Figure 4.7: Spectral efficiency as a function of the number of users in each cell for Q−1(Pout) = 2,
α = 2 and β = 7dB.

For the case that α = 2 and β = 7dB the resulting spectral efficiency is plotted in
the figure 4.7 and we have

lim
K,W→∞

f(α = 2, β = 7dB) = 0.1833

1. Now consider the orthogonal case. Since the users are orthogonal within the
cell there is no intra-cell interference. Also we will assume that the users are power
controlled at each base station so that the received power from all the users is the same.
The out-of-cell interference is averaged over many OFDM symbols, so that each base
station observes an interference that is the average over all the users of the neighboring
cell. We will reuse most of the derivation of part (4). We have

GQ
∑K

k=1 Q
(

r2,k

r1,k

)α ≥ β

for any user of cell 1 that is not in outage, where G is the processing gain, Q is the
received power of a user to its base station, and ri,k is the distance of user k to base
station i. Note that this is exactly the same expression found in part (4) without the
term (K-1)Q in the denominator.

Defining µ and σ as before, we can reuse all the expressions found in part (4)
eliminating the term (K − 1). We obtain

Pout ≈
{[

G

β
− µ

]
1

σ

}
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and

f =
RK

W
=

1

β

[
Q−1(Pout)

2α
√

K

√
1

2α + 1
− 1

(1 + α)2
+

1

2α(α + 1)

]−1

as the spectral efficiency.
2. As K and W go to ∞ we obtain:

lim
K,W→∞

f =
2α(α + 1)

β

3. We see in Figure 4.8 that the spectral efficiency increases as the bandwidth and
the number of users grow.
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Figure 4.8: Spectral efficiency as a function of the number of users in each cell for Q−1(Pout) = 2,
α = 2 and β = 7dB.

4. From the previous point we observe that removing the intra-cell interference
made the spectral efficiency grow with the bandwidth and the number of users. The
intra-cell interference contributes with a term (K−1)Q to the total interference. When
this interference is normalized by dividing it by the number of users we get (1−1/K)Q
which increases with K. We see that the intra-cell interference per user increases with
K. For example for K = 1 there is no other user in the cell, and hence there is no
intra-cell interference in the CDMA case. As K increases, the normalized intra-cell
interference also increases reducing the spectral efficiency. This effect turns out to be
more important than the interference averaging, dominating the dependence of the
spectral efficiency with K and W as we observed in the figure in part (4).
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Exercise 4.12. 1. The outage probability for user 1 is given by:

Pout = Pr

[
Gε1P∑N

j=2 εjP + N0W
< β

]
= Pr

[
ε1∑N

j=2 εj + N0W/P
< β/G

]
(4.7)

Since we don’t have any power constraint we can let P → ∞. Also for large N
we can use the CLT to approximate

∑N
j=2 εj ∼ N((N − 1)µ̃, (N − 1)σ̃2), where

µ̃ = E(εj) and σ̃2 = V ar(εj).

The pdf of ε can be obtained by the transformation ε = eX where X ∼ N(µ, σ2).
It is given by:

fε(ε) =
1√

2πσε
e−

1
2(

log ε−µ
σ )

2

(4.8)

for ε > 0. Using this density we can compute µ̃ = eµ+σ2/2 and σ̃2 = e2µ+σ2
(
eσ2 − 1

)
.

Therefore we can write:

Pout = E

{
P

[
ε1∑N
j=2 εj

< β/G

∣∣∣∣∣ ε1

]}

=

∫ ∞

0

Q

(
εG/β − (N − 1)µ̃√

N − 1σ̃

)
1√

2πσε
e−

1
2(

log ε−µ
σ )

2

dε (4.9)

We would like to compute the spectral efficiency η = NR/W = N/G as a function
of the number of users N for a given outage probability Pout. For this we need
to solve numerically the implicit function G(N) defined by equation (4.9).

2. We show in Figure 4.9 a plot of the spectral efficiency as a function of the
number of users, for the parameter choices β = 7dB, µ = 0, σ2 = 0.053019 =
1/(10 log10 e)2 (which corresponds to a standard deviation of 1dB in ε). As N
increases the spectral efficiency always decreases. There is an averaging effect
but it is masked by the fact that (N − 1)/N increases with N .

3. In the other examples considered in the text the only randomness in the SINR
was due to the interference, which was averaged out as N increased, converging
to a constant. However in this problem the power control error for the given user
remains random even for large N . There is an averaging of the interference, but
this is not enough to make the SINR converge to a constant. This randomness
in the SINR results in a degraded spectral efficiency. As a basis for comparison
we have plotted in Figure 4.9 the spectral efficiency that results when the user of
interest has perfect power control, but the interference has the same power control
error ε considered before. In this case we see how the interference averaging effect
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Figure 4.9: Spectral efficiency as a function of the number of users.

eventually takes over resulting in a larger spectral efficiency for large N . By
comparing the two curves we see that imperfect power control produces a large
performance degradation.

Exercise 4.13. 1. Let hi[l] be the channel’s lth tap from base station i (i = A,B)
to the user of interest. Assume for simplicity that both channels have L taps,
and assume that the received signals from the two base station are chip and
symbol synchronous. Assuming no ISI and using the notation of section 3.4.2 of
the notes we can write the received signal vector as:

y =
L−1∑

l=0

hA[l]x
(l)
1,A +

M∑
m=2

L−1∑

l=0

hA[l]x
(l)
m,A +

L−1∑

l=0

hB[l]x
(l)
1,B +

N∑
m=2

L−1∑

l=0

hB[l]x
(l)
m,B + w

(4.10)
where M and N are the number of users in cells A and B respectively. Since
the user is in soft handoff we can assume that the signals received from the two
base stations have comparable power, and we can use a Gaussian approximation
for the interference plus noise term. Letting w̃ ∼ CN(0, (

∑M
m=2 ‖hA‖2Ec

A +∑N
m=2 ‖hB‖2Ec

B + N0)In+L−1), where Ec
i is the chip energy of the transmitted

signal from base station i, and n is the symbol length. Then we can write:

y =
L−1∑

l=0

hA[l]x
(l)
1,A +

L−1∑

l=0

hB[l]x
(l)
1,B + w̃ (4.11)
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The received signal without the noise lies in the span of the vectors

{
u

(l)
A

‖uA‖ ,
u

(l)
B

‖uB‖

}L−1

l=1

.

Assuming that the spreading sequences are orthogonal, and that their shifts are
also orthogonal, we have that the previous set of vectors is an orthonormal set,
and we can project onto these vectors to obtain 2L sufficient statistics:

r
(l)
i = hi[l]‖ui‖x + w

(l)
i (4.12)

where i = A,B and l = 0, 1, . . . , L−1. We can further project onto the direction
of

[(‖uA‖hA[0])(‖uA‖hA[1]) · · · (‖uA‖hA[L−1])(‖uB‖hB[0])(‖uB‖hB[1]) · · · (‖uB‖hB[L−
1])]T to obtain the sufficient statistic:

r =
√

(‖hA‖2‖uA‖2 + ‖hB‖2‖uB‖2)x + w (4.13)

where w ∼ CN(0, (
∑M

m=2 ‖hA‖2Ec
A +

∑N
m=2 ‖hB‖2Ec

B + N0)). Letting ‖ui‖2 =
GEc

i , i = A,B and assuming x ∈ {−1, 1} we can write the error probability as:

Pe = Q

(√
2G(‖hA‖2Ec

A + ‖hB‖2Ec
B)∑M

m=2 ‖hA‖2Ec
A +

∑N
m=2 ‖hB‖2Ec

B + N0

)
(4.14)

2. Let N be the total number of base stations, K the total number of users, S the
set of all base stations, Sk the active set of user k (i.e. the set of base stations
with which user k is in soft handoff), Ai the set of users that have base station i
in their active sets, gk,i the channel gain from base station i to user k, and Pk,i

the power of the signal transmitted to user k from base station i. Then the SINR
seen by user k is given by:

SINRk =
G

∑
i∈Sk

gk,iPk,i∑
i∈Sk

gk,i

∑
j∈Ai,j 6=k Pj,i +

∑
i∈S\Sk

gk,i

∑
j∈Ai

Pj,i + N0W
(4.15)

Assuming that there is a minimum SINR requirement β for reliable communica-
tion, the set of feasible power vectors is given by:

A = {(P1,1P1,2 · · ·P1,NP2,1 · · ·P2,N · · ·PK,1 · · ·PK,N) : SINRk ≥ β, Pk,i = 0 if i /∈ Sk, k = 1, 2, . . . K}
(4.16)

The power control problem consists of finding a power vector in A.

Exercise 4.14. 1. The 2 latin squares have entries Ra
i,j = (ai + j) mod N and

Rb
i,j = (bi + j) mod N , where N is prime and a 6= b.

Consider the pair of ordered pairs:

(ka, kb)i,j = ((ai + j) mod N, (bi + j) mod N)
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(ka, kb)l,m = ((al + m) mod N, (bl + m) mod N)

We want to show (i, j) 6= (l, m) ⇒ (ka, kb)i,j 6= (ka, kb)l,m, that is, any 2 ordered
pairs must be different. Let (d1, d2) = (ka, kb)i,j − (ka, kb)l,m. We have to show
that (d1, d2) 6= (0, 0).

(d1, d2) = ([a(i− l) + (j −m)] mod N, [b(i− l) + (j −m)] mod N) (4.17)

If i = l, then we must have j 6= m and (d1, d2) = ((j −m) mod N, (j −m) mod N).
Since −(N − 1) ≤ (j −m) ≤ (N − 1) and (j −m) 6= 0 it follows that (j −m)
mod N 6= 0, therefore (d1, d2) 6= (0, 0).

If on the other hand i 6= l then d1 − d2 = (a − b)(i − l) mod N . d1 − d2 = 0
requires that N divides (a− b) or (i− l) (note that here we use the fact that N
is prime). But both are in [−(N − 1), 1] ∪ [1, (N − 1)] so they are not divisible
by N . It follows that d1 − d2 6= 0 and hence (d1, d2) 6= (0, 0).

2. Adapted from J. van Lint, R. Wilson, ”A course in Combinatorics,” Second Ed.,
Cambridge University Press, 2001.

Consider a set of M mutually orthogonal latin squares. The entries in each
latin square correspond to virtual channel numbers. We are free to rename the
channels so that the first row of each latin square is (1, 2, . . . , N). Then the
pairs (kl, km)1,j for any pair of matrices (l, m) (l 6= m, l, m ∈ [1, . . . ,M ]) are
(j, j). Now consider the (2, 1) entry of each latin square. It can’t be 1 because
1 already appears in the position (1, 1). Also these elements must be different
in all the matrices, because the pairs (kl, km) with repeated entries have already
appeared. Thus we have M ≤ (N − 1). Note that N need not be prime for this
result to hold.

Exercise 4.15. 1. Let M = N/n.

P̄ =
1

T

∫ T

0

s(t)2dt =
1

T

∫ T

0

1

2N

[
n−1∑
i=0

(
D[i]ej2π(fc+iM/T )t + D[i]∗e−j2π(fc+iM/T )t

)
]2

dt

=
1

2N

n−1∑
i=0

n−1∑

k=0

1

T

{∫ T

0

D[i]D[k]ej2π(2fc+(i+k)M/T )tdt +

∫ T

0

D[i]D[k]∗ej2π((i−k)M/T )tdt

+

∫ T

0

D[i]∗D[k]ej2π((−i+k)M/T )tdt +

∫ T

0

D[i]∗D[k]∗e−j2π(2fc+(i+k)M/T )tdt

}
(4.18)

The magnitudes of the first and last integrals of each term can be shown to be
upper bounded by T |D[i]|2(2πζ)−1, so when divided by T they are negligible.
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The other 2 integrals evaluate to T |D[i]|2δi,k. Therefore we can write:

P̄ =
1

2N

n−1∑
i=0

|D[i]|2 (4.19)

When the symbols are chosen from an equal energy constellation with |D[i]| = 1
we get Pav = n

2N
.

2.

d[i] =
1√
N

n−1∑

k=0

D[kN/n]ej 2π
N

ikN
n (4.20)

The symbols D[i] are chosen uniformly on the unit circle, so their distribution
is invariant to rotations in the complex plane. Therefore their distribution is
circularly symmetric, and so is the distribution of their sum. Also the rotations
induced by the complex exponential in the IDFT do not change the resulting
distribution, so d[0], . . . , d[N − 1] are identically distributed.

As N →∞ with the ratio n/N = α kept constant, we can apply a version of the
CLT for circularly symmetric random variables to conclude that the distribution
of d[i] converges to a circularly symmetric complex Gaussian distribution. Since
E[|D[k]|2] = 1 we get that d[i] ∼ CN(0, α) for large N .

c) Since |d[0]|2/α ∼ Exp(1) and Pav/α = 1/2 we can write

Pr

[ |d[0]|2
Pav

< θ(η)

]
= Pr

[ |d[0]|2
α

< θ(η)Pav/α

]
= 1− e−θ(η)/2 = 1− η(4.21)

Thus θ(η) = −2 loge η. For the special case of η = 0.05 we obtain θ(0.05) = 5.99.

Exercise 4.16.



Chapter 5

Solutions to Exercises

Exercise 5.1. See handwritten solutions in file s04.h6sol 1.pdf (ex 3, part b))

Exercise 5.2. The received SNR at the base-station of the user at the edge of the cell
(at distance d from it) is given by:

SNR =
P

N0Wdα
,

where it is assumed that the bandwidth allocated to the user is W Hz, α > 2 is the
path-loss exponent and N0 is noise variance. Using a reuse ratio of 0 < ρ ≤ 1, the
closest base-station reusing the same frequency as the given base-station is at distance
2d/ρ. Since we are dealing with a linear arrangement, there are only 2 such base-
stations (the interference due to the others are significantly smaller and are going to
be ignored). Thus, the received interference is given by

I = 2P
(ρ

d

)α

,

hence the received SINR is:

SINR =
P
dα

ρN0W + 2 P

( 2d
ρ )

α

=
SNR

ρ + 2
(

ρ
2

)α
SNR

,

and so fρ := 2
(

ρ
2

)α
.

76
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Solution 5.2:
First, we observe the following simple method of evaluating the distance between

mnl = 3

mnθ = 5π/6 mnm = 1

(centers of) any two cells in a hexagonal packing of the plane:

r(l, m, θ) = 2d

√
3m2 + l2 + 2

√
3lmcosθ,

where 2d is the distance between the centers of two adjecent cells and the triple (l, m, θ)
uniquely specifies the relative positions of the two cells w.r.t. one another in the
following way (also see the diagram above): To get from one cell to another, we go m
steps along the ”offset axis” (the one that runs through the vertices of the cells) for
a distance of 2

√
3dm, and l steps along the ”principal axes” (the one that bisects the

sides of the cell) for a distance of 2ld. The angle between the two axes is given by θ.
In the diagrams below, we illustrate optimal reuse patterns for ρ = 1

3
, 1

4
, 1

7
, 1

9
. For

these reuse ratios we can see that identical distances separate the cells using the same
frequency band, for all frequency bands. This is not true in general and only holds for
specific reuse ratios (we only show up to ρ = 1

9
, but there are other ones like ρ = 1

16
,

etc. For instance:

1. For ρ = 1
3
, there are 6 nearest cells at distance 2d

√
3 interfering. Hence, the

received SINR at the base-station due to the user at the edge of the cell (at
distance d, i.e., on the side of the cell not on the vertex) is given by

SINR =
P
2α

N0W
3

+ 6 P
(2d

√
3)α

=
SNR

ρ + 6
(2
√

3)α SNR
,

hence, we can write fρ = 6
(2
√

3)α ,
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√
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4. For ρ = 1
9
, there are 6 cells at distance 2d

√
9 and so fρ = 6

(2
√

9)α .
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Thus we see that, for these reuse ratios, the approximation fρ = 6

(2
q

1
ρ
)α

is a good one.

In the plot below, we show the high-SNR approximation for the rate:

ρW log2(1 +
1

fp

),

for α = 2, 4, 6 in the hexagonal packing of the plane. Note that the universal reuse
ratio ρ = 1 yields the largest rate.

Exercise 5.3.

Exercise 5.4.

Exercise 5.5. In the figure below, we see that the optimal reuse ratio is ρ = 1/2 when
studying the high-SNR approximation for the per-user rate in a linear network:

ρW log2(1 +
1

fp

),

where fp = 2(ρ
2
)α. The plots were generated using α = 2, 4, 6 as sample values.

Exercise 5.6. 1. This strategy achieves a rate:

R = α log

(
1 +

P1

N0

)
+ (1− α) log

(
1 +

P2

N0

)
(5.1)
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where αP1 + (1 − α)P2 = P . By Jensen’s inequality and the concavity of log(·)
we have:

α log

(
1 +

P1

N0

)
+ (1− α) log

(
1 +

P2

N0

)

≤ log

(
1 +

αP1 + (1− α)P2

N0

)
= log

(
1 +

P

N0

)
= CAWGN

If P1 6= P2 we have a strict inequality and it follows that this strategy is subop-
timal.

2. As in a) assume we use a strategy of transmitting with power constraint P1 a
fraction α of the time, and with power constraint P2 the remaining time. Also let
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P = αP1 +(1−α)P2 be the total power constraint. Since this is just a particular
strategy that satisfies the power constraint, the achievable rate cannot exceed
the capacity of the channel, which is the supremum of all achievable rates for
strategies that satisfy the power constraint. Thus we can write:

R = αC(P1) + (1− α)C(P2) ≤ C(P ) = C(αP1 + (1− α)P2) (5.2)

valid for any P1 and P2 and α ∈ [0, 1]. Therefore C(P ) is a concave function of
P .

Exercise 5.7. For QAM with 2k points, the average error probability can be expressed
as (for some constant α):

Pe = αQ

(√
2a2

N0

)
, (5.3)

where the distance between two consecutive points on each of the axes is 2a and N0 is
the background noise. This expression is obtained by applying the union bound to the
pairwise errors between the nearest neighbors to some central point. However, from
Exercise 3.4, we know that the average SNR per symbol is given by SNR = Eav

N0
, where

Eav =
2a2

3
(2k − 1). (5.4)

Hence, we have that

Pe = αQ

(√
3 SNR

2k − 1

)
≈ α exp

(
− 3 SNR

2(2k − 1)

)
, (5.5)

where the last inequality holds by the high-SNR approximation of Q(SNR) ≈ exp(−SNR2/2).
Thus we have that the number of bits

k ≈ log2

(
3 SNR

2 ln(α/Pe)

)
= log2 SNR + constant, (5.6)

and the rate of QAM has the optimal order of growth with SNR on the AWGN channel.

Exercise 5.8.

Exercise 5.9.

Exercise 5.10. First, we compute the high-SNR approximation of the mean of log(1+
|h|2 SNR):

µ := E[log(1 + |h|2SNR)] =

∫ ∞

0

log(1 + xSNR)f(x)dx,
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=

∫ 1
SNR

0

log(1 + xSNR)f(x)dx +

∫ ∞

1
SNR

log(1 + xSNR)f(x)dx,

≈ P
(
|h|2 ≤ 1

SNR

)
+ log SNR

∫ ∞

1
SNR

f(x)dx +

∫ ∞

1
SNR

f(x) log xdx.

Where in the last line we have used the high-SNR approximation log(1 + SNR) ≈
log SNR. Observe that, in the high-SNR regime, P

(|h|2 ≤ 1
SNR

) ≈ 1
SNR

and the last
two terms are approximately log SNR and E[log |h|2], respectively. So we have that

µ ≈ 1

SNR
+ log SNR + E[log |h|2] ≈ log SNR + E[log |h|2].

Similarly we can define σ2 := E[log2(1 + |h|2SNR)] and use the same method to obtain
the following high-SNR approximation:

σ2 ≈ log2 SNR + log SNRE[log |h|2] + E[log2 |h|2].
Finally, the standard deviation is defined as STD :=

√
σ2 − µ2 and its high-SNR

approximation is computed using the above expressions:

STD ≈
√
E[log2 |h|2]− E[log |h|2]2,

which is a constant as a function of SNR. Hence STD
µ

goes to zero as SNR increases.

On the other hand, in the low-SNR regime we use the approximation log(1+SNR) ≈
SNR log2 e to get

µ ≈ SNRE[|h|2] log2 e,

σ2 ≈ SNR2E[|h|4] log2
2 e,

Hence, at low-SNR, we have that,

STD

µ
≈

√
E[|h|4]− E[|h|2]2

E[|h|2] = constant.

This makes sense because at high-SNR, the capacity formula is degree-of-freedom lim-
ited and changes in |h|2 have a diminishing marginal effect, whereas in the low-SNR
regime, the capacity formula is very sensitive to changes in the overall received SNR
and hence even the smallest changes in |h|2 affect the performance.

Exercise 5.11. The received SNR is given by ‖h†x‖2
N0

. Hence we need to maximize this

quantity over all x ∈ CL such that ‖x‖2 ≤ P for fixed N0 and some constant P > 0.
By the Cauchy-Schwarz inequality, we have that

‖h†x‖2 ≤ ‖h†‖2‖x‖2,
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with equality if and only if x = αh for some constant scalar α. Hence, the optimal
choice is

x =
Ph

‖h‖2
,

which is exactly the transmit beam-forming strategy.

Exercise 5.12.

Exercise 5.13. 1. Let 1 = [1, 1, · · · , 1]T ∈ RL. Then the channel equation is:

y = 1x + z (5.7)

where z ∼ CN(0, N0IL) and x must satisfy the power constraint E[x] ≤ P .

We note that we can project the received signal onto the direction of 1 obtaining
the sufficient statistic:

r =
1∗√
L

y =
√

Lx + z̃ (5.8)

where z̃ ∼ CN(0, N0). Defining x̃ =
√

Lx we see that we have an AWGN channel

with power constraint LP and noise variance N0. Therefore C = log
(
1 + LP

N0

)
.

We see that there is a power gain of L with respect to the single receive antenna
system.

2. Let h = [h1, h2, · · · , hL]T ∈ CL. Then the channel equation is:

y = hx + z (5.9)

where z ∼ CN(0, N0IL) , h is known at the receiver and x must satisfy the power
constraint E[x] ≤ P .

Since the receiver knows the channel, it can project the received signal onto the
direction of h obtaining the sufficient statistic:

r =
h∗

‖h‖y = ‖h‖x + z̃ (5.10)

where z̃ ∼ CN(0, N0). Then the problem reduces to computing the capacity of
a scalar fading channel, with fading coefficient given by ‖h‖. It follows that:

C = E

[
log

(
1 +

‖h‖2P

N0

)]
= E

[
log

(
1 +

LP

N0

‖h‖2

L

)]
(5.11)

In contrast, the single receive antenna system has a capacity C = E
[
log

(
1 + |h|2P

N0

)]
.

The capacity is increased by having multiple receive antennas for two reasons:
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first there is a power gain L, and second ‖h‖2
L

has the same mean but less vari-

ance than |h|2, and we get a diversity gain. Note that V ar
[
‖h‖2

L

]
= 1/L whereas

V ar [|h|2] = 1.

As L →∞, ‖h‖
2

L
→a.s. 1, so it follows that C ≈ log

(
1 + LP

N0

)
for large L.

3. With full CSI, the transmitter knows the channel, and for a given realization of
the fading process {h[n]}N

n=1 the channel supports a rate:

R =
1

N

N∑
n=1

log

(
1 +

‖h[n]‖2P [n]

N0

)
(5.12)

and the problem becomes that of finding the optimal power allocation strategy.
We note that the problem is the same as the one corresponding to the case of a
single receive antenna, replacing |h[n]|2 by ‖h[n]‖2. It follows that the optimal
solution is also obtained by waterfilling:

P ∗(‖h‖2) =

(
1

λ
− N0

‖h‖2

)+

(5.13)

where λ is chosen so that the power constraint is satisfied, i.e. E[P ∗(‖h‖2)] = P .
The resulting capacity is:

C = E

[
log

(
1 +

‖h‖2P ∗

N0

)]
(5.14)

At low SNR, when the system is power limited, the benefit of having CSI at the
transmitter comes from the fact that we can transmit only when the channel
is good, saving power (which is the limiting resource) when the channel is bad.
The larger the fluctuation in the channel gain, the larger the benefit. If the
channel gain is constant, then the waterfilling strategy reduces to transmitting
with constant power, and there is no benefit in having CSI at the transmitter.
When there are multiple receive antennas, there is diversity and ‖h‖2/L does not
fluctuate much. In the limit as L → ∞ we have seen that this random variable
converges to a constant with probability one. Then, as L increases, the benefit
of having CSI at the transmitter is reduced.

4.

Pout = Pr

[
log

(
1 +

‖h‖2P

N0

)
< R

]
= Pr

[
‖h‖2 < (2R − 1)

N0

P

]
(5.15)
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We know that we can approximate the pdf of ‖h‖2 around 0 by:

f(x) ≈ 1

(L− 1)!
xL−1 (5.16)

where Rayleigh fading was assumed, and hence the distribution function of ‖h‖2

evaluated at x is approximately given by:

F (x) ≈ 1

L!
xL (5.17)

for x small. Thus, for large SNR we get the following approximation for the
outage probability:

Pout ≈ 1

L!

[
(2R − 1)

N0

P

]L

(5.18)

We see that having multiple antennas reduces the outage probability by a factor
of (2R − 1)L/L! and also increases the exponent of SNR−1 by a factor of L.

Exercise 5.14. 1. The Alamouti scheme transmits two independent symbols u1, u2

over the two antennas in two channel uses as follows:

X =

[
u1 −u∗2
u2 u∗1

]
.

To show that the scheme radiates energy in an isotropic manner, we need to
show that the energy in the projection of this codeword in any direction d ∈ C2

depends only on the magnitude of d and not its direction. Let E[u1u
∗
2] = 0 and

E[|u1|2] = E[|u2|2] = P/2. We then have:

d†E[XX†]d = [d∗1 d∗2]
[
P 0
0 P

] [
d1

d2

]
= P‖d‖2.

2. Suppose that the transmitted vector x = [x1 x2]
T is such that E[x1x

∗
2] = 0 and

E[|x1|2] = E[|x2|2] = P . Then, for any d = [d1 d2]
T ,

d†E[xx†]d = d†E
[
x1

x2

] [
x∗1 x∗2

]
d = d†P Id = P‖d‖2,

hence the scheme radiates energy isotropically.

To prove the converse, assume that the scheme x = [x1 x2]
T is isotropic, i.e., for

any two vectors da and db such that ‖da‖2 = ‖db‖2 = 1, we have that

d†aE[xx†]da = d†bE[xx†]db. (5.19)
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Then we must prove that E[x1x
∗
2] = 0 and E[|x1|2] = E[|x2|2]. To see that this

must be so, first choose da = [1 0]T and db = [0 1]T . Substituting this into (5.19)
we obtain that E[|x1|2] = E[|x2|2].

Now, choose da =

[
1√
2

1√
2

]
, and db =

[
1√
2

− 1√
2

]
. Then, (5.19) yields

E[|x1|2 + x∗1x2 + x1x
∗
2 + |x2|2] = E[|x1|2 − x∗1x2 − x1x

∗
2 + |x2|2],

Hence we get that E[x∗1x2 + x1x
∗
2] = 0 which implies that Real(E[x∗1x2]) = 0.

Now, choose da =

[
1√
2

− 1
j
√

2

]
, and db =

[
1√
2

1
j
√

2

]
. Then, (5.19) yields

E
[
|x1|2 +

x∗1x2

j
− x1x

∗
2

j
+ |x2|2

]
= E

[
|x1|2 − x∗1x2

j
+

x1x
∗
2

j
+ |x2|2

]
.

Hence we get that E
[

x∗1x2

j
− x1x∗2

j

]
= 0, which implies that Imag(E[x∗1x2]) = 0.

Thus we conclude that E[x∗1x2] = 0 and we have established the converse.

Exercise 5.15. 1. A MISO channel is given by the following input-output relation:

y[m] = h†x[m] + z[m],

with the total power constraint E[‖x‖2] ≤ P . The received SNR is given by

SNR =
E[|h†x|2]

N0

=
E[h†xx†h]

N0

=
h†Kxh

N0

.

Thus this channel is equivalent to a scalar channel with the same received SNR.
Hence, the maximal rate of reliable communication on this channel is given by

C = log(1 + SNR) = log

(
1 +

h†Kxh

N0

)
.

2. Since the covariance matrix Kx is positive semi-definite, it admits the decompo-
sition Kx = UΛU†, where Λ is a diagonal matrix and U is a unitary matrix.
Since the channel is i.i.d. Rayleigh, the vector h is isotropically distributed, i.e.,
h†U has the same distribution as h†. Thus the quadratic form

h†Kxh = h†UΛU†h = (h†U)Λ(h†U)†

has the same distribution as h†Λh. Therefore, we can restrict Kx to be diagonal
without sacrificing outage performance.
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Exercise 5.16.

Exercise 5.17.

Exercise 5.18. The outage probability of a parallel channel with L i.i.d. Rayleigh
branches is given by the following expression:

P parallel
out := P

(
L∑

l=1

log(1 + |hl|2SNR) < LR

)
.

Observe that the following inclusion holds:

{
L∑

l=1

log(1 + |hl|2SNR) < LR

}
⊇

L⋂

l=1

{log(1 + |hl|2SNR) < R}.

Hence, since hl’s are i.i.d.,

P parallel
out ≥ P (

log(1 + |hl|2SNR) < R
)L

.

Since the branches are Rayleigh distributed, we have that, at high-SNR,

P
(
log(1 + |hl|2SNR

)
< R) = P

(
|hl|2 <

2R − 1

SNR

)
≈ 2R − 1

SNR
.

Hence, the outage of the parallel channel at high-SNR satisfies

P parallel
out ≥

(
2R − 1

SNR

)L

.

A simple upper bound that exhibits identical scaling with SNR is obtained by observing
that

{
L∑

l=1

log(1 + |hl|2SNR) < LR

}
⊆

L⋂

l=1

{log(1 + |hl|2SNR) < LR},

hence yielding

P parallel
out ≤

(
2LR − 1

SNR

)L

.

The SNR scaling of the lower and upper bounds is identical, though the pre-constants
are slightly different. However, a more precise analysis can be done (see Section 9.1.3,
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equation (9.19) and Exercise 9.1)) which shows that the lower bound is actually tight,
i.e., the outage probability scales as

P parallel
out ≈

(
2R − 1

SNR

)L

.

when the rate is given by R = r log SNR for 0 ≤ r ≤ 1. We now give a heuristic
argument as to why this is true. For the complete proof, see [156], Theorem 4.

Let R = r log SNR and let |hl|2 = SNR−αl , for αl ∈ R and l = 1, . . . , L (observe
that we can always do this since |hl|2 is a non-negative random variable). The |hl|2
are independent and exponentially distributed with mean 1, i.e., the joint density ph

is given by

ph(|h1|2, . . . , |hL|2) = e−
PL

l=1 |hl|2 .

Applying the change of variable to the above density, we obtain the joint density of
αl’s, pα:

pα(α1, . . . , αL) = (log SNR)Le−
PL

l=1 SNR−αl SNR−
PL

l=1 αl .

Now, we can express the outage probability as

P parrallel
out = P

(
L∏

l=1

(1 + SNR|hl|2) < 2LR

)
,

≈ P
(
SNR

PL
l=1(1−αl)

+

< 2LR
)

,

= P

(
L∑

l=1

(1− αl)
+ < Lr

)
,

where, we’ve used the high-SNR approximation (1 + SNR|hl|2) ≈ SNR(1−αl)
+

(the
function (x)+, denotes max{0, x}). Hence, the outage probability is given by the
following integral:

P parrallel
out =

∫

A
(log SNR)Le−

PL
l=1 SNR−αl SNR−

PL
l=1 αldα1 . . . αL,

whereA =
{

α1, . . . , αL ∈ R :
∑L

l=1(1− αl)
+ < Lr

}
. Since we are considering the high-

SNR regime, the term (log SNR)n has no effect on the SNR exponent. Furthermore, the

term e−
PL

l=1 SNR−αl decays exponentially with SNR for αl < 0, so we can concentrate
only on αl > 0. Moreover, the exponential terms approach 1 for αl > 0 and e for
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αl = 0. Hence, the exponential terms have no effect on the SNR exponent. Thus, we
can approximate the outage probability as

P parrallel
out ≈

∫

A+

SNR−
PL

l=1 αldα1 . . . αL,

where A+ =
{

α1, . . . , αL > 0 :
∑L

l=1(1− αl)
+ < Lr

}
. By Laplace’s principle of large

deviations, we have that the integral above is dominated by the term with the largest
SNR exponent. Thus,

P parrallel
out ≈ SNR− infA+

PL
l=1 αl .

It can be verified that infA+

∑L
l=1 αl = (1− r)L. Hence, we have that

P parallel
out ≈

(
2R

SNR

)L

.

when the rate is given by R = r log SNR for 0 ≤ r ≤ 1.

Exercise 5.19. 1. If we transmit the same signal x[m] on each of the parallel chan-
nels, the received signal can be written as:

y[m] = hx[m] + z[m].

The optimal receiver performs maximal ratio combining and hence this channel
becomes equivalent to a scalar AWGN channel with received signal-to-noise ratio
given by ‖h‖2SNR, where SNR is the per-channel signal-to-noise ratio on the orig-
inal parallel channel. Now, suppose that the rate requirement is R bits/sec/Hz
per channel. Then, this scheme has outage probability given by

P repetition
out := P(log(1 + ‖h‖2SNR) < LR) = P

(
‖h‖2 <

2LR − 1

SNR

)
,

≈ 1

L!

(
2LR − 1

SNR

)L

,

where the last line comes from the high-SNR approximation of the distribution
of h (chi-square with 2L degrees of freedom).

2. Using the result of Exercise 5.18, we see that in order to guarantee the same
outage probability, we require a larger SNR in the repetition scheme then the
minimal required SNR dictated by the outage performance of the channel. In
particular, let SNRparallel and SNRrepetition be the minimum required SNR and the
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SNR required under repetition coding, respectively. Then, in order to have the
same outage probabilities, we need that (at high-SNR),

(
2R

SNRparallel

)L

=
1

L!

(
2LR

SNRrepetition

)L

,

and consequently we obtain that

SNRrepetition

SNRparallel

=
2R(L−1)

(L!)1/L
.

For instance, with R = 1 bps/Hz, and L = 5, the repetition scheme requires
roughly 18 dB more power over the minimal power requirement to achieve the
required outage performance.

3. For small x > 0, log(1+x) ≈ x log2 e. We use this for the low-SNR approximation
for both the outage probability of the repetition scheme as well as that of the
parallel channel itself. Hence we have that

P parallel
out := P

(
L∑

l=1

log(1 + |hl|2SNR) < LR

)
≈ P

(
‖h‖2 <

LR

SNR log2 e

)
,

P repetition
out := P(log(1 + ‖h‖2SNR) < LR) ≈ P

(
‖h‖2 <

LR

SNR log2 e

)
,

hence the outage performance of the repetition scheme is approximately optimal
in the low-SNR regime.

To conclude, in the high-SNR regime, the AWGN parallel channel is degree-of-
freedom limited and the repetition scheme performs poorly in this regime since it
is wasteful of the available degrees of freedom (independent channels) by virtue
of sending the same information on all of them at any given time-slot. However,
at low SNR, the channel is SNR limited and this shortcoming of the repetition
scheme is not evident since the scheme does reap the receive beamforming (co-
herent combining) benefit and hence match the power gain achievable by any
other scheme.

Exercise 5.20. 1. The low-SNR ε-outage probability approximation of the parallel
channel is given by (see Exercise 5.19, part 3):

P
(
‖h‖2 <

LCε

SNR log2 e

)
= ε,

where Cε denotes the per-channel ε-outage capacity, i.e., the largest rate achiev-
able while maintaining outage probability below ε. Let F (x) = P(‖h‖2 > x) be
the complementary CDF of h. Then we have that

Cε =
1

L
F−1(1− ε)SNR log2 e.
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2. For Rayleigh i.i.d. fading branches, F−1(1− ε) ≈ (L!)
1
L ε

1
L , and so

Cε =
1

L
(L!)

1
L ε

1
L SNR log2 e,

is the per-channel outage capacity.

3. The delay-spread of the channel is 1µs. Hence, from equation (2.47), page 33,
we know that the coherence bandwidth is 1

2×10−6 = 0.5 MHz. But the available
bandwidth is 1.25 MHz. Hence, if we exploit the frequency coherence, we can have
two independent, parallel channels in frequency. Also, since our time constraint
is 100ms and the coherence time is 50ms, we have two parallel channels in time.
This makes a total of four parallel channels that we can exploit. Consequently,
we let L = 4 in our calculations.

Since the SINR per chip is −17 dB and the processing gain is G = W/R =
1.25MHz×100ms = 125000, the SINR per bit per user is roughly 34 dB. Plugging
in these values into the formula given in part (2) of this question, we get that
C0.01 is roughly 631 bps/Hz/user.

On the other hand, the capacity of the unfaded AWGN channel with the same
SNR is roughly 3607 bps/Hz. Thus the 1%-outage capacity of this parallel chan-
nel is roughly 17.5% of the unfaded AWGN channel with the same received SNR.

Solution 5.21:

1. Using only one antenna at a time, we convert the MISO channel into a parallel
channel. The maximal rate achievable with this strategy is given by:

Cparallel =
1

L

L∑

l=1

log(1 + |hl|2SNR),

compared by the capacity of this MISO channel (observe that the channel gain
is constant and known to both the transmitter and receiver):

CMISO = log(1 + ‖h‖2SNR).

At high-SNR, we can approximate the two rates as follows:

Cparallel ≈ log SNR +
1

L

L∑

l=1

log |hl|2,

CMISO ≈ log SNR + log ‖h‖2.

Hence, at high-SNR, the ratio of the two rates goes to 1.
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2. At low-SNR, we can make the following approximations:

Cparallel ≈ 1

L

L∑

l=1

|hl|2SNR log2 e =
1

L
‖h‖2SNR log2 e,

CMISO ≈ ‖h‖2SNR log2 e.

Thus, the loss from capacity goes to 1
L

as SNR → 0.

The parallelization scheme is degree-of-freedom efficient so at high-SNR its per-
formance is close to the optimal performance on the MISO channel due to the
fact that the AWGN MISO channel is degree-of-freedom limited at high-SNR.
However, the optimal strategy is for the transmitter to do beamforming (having
knowledge of the channel) and hence harness the power gain afforded in this way.
The parallelization scheme does not perform beamforming and hence suffers a
loss from capacity in the SNR-limited low-SNR regime.

3. The outage probability expressions of the MISO channel and the scheme which
turns it into a parallel channel are given by:

P parallel
out := P

(
L∑

l=1

log(1 + |hl|2SNR) < LR

)
,

PMISO
out := P

(
log(1 + ‖h‖2SNR) < R

)
.

Assuming i.i.d. Rayleigh fading, we can use the result of Exercise 5.18 to obtain
the high-SNR approximations:

P parallel
out ≈

(
2R − 1

SNR

)L

,

PMISO
out ≈ 1

L!

(
2R − 1

SNR

)L

,

hence, the outage probability of the scheme which converts the MISO channel
to a parallel channel is L! times larger than the actual outage probability of the
MISO channel at high-SNR.

At low-SNR, we have

CMISO
ε ≈ F−1(1− ε)SNR log2 e,

Cparallel
ε ≈ 1

L
F−1(1− ε)SNR log2 e,

hence, the outage capacity of the scheme is L times smaller than the outage
capacity of the MISO channel at low-SNR.
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Exercise 5.21.

Exercise 5.22.

Exercise 5.23. 1. For the AWGN channel the maximum achievable rate is given
by:

R = W log

(
1 +

P̄

N0W

)
= W log

(
1 +

EbR

N0W

)
(5.20)

where we used P̄ /R = Eb.

Then, the minimum required Eb/N0 for reliable communication is:

( Eb

N0

)

req

=
W

R

(
2R/W − 1

)
(5.21)

For the IS-95 system we get
(
Eb

N0

)
req

= 0.695 = −1.58dB.

At low SNR R/W is small, and we can approximate 2R/W = exp[(R/W ) ln 2] ≈
1 + (R/W ) ln 2, to get

( Eb

N0

)

req

≈ ln 2 = −1.59dB (5.22)

and we see that as the SNR goes to zero, the minimum Eb/N0 requirement is
-1.59dB.

2. Since we are forced to repeat each transmitted symbol 4 times, we consider the
received signal in a block of length 4:

y = 1x + z (5.23)

and use 3.a) to conclude that I(x;y) ≤ log(1 + 4P/N0) where the upper bound
can be achieved by choosing the input distribution to be CN(0, P ) i.i.d.. Then
the maximum achievable rate (in bits/s/Hz) of this strategy is:

Rmax =
1

4
log

(
1 +

4P

N0

)
(5.24)

which is strictly smaller than log(1+P/N0), the capacity of the AWGN channel.
The loss is due to the concavity of the log(·) function. For small x, log(x) is
approximately linear and the loss due to concavity is small for low SNR. On the
other hand, repetition coding has a large loss for high SNR.

3. Loss is greater at high SNR where the loss of d.o.f. is felt more.
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4. For repetition coding the minimum Eb/N0 required for reliable communication is
given by: ( Eb

N0

)

req

=
W

R

(
24R/W − 1

4

)
(5.25)

The increase in Eb/N0 requirement is:

(
Eb

N0

)
req(rep)(

Eb

N0

)
req(AWGN)

=
24R/W − 1

4(2R/W − 1)
(5.26)

For the IS-95 system this loss is only 0.035dB.

Exercise 5.24. 1. The channel model is

y[m] = h[m]x[m] + w[m],

and the rate it can support when channel state is h[m] is

R = log

(
1 +

|h[m]|2P (h[m])

N0

)
.

Using channel inversion to keep a constant rate R, we need

P (h[m]) =
(2R − 1)N0

|h[m]|2 .

Thus the average power needed is

E[P ] = (2R − 1)N0E
(

1

|h[m]|2
)

= (2R − 1)N0

∫ ∞

0

1

x
e−xdx

> (2R − 1)N0

∫ M

0

1

x
e−xdx

> (2R − 1)N0e
−M

∫ M

0

1

x
dx = ∞

2. The Channel model is

yl[m] = hl[m]x[m] + wl[m], l = 1, . . . , L
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and the rate it can support when channel state is h[m] = (h1[m], . . . , hL[m]) is

R =
1

2
log

(
1 +

|h[m]|2P (h[m])

N0

)
.

Using channel inversion to keep a constant rate R, we need

P (h[m]) =
(2R − 1)N0

|h[m]|2 .

Since |h[m]|2 is a χ2 distribution with pdf

f(x) =
xL−1

(L− 1)!
e−x,

the average power needed is

E[P ] = (2R − 1)N0E
(

1

|h[m]|2
)

= (2R − 1)N0

∫ ∞

0

1

x

xL−1

(L− 1)!
e−xdx

=
(2R − 1)N0

L− 1
.

3. Assume the noise w ∼ CN (0, 1), for different target rate and L, the average
power is plotted in the following figure.

We can see that the power needed is decreasing with increasing number of receiver
antennas (actually inversely proportional to L− 1).

Exercise 5.25. 1. Using optimal scheme, the capacity is

C = W log(1 + SINR),

where W = 1.25MHz. Hence the SINR threshold for using capacity achieving
codes is

SINR = 2
C
W − 1

The following table compares the SINR threshold of using capacity achieving
codes to that of IS-856. The differences are always larger than 3dB. So the codes
in IS-856 are not close to optimal.
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Requared rate(kb/s) Optimal SINR threshold(dB) SINR threshold using IS-856(dB)
38.4 -16.7 -11.5
76.8 -13.6 -9.2
153.6 -10.5 -6.5
307.2 -7.3 -3.5
614.4 -3.9 -0.5
921.6 -1.8 2.2
1228.8 -0.1 3.9
1843.2 2.5 8.0
2457.6 4.6 10.3

2. When repeated L times, the capacity is

C =
W

L
log(1 + L× SINR).

So the threshold SINR is

SINR =
2

LC
W − 1

L
.

When C = 38.4kb/s, W = 1.25MHz, and L = 16, the SINR threshold is -16.0
dB. Compared to -16.7 dB computed in part (1), there is not much performance
loss from the repetition.

Exercise 5.26. 1. Given

h[m + 1] =
√

1− δh[m] +
√

δw[m + 1]
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the auto-correlation function of the channel process is

R[n] = E [h∗[m]h[m + n]]

= E
[
h∗[m](

√
1− δh[m + n− 1] +

√
δw[m + n− 1])

]

=
√

1− δE [h∗[m]h[m + n− 1]]

=
√

1− δR[n− 1].

Thus
R[n] = (

√
1− δ)nR[0] = (

√
1− δ)n.

2. If coherence time is Tc and sampling rate is W = 2× 1.25MHz, then

(
√

1− δ)WTc = 0.05

leads to
δ = 1− (0.05)

2
WTc

So for Tc = 25ms (walking), δ = 0.0000958; for Tc = 2.5ms (driving), δ =
0.000958.

3. Since h[0] and h[n] are jointly Gaussian, the optimal estimator is MMSE.

ĥ[n] = E[h[n]|h[0]]

=
E[h∗[0]h[n]]

E[|h[0]|2] h[0]

= (
√

1− δ)nh[0].

4. From the property of MMSE for jointly Gaussian random variables, we can write

h[n] = ĥ[n] + he[n],

where the estimation error he[n] is independent of h[n], with variance

σ2
e = E[|he[n]|2]

= E[|h[n]|2]− E[h∗[0]h[n]]E[h[0]h∗[n]]

E[|h[0]|2]
= 1− (1− δ)n

For IS-856 with 2-slot delay in the feed back,

σ2
e = 1− (1− δ)n = 1− (0.05)

2n
WTc ,

where n ∼ 4000. For Tc = 25ms (walking), σ2
e = 0.318; for Tc = 2.5ms (driving),

σ2
e = 0.978.
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Exercise 5.27.

Exercise 5.28.

Exercise 5.29.

Exercise 5.30.



Chapter 6

Solutions to Exercises

Exercise 6.1. Channel model is

y[m] = x1[m] + x2[m] + w[m].

The signal power at receiver is

P = E[(x1[m] + x2[m])2] = P1 + P2 + 2E[x1[m]x2[m]].

When the two users can cooperate, they can choose the correlation of x1[m] and x2[m]
to be one and thus get the largest total power

P = P1 + P2 + 2
√

P1P2,

and hence the maximum sum rate they can achieve is

Ccoop = log

(
1 +

P1 + P2 + 2
√

P1P2

N0

)
.

In the case of P1 = P2 = P ,

Ccoop = log

(
1 + 4P

N0

)
,

whereas the sum rate without cooperation is

Cnocoop = log

(
1 + 2P

N0

)
.

At high SNR,
Ccoop

Cnocoop

' log(4P/N0)

log(2P/N0)
→ 1 as P →∞.

At low SNR,
Ccoop

Cnocoop

' 4P/N0

2P/N0

= 2 as P → 0.

Thus in lower SNR region the cooperative gain is more effective.

99
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Exercise 6.2. For orthogonal multiple access channel the rates of the two users satisfy

R1 < α log

(
1 +

P1

αN0

)

R2 < (1− α) log

(
1 +

P2

(1− α)N0

)

When the degrees of freedom are split proportional to the powers of the users, we have

α =
P1

P1 + P2

.

Thus the sum rate satisfy

R1+R2 <
P1

P1 + P2

log

(
1 +

P1

P1

P1+P2
N0

)
+

P2

P1 + P2

log

(
1 +

P2

P2

P1+P2
N0

)
= log

(
1 +

P1 + P2

N0

)
,

which is the optimal sum rate.
For arbitrary split of degrees of freedom, from the strictly concavity property of

log(1 + x), we have

R1 + R2 < α log

(
1 +

P1

αN0

)
+ (1− α) log

(
1 +

P2

(1− α)N0

)

≤ log

(
1 +

(
α

P1

αN0

+ (1− α)
P2

(1− α)N0

))

= log

(
1 +

P1 + P2

N0

)
,

and equality holds only when
P1

α
=

P2

(1− α)
,

that is when the degrees of freedom are split proportional to the powers of the users.
Any other split of degrees of freedom are strictly sub-optimal.

Exercise 6.3. The symmetric capacity is

Csym =
1

2
log

(
1 +

P1 + P2

N0

)
.

There are three scenarios of capacity region shown in the following Figure.
In scenario I and II, the point A is superior to the symmetric rate point, in scenario

III we do not have a superior point.

Exercise 6.4.
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Exercise 6.5.

Exercise 6.6.

Exercise 6.7.

Exercise 6.8.

Exercise 6.9.

Exercise 6.10.

Exercise 6.11.

Exercise 6.12. Let ei means the event of decoding incorrectly at stage i, and ec
i means

the event of decoding correctly at stage i, then the probability of error for the kth user
under SIC satisfies

pe = P
(
e1

⋃
(e2|ec

1)
⋃

(e3|ec
1, e

c
2)

⋃
· · ·

⋃
(ek|ec

1 . . . ec
k−1)

)

≤ P(e1) + P(e2|ec
1) + · · ·+ P(ek|ec

1 . . . ec
k−1)

=
k∑

i=1

p(i)
e ,
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where p
(i)
e = P(ei|ec

1 . . . ec
i−1) is the probability of decoding the ith user incorrectly

assuming that all the previously users are decoded correctly.

Exercise 6.13. In the following we denote SNR1 = P1Tc

N0
and SNR2 = |h2|2 P2Tc

N0
.

1. By neglecting user 2 and using training signal xt[m], we have

y[m] = h1[m]xt[m] + ω[m].

Let ĥ1[m] be the estimation of channel state h1[m], then the MMSE of h1[m]
from y[m] can be calculated using (A.85) in Appendix A, and it is

E
[
(h1[m]− ĥ1[m])2

]
=

E [|h1|2] N0

E [|h1|2] ‖xt‖2 + N0

=
N0

0.2P1Tc + N0

=
1

0.2SNR1 + 1
.

2. The channel can be written as

y[m] = ĥ1[m]x1[m] + h2[m]x2[m] + (h1[m]− ĥ1[m])x1[m] + ω[m],

where the SIC decoder can subtract ĥ1[m]x1[m] from channel estimation and user
1’s signal. The term (h1[m]−ĥ1[m])x1[m]+ω[m] is the noise plus the interference
from inaccurate estimation of the channel. Thus

E
[
((h1[m]− ĥ1[m])x1[m] + ω[m])2

]
=

P1Tc

0.2SNR1 + 1
+ N0,

and the SINR of user 2 is

SINR2 =
|h2|2P2Tc(
P1Tc

0.2SNR1+1
+ N0

)

=
SNR2(

SNR1

0.2SNR1+1
+ 1

)

=
SNR2(0.2SNR1 + 1)

1.2SNR1 + 1
.

The numerical calculation is shown in the following figure. We can see that the
degradation is worse if the power of user 1 increases. This is because user 1’s
signal is the interference to user 2 due to inaccurate estimation of the channel,
and with the increase of the power of user 1, the interference also increases, hence
the SINR for user 2 decreases.
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3. If user 1 is decoded correctly, then we can estimate the channel state from both
the training symbol and user 1’s signal. That is, we estimate h1[m] from y1 and
y2 where

y1 = h1xt + ω1,

y2 = h1x1 + ω2.

Using (A.85) in Appendix A, we have

E
[
(h1 − ĥ1)

2
]

=
E [|h1|2] N0

E [|h1|2] (‖xt‖2 + ‖x1‖2) + N0

=
N0

P1Tc + N0

=
1

SNR1 + 1
.

Using the above estimation error to redo part(2), we get

SINR2 =
SNR2(

SNR1

SNR1+1
+ 1

)

=
SNR2(SNR1 + 1)

2SNR1 + 1
.
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From the figure we can see that the SINR for user 2 improves, especially at high
P1/N0.
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Exercise 6.14. 1. At very high SNR, we have

log

(
1 +

∑k
i=1 P |hi|2

N0

)
' log

P

N0

for k = 1, 2, . . . , K.

Thus for any S ⊂ {1, . . . , K}, we have that

|S|R > log

(
1 +

∑
i∈S P |hi|2

N0

)

is approximately equivalent to

R >
1

|S| log
P

N0

at very high SNR, and hence the dominating event for pul
out is when |S| = K, that

is, the one on sum rate.

2. At high SNR,

pout ' P
{

KR > log(1 + SNR
K∑

k=1

|hk|2)
}

= P

{
K∑

k=1

|hk|2 <
2KR − 1

SNR

}

' 1

K!

(
2KR − 1

SNR

)K

.

Let
1

K!

(
2KCsym

ε − 1

SNR

)K

= ε,

we get

Csym
ε =

1

K
log

(
1 + SNR(K!ε)1/K

)
.

3. At very high SNR,

Csym
ε

Cε

=
1
K

log
(
1 + SNR(K!ε)1/K

)

log(1 + εSNR)

' 1

K

log(SNR) + log(K!ε)1/K

log(SNR) + log ε

' 1

K
.
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Exercise 6.15.

Exercise 6.16.

Exercise 6.17.

Exercise 6.18.

Exercise 6.19.

Exercise 6.20.

Exercise 6.21.

Exercise 6.22. The probability that no one user sends a request rate is the probability
that all users’ channel is less than γ, that is

P{no one sends a request rate} =
K∏

k=1

P{user k’s channel is less thanγ}

=
K∏

k=1

P{|hk|2SNR < γ}

=
(
1− e−γ/SNR

)K

= (1− e−γ)K ,

where we used SNR = 0dB = 1. We need this probability to be ε, thus

(1− e−γ)K = ε,

and the solution for Γ is
γ = − ln

(
1− ε1/K

)
.

Now, the probability that any user sends a request is

p = e−γ,

and the number of users that sends in a requested rate is a Binomial random variable
with parameter p, hence

E[number of users that sends in a requested rate] = Kp = Ke−γ = K
(
1− ε1/K

)
.

The expected number of users that sends in a requested rate for different K and ε
is shown in the following figure.

Exercise 6.23.
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Exercise 6.24.

Exercise 6.25.

Exercise 6.26.

Exercise 6.27.

Exercise 6.28.

Exercise 6.29.

Exercise 6.30.

Exercise 6.31. 1. Under Alamouti scheme, the effective SNR is

u1 = (|h1|2 + |h2|2)SNR

2
,

for the single antenna case, the effective SNR is

u2 = |h1|2SNR,

where h1 and h2 are i.i.d CN (0, 1). Hence the distributions are

f1(u1) =
2

SNR

(
2u1

SNR

)
e−

2u1
SNR ,

f2(u2) =
1

SNR
e−

u2
SNR .
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Figure 6.1: Probability distribution functions

2. From the plot in part (1), we can see the probability that effective SNR is low
is smaller for the Alamouti scheme. So we expect that dual antenna can provide
some gain. Rigorous proof is as follows.

Let CA be the capacity for Alamouti scheme, and CS be the capacity for the
single antenna case, we have

CS = E
[
log(1 + |h1|2SNR)

]

=
1

2
E

[
log(1 + |h1|2SNR)

]
+

1

2
E

[
log(1 + |h2|2SNR)

]

≤ E
[
log

(
1 +

|h1|2 + |h2|2)
2

SNR

)]

= CA,

where in the first step we used the fact that |h1|2 and |h2|2 are i.i.d, and in the
second step we used the Jensen’s inequality.

3. When there are K users, assume SNR = 1, we have

For the Alamouti scheme, the effective SNR is u1 = 1
2

max
1,...,K

(|h1k|2 + |h2k|2), and

P
(

1

2
max

k=1,...,K
(|h1k|2 + |h2k|2) < x

)
=

(
1− (1 + 2x)e−2x

)K
,
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Figure 6.2: Cumulative distribution functions

so

f1(u1) = 4Ku1e
−2u1

(
1− (1 + 2u1)e

−2u1
)K−1

.

Thus the capacity under Alamouti scheme is

CA =

∫ ∞

0

4Ku1e
−2u1

(
1− (1 + 2u1)e

−2u1
)K−1

log(1 + u1)du1.

For the single antenna case, the effective SNR is u2 = max
k=1,...,K

|hk|2, and

P
(

max
k=1,...,K

|hk|2 < x

)
=

(
1− e−x

)K
,

so

f2(u2) = Ke−u2
(
1− e−u2

)K−1
.

Thus the capacity for the single antenna case is

CS =

∫ ∞

0

Ke−u2
(
1− e−u2

)K−1
log(1 + u2)du2.

The achievable throughput under both schemes at SNR=0dB for different number
of users is shown in Figure 6.3.
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Figure 6.3: Throught vs. number of users

4. We can see from the plot in part (3) that single antenna scheme performs better
than the Alamouti scheme when K ≥ 2. So in this case we do not need use dual
transmit antenna. This is because the probability of getting one good channel is
larger than getting two good channels.



Chapter 7

Solutions to Exercises

Exercise 7.1. 1. Refer to Figure 7.3(a) in the textbook, we have

di =
(
d2 + ((i− 1)∆rλc)

2 + 2(i− 1)d∆rλccosφ
)1/2

= d

(
1 +

((i− 1)∆rλc)
2

d2
+

2(i− 1)∆rλccosφ

d

)1/2

.

For large d (large compare to the size of receiver antenna array), we can expand
the above equation to the first order term and get

di ' d

(
1 +

1

2

2(i− 1)∆rλccosφ

d

)
= d + (i− 1)∆rλccosφ,

which is equation (7.19).

2. From Figure 7.1 we have

d2
ik = [d− (k − 1)∆tλc cos φt + (i− 1)∆rλc cos φr]

2

+ [(k − 1)∆tλc sin φt − (i− 1)∆rλc sin φr]
2

' d2 − 2d(k − 1)∆tλc cos φt + 2d(i− 1)∆rλc cos φr

for large d. Hence

dik ' d

[
1− 1

d
(k − 1)∆tλc cos φt +

1

d
(i− 1)∆rλc cos φr

]1/2

= d− (k − 1)∆tλc cos φt + (i− 1)∆rλc cos φr,

which is equation (7.27).
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i

k

d

dik

(k − 1)∆tλc

φr

φt

(i− 1)∆rλc

Figure 7.1: MIMO case

Exercise 7.2.

er(Ω) =
1√
nr




1
exp(−j2π∆rΩ)
exp(−j2π2∆rΩ)

...
exp(−j2π(nr − 1)∆rΩ)




.

We have

er

(
Ω +

1

∆r

)
=

1√
nr




1
exp(−j2π∆rΩ) exp(−j2π)
exp(−j2π2∆rΩ) exp(−j4π)

...
exp(−j2π(nr − 1)∆rΩ) exp(−j2(nr − 1)π)




= er(Ω).

Hence er(Ω) is periodic with period 1
∆r

.

Next suppose there exists a θ ∈
(
0, 1

∆r

)
such that

er(Ω + θ) =
1√
nr




1
exp(−j2π∆rΩ) exp(−j2π∆rθ)
exp(−j2π2∆rΩ) exp(−j4π∆rθ)

...
exp(−j2π(nr − 1)∆rΩ) exp(−j2(nr − 1)π∆rθ)




= er(Ω),
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and we must have exp(−j2π∆rθ) = 1. Clearly there is no θ ∈
(
0, 1

∆r

)
such that

exp(−j2π∆rθ) = 1. So the smallest period is 1
∆r

.

Exercise 7.3.

fr(Ωr) = fr(Ωr2 − Ωr1) = er(Ωr1)
∗er(Ωr2)

=
1

nr

[1 exp(j2π∆rΩr1) exp(j2π2∆rΩr1) . . . exp(j2π(nr − 1)∆rΩr1)]

×




1
exp(−j2π∆rΩr2)
exp(−j2π2∆rΩr2)

...
exp(−j2π(nr − 1)∆rΩr2)




=
1

nr

[1 + exp(−j2π∆rΩr) + exp(−j2π2∆rΩr) + · · ·+ exp(−j2π(nr − 1)∆rΩr)]

=
1

nr

1− exp(−j2πnr∆rΩr)

1− exp(−j2π∆rΩr)

=
exp(−jπnr∆rΩr)

nr exp(−jπ∆rΩr)
× exp(jπnr∆rΩr)− exp(−jπnr∆rΩr)

exp(jπ∆rΩr)− exp(−jπ∆rΩr)

=
exp(−jπ(nr − 1)∆rΩr)

nr

× sin(πnr∆rΩr)

sin(π∆rΩr)

=
exp(−jπ(nr − 1)∆rΩr)

nr

× sin(πLrΩr)

sin(πLrΩr/nr)
,

which is equation (7.35).

Exercise 7.4. The degree of freedom of MIMO channel depends on the angular spread
of the scatters/reflectors, and depends on the antenna array length. There are two
problems of (7.82).

1. The degree of freedom depends on the antenna array length, which determines
the resolution of the channel. Simply increasing number of antenna does not
necessarily increase channel resolution.

2. The number of multipath does not have direct impact on the degree of freedom,
it is the angular spread that influences the degree of freedom.

Exercise 7.5.

Exercise 7.6.

Exercise 7.7.
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Exercise 7.8.

Exercise 7.9.

Exercise 7.10.

Exercise 7.11.



Chapter 8

Solutions to Exercises

Exercise 8.1. Consider the singular value of decomposition:

H = UΛV.

Then, the channel model

y = Hx + w,

can be rewritten as

ỹ = Λ̃x̃ + w,

where ỹ = U∗y and x̃ = Vx. Moreover, x̃ has the same total power constraint as x
since V is a unitary matrix. Thus, the channel capacity depends only on the singular
values of H for a total power constraint. But, H∗ has the same non-zero singular values
as H and hence the capacity of the reciprocal channel is same as the original channel.

Exercise 8.2.

Exercise 8.3.

Exercise 8.4. 1. Let A = HU. Then, A is zero mean. Let ai and hi denote the
ith columns of A and H respectively. Then,

E[a∗jai] = U∗E[h∗jhi]U,

= U∗δijIU,

= δijI.

Also,

E[at
jai] = UtE[ht

jhi]U,

= 0.

Thus, A has i.i.d. CN (0, 1) entries.
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2. Consider the eigenvalue decomposition of Kx:

Kx = UDU∗,

where D is a positive diagonal matrix and U is a unitary matrix. Then, the
mutual information can be written as:

EH

[
log det

(
I +

1

N0

HKxH
∗
)]

= EH

[
log det

(
I +

1

N0

(HU)D(HU)∗
)]

,

= EHU

[
log det

(
I +

1

N0

(HU)D(HU)∗
)]

,

= EH

[
log det

(
I +

1

N0

HDH∗
)]

,

where the last step follows from the first part. Moreover, we also have Trace(Kx) =
Trace(D). Thus, the input covariance matrix can be restricted to be a diagonal
matrix.

3. Note that log det(X) is a concave function of X for positive definite X (see
Page 74 of Convex Optimization by Stephen Boyd and L. Vandenberghe). Also

I + HDH∗ is linear in D. Thus, the function log det
(
I + 1

N0
HDH∗

)
is concave

in D. Moreover, the function is symmetric in the diagonal entries of D: this
follows from the fact that reordering rows of H does not change the distribution
of H. Thus, for a trace constraint on D the mutual information is maximized
when D is a multiple of the identity matrix.

Exercise 8.5. 1. Multiple receive antennas provide a power gain which is very
crucial for a wideband CDMA system which works at low SNR. However, the
gain is not very crucial for a narrowband GSM which works at high SNR. The
gain can be crucial for a wideband OFDM system if the mobile device is on the
boundary of a cell and hence is working at low SNR.

2. Multiple transmit antennas can provide a degree of freedom gain for the high
SNR narrowband GSM system. However for a wideband CDMA system, the
transmit antennas will not be useful as the optimal coding strategy will be to use
a single transmit antenna at low SNR. Similar arguments work for the wideband
OFDM system depending which SNR regime it is working in.

Exercise 8.6.

Exercise 8.7.
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Exercise 8.8. 1. The pilot signal with transmit power SNR will estimate the chan-
nel H with an mean squared estimation error of order of 1

SNR
. This estimation

error in the channel multiplied by the transmitted signal will act as an addi-
tive noise during rest of the communication. Thus, while communicating, the
effective noise seen by the receiver is the additive Gaussian noise and the noise
due to estimation error of H which is of the order SNR 1

SNR
= 1. Thus, for the

effective coherent channel, the total additive noise has a bounded variance for
any SNR. Thus, for k × nr channel, assuming that effective noise is Gaussian
(worst-case assumption) the channel capacity for the effective coherent channel
is lower bounded by min(k, nr) log SNR. But since k time slots were used for the
pilot scheme, the effective rate of communication is given by at least

Tc − k

Tc

min(k, nr) log SNR bits/s/Hz

.

2. With nt transmit antennas, we only need at most nt time slots for training.
Additional training time can only hurt the overall rate at high SNR. Thus, we
have k ≤ nt. Now, if nr ≤ nt, then we only use nr transmit antennas. As
other antennas will not provide a degree of freedom gain. Thus we also have
k ≤ min(nr, nt). Now, if k ≤ min(nr, nt),

Tc−k
Tc

k is increasing in k for k < Tc/2
and decreasing for k > Tc/2. Thus, the optimal value of k is given by:

k∗ = min(nr, nt, Tc/2).

Exercise 8.9. Consider the channel from a particular transmit antenna i to a par-
ticular receive antenna j. This channel can be modeled as a simple scalar ISI channel
with tap coefficients Hl(i, j). For this channel, the usual scalar OFDM scheme will
yield Nc tones define by:

H̃n(i, j) =
L−1∑

l=0

Hl(i, j)e
− j2πnl

Nc .

Now, for the original MIMO channel, we can look at each receive antenna separately.
For each receive antenna, signals transmitted from different transmit antennas add
linearly at the receiver. Since the OFDM scheme is a linear operation, the overall
effective OFDM channel for one particular receive antenna can be written as the sum
of the individual OFDM channels. Now, for the original MIMO channel, since for each
receive antenna, the OFDM scheme is the same, we get that the overall OFDM scheme
can be written as:

H̃n =
L−1∑

l=0

Hle
− j2πnl

Nc .
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Exercise 8.10. For a fixed physical environment (i.e., fixed H), the capacity for a
total power constraint P is given by

max
Trace(Kx)≤P

W log det

(
I +

1

NoW
HKxH

∗
)

bits/sec.

This can be rewritten as:

max
Trace(Kx

P
)≤1

W log det

(
I +

P

NoW
H

Kx

P
H∗

)
bits/sec.

When, both P and W are both doubled, the corresponding capacity can be written as:

2 max
Trace( K̃x

2P
)≤1

W log det

(
I +

P

NoW
H

K̃x

2P
H∗

)
bits/sec.

Since the two optimization problems are essentially the same, the optimal solution for
the second case is given by K̃∗

x = 2K∗
x. Therefore the capacity is exactly doubled.

Exercise 8.11.

Exercise 8.12.

Exercise 8.13.

Exercise 8.14.

Exercise 8.15.

Exercise 8.16. The general capacity expression is given by:

C = E

[
log det

(
Inr +

SNR

nt

HH∗
)]

.

The apparent paradox is because of the behavior of log det
(
Inr + SNR

nt
HH∗

)
. At low

values of SNR it behaves like log
(
Trace

(
SNR
nt

HH∗
))

, whereas at medium SNR it

behaves like log det
(

SNR
nt

HH∗
)
. Thus, we have the following consistent behavior:

C1n Cnn

low SNR nSNR nSNR
medium SNR log SNR + log n n log SNR

Exercise 8.17.

Exercise 8.18.
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Exercise 8.19.

Exercise 8.20. For matched filters, the interference seen by the kth stream is given
by:

∑

i6=k

h∗khi

||hk||xi + h∗kw.

Thus, the variance of the interference seen by the kth stream is approximately given
by:

∑

i6=k

h∗khi

||hk||Pi + N0.

Therefore, the rate for the kth stream is given by (assuming the worst-case assumption
that the interference is Gaussian):

Rk = E

[
log

(
1 +

PK ||hk||2∑
i 6=k

h∗khi

||hk||Pi + N0

)]
,

= E

[
log

(
1 +

PK

N0
||hk||2∑

i 6=k

h∗khi

||hk||
Pi

N0
+ 1

)]
,

≈ E

[
log

(
1 +

PK

N0

||hk||2
)]

,

≈ E

[
PK

N0

||hk||2
]

,

where the last two steps follow from the low SNR assumption. Thus, the total sum-rate
is given by:

∑

k

Rk =
SNR

nt

∑

k

E
[||hk||2

]
,

= nrSNR,

which at low SNR is the capacity of a 1× nr channel (see Soln 8.16).

Exercise 8.21.

Exercise 8.22. We use the following matrix identity which follows from the matrix
inversion lemma:

log |A + xx∗| − log |A| = log(1 + x∗A−1x). (8.1)
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Taking x =
√

P1

N0
h1 implies:

log det

(
I +

nt∑
i=1

Pi

N0

hih
∗
i

)
− log(1 + SINR1) = log det

(
I +

nt∑
i=2

Pi

N0

hih
∗
i

)
.

Similarly, taking x =
√

Pk

N0
hk we get:

log det

(
I +

nt∑

i=k

Pi

N0

hih
∗
i

)
− log(1 + SINRk) = log det

(
I +

nt∑

i=k+1

Pi

N0

hih
∗
i

)
.

Adding all such equations, we get:

log det

(
I +

nt∑
i=1

Pi

N0

hih
∗
i

)
=

nt∑
i=1

log(1 + SINRi).

Thus, taking Kx to be a diagonal matrix with entries Pi we get:

log det

(
I +

1

N0

HKxH
∗
i

)
=

nt∑
i=1

log(1 + SINRi).

Exercise 8.23. We have the following sequence of steps:

pout(R)
(a)

≥ P {log det (Inr + SNRHH∗) < R} ,
(b)

≥ P {SNRTr[HH∗] < R} ,
(c)

≥ P
{

SNR|h11|2 <
R

nrnt

}nrnt

,

(d)
=

(
1− e

− R
nrntSNR

)nrnt

,

(e)≈ RntnR

(nrntSNR)ntnr
.

Each of these steps can be justified as follows:

• (a): follows from letting each antenna power be SNR rather than SNR/nt.

• (b): follows from the equation: SNRTr[HH∗] < det (Inr + SNRHH∗) and hence
a simple set theoretic containment relationship.

• (c): again follows from a simple set theoretic containment relationship:
{

SNR|hij|2 <
R

nrnt

∀ i, j

}
⊂ {SNRTr[HH∗] < R ∀ i, j} ,

and the facts that hijs are i.i.d.
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• (d): follows from the fact |h11|2 is exponential.

• (e): follows from a simple Taylor series expansion.

Exercise 8.24. At high SNR, MMSE-SIC receiver is same as the decorrelator followed
by SIC. At high SNR, for the first stream, a decorrelator projects nr dimensional receive
vector along a sub-space orthogonal to nt−1 other directions. Thus, the diversity seen
by the first stream will be nr − (nt − 1) = nr − nt + 1. Decoding of this stream in fact
will be bottleneck for all other streams. Thus, for each stream the diversity is given by
nr−nt +1. However, for the kth stream, if all the previous streams have been decoded
correctly, then the diversity seen by the kth stream is given by nt−nt+k (projection of
nr dimensional vector onto a sub-space orthogonal to a nt− k dimensional sub-space).

Exercise 8.25. 1. From MMSE estimation of streams, we have

SNR|g1|2 = h∗1 (I/SNR + h2h
∗
2)
−1 h1.

Using the matrix inversion lemma we get:

|g1|2 = h∗1

(
I− SNRh2h

∗
2

1 + SNR||h2||2
)

h1,

= ||h1||2 − SNR||h∗1h2||2
1 + SNR||h2||2 .

Now, consider:

||h1⊥2||2 +
||h1||2||2

1 + SNR||h2||2 = ||h1||2 − ||h1||2||2 +
||h1||2||2

1 + SNR||h2||2 ,

= ||h1||2 −
SNR||h2||2||h1||2||2

1 + SNR||h2||2 ,

= ||h1||2 − SNR||h∗1h2||2
1 + SNR||h2||2 ,

which matches with the expression above for |g1|2. Thus, we have

|g1|2 = ||h1⊥2||2 +
||h1||2||2

1 + SNR||h2||2

The fact that |g2|2 = ||h2||2 follows directly since the first symbol doesn’t see any
interference.

2. At high SNR, the second term is small with high probability, thus the marginal
distribution of |g1|2 is same as ||h1⊥2||2. Now taking h2 as a basis vector, we see
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that h1⊥2 is always orthogonal to a basis vector. Thus it is a projection of h1

onto one dimension. Thus, statistically it should be similar to simple complex
Gaussian. Note, that by circular symmetry of h1, the fact that h2 is along a
random direction does not change the statistics. Since, ||h1⊥2||2 is exponential,
|g1|2 is marginally exponential at high SNR. Moreover, we have:

|g1|2 = ||h1⊥2||2 +
||h1||2||2

1 + SNR|g2|2 ,

where h1⊥2 and h1||2 are independent of |g2|. Thus, we see that |g1| and |g2| are
negatively correlated.

3. The maximum diversity given by the parallel channel is same as the original
MIMO channel since the D-BLAST structure preserves mutual information and
hence the outage behavior. Thus, the total diversity is given by 4.

4. If |g1|2 and |g2|2 were independent with the same marginals, then the diversity
offered by |g1|2 is 1 and that offered by |g2|2 is 2. Thus, the total diversity is
given by 3.

Exercise 8.26. The coding scheme can be written as




0 · · · 0 p
(1)
1 p

(2)
1 · · · p

(T−nt+1)
1

... . .. . .. . .. · · · . ..
...

0 p
(1)
nt−1 p

(2)
nt−1 . .. . .. 0

p
(1)
nt p

(2)
nt · · · · · · 0 0




,

where P (k) =
[
p

(k)
1 , . . . , p

(k)
nt

]
are the independent data streams. The decoding can be

done using successive interference cancelation: estimate stream P (k) one by one, then
jointly decode it and then estimate P (k+1) after canceling out P (k).

Exercise 8.27. For an nt transmit antenna channel a D-BLAST scheme with block-
length T has a rate loss of:

nt − 1

T
,

because a zero is sent on the first transmit antenna for the first nt − 1 time slots. So
instead of sending T streams, we send only T − (nt − 1) streams.



Chapter 9

Solutions to Exercises

Exercise 9.1.

Exercise 9.2.

Exercise 9.3.

Exercise 9.4.

Exercise 9.5.

Exercise 9.6.

Exercise 9.7.

Exercise 9.8.

Exercise 9.9.

Exercise 9.10.

Exercise 9.11.

Exercise 9.12.

Exercise 9.13.

Exercise 9.14.

Exercise 9.15.

Exercise 9.16.

Exercise 9.17.

Exercise 9.18.
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Exercise 9.19.

Exercise 9.20.

Exercise 9.21.

Exercise 9.22.

Exercise 9.23.

Exercise 9.24.

Exercise 9.25.



Chapter 10

Solutions to Exercises

Exercise 10.1.

Exercise 10.2.

Exercise 10.3.

Exercise 10.4.

Exercise 10.5.

Exercise 10.6.

Exercise 10.7.

Exercise 10.8.

Exercise 10.9.

Exercise 10.10.

Exercise 10.11.

Exercise 10.12.

Exercise 10.13.

Exercise 10.14.

Exercise 10.15.

Exercise 10.16.

Exercise 10.17.

Exercise 10.18.
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Exercise 10.19.

Exercise 10.20.

Exercise 10.21.

Exercise 10.22.

Exercise 10.23.

Exercise 10.24.

Exercise 10.25.



Appendix A

Solutions to Exercises

Exercise A.1. 1. n = 1. Let A = w2, then using the formula for the density of a
function of a random variable, we get:

f1(a) =
fw(

√
a)

2
√

a
+

fw(−√a)

2
√

a

= =
1√
2πa

exp (−a/2)

2. Let Φn(ω) denote the characteristic function of ||w||2. Then since convolution
corresponds to multiplication of characteristic functions, we get

Φn(ω) = Φ1(ω)n

= Φ2(ω)n/2

=

(
1

1− 2jω

)n/2

,

where the last step follows from the fact for n = 2, ||w||2 is an exponential
random variable. Then, from this we see that

dΦn(ω)

d(jω)
= n

(
1

1− 2jω

)n/2+1

= nΦn+2(ω).

Since differentiation corresponds to multiplication in time domain, we get

fn+2(a) =
a

n
fn(a).

3. Using simple recursion:

fn(a) =
1√
2π

an/2−1

1 · 3 · · · (n− 2)
exp(−a/2) for n odd
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fn(a) =
1

2

an/2−1

2 · 4 · · · (n− 2)
exp(−a/2) for n even

Exercise A.2. (zi)
M
i=1 is a linear transformation of a Gaussian process, so it has a

jointly Gaussian distribution, which is completely specified by the first and second
moments.

E[zi] = E

[∫ ∞

−∞
w(t)si(t)dt

]
=

∫ ∞

−∞
E[w(t)]si(t)dt = 0

E[zizj] = E

[∫ ∞

−∞

∫ ∞

−∞
w(t)w(τ)si(t)sj(τ)dtdτ

]

=

∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(t− τ)si(t)sj(τ)dtdτ

=

∫ ∞

−∞

N0

2
si(τ)sj(τ)dτ =

N0

2
δi,j

Therefore E[zzT ] = (N0/2)IM and z ∼ N(0, (N0/2)IM).

Exercise A.3. For simplicity, let us assume that x is zero mean.

1. The covariance matrix, K, of x is given by

K = E[xx∗]

= E[(R[x] + jC[x])(R[x]t − jC[x]t)]

= E[R[x]R[x]t] + E[C[x]C[x]t]− jE[R[x]C[x]t] + jE[C[x]R[x]t].

Similarly, the pseudo-covariance matrix of x is given by

J = E[R[x]R[x]t]− E[C[x]C[x]t] + jE[R[x]C[x]t] + jE[C[x]R[x]t].

The covariance of matrix of [R[x], C[x]]t is given by

[
E[R[x]R[x]t] E[R[x]C[x]t]
E[C[x]R[x]t] E[C[x]C[x]t]

]
=

1

2

[R(K + J) C(J −K)
C(K + J) R(K − J)

]
(A.1)

2. For a circularly symmetric x, J = 0 and the covariance of matrix of [R[x], C[x]]t

is given by

[
E[R[x]R[x]t] E[R[x]C[x]t]
E[C[x]R[x]t] E[C[x]C[x]t]

]
=

1

2

[R(K) −C(K)
C(K) R(K)

]
(A.2)
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Exercise A.4. 1. Necessity of the two conditions is proved in appendix A. For
proving sufficiency, let y = ejθx, then

E[y] = ejθE[x]

= 0.

Then the pseudo-covariance of y is given by

E[yyt] = e2jθE[xxt]

= 0.

The covariance of y is given by

E[yyx] = ejθE[xx∗]e−jθ

= E[xx∗].

Thus, y and x have the same second order statistic and hence have identical
distribution.

2. Since x is not given to be zero mean, the answer is no. But in addition if we
assume that x is zero mean, then from (A.1) and (A.2) we see that J must be
zero and hence x will be circularly symmetric.

Exercise A.5. Let x = xr + jxi. Then xr and xi are zero mean and are jointly
Gaussian. Since the pseudocovariance for a circularly symmetric Gaussian is zero, we
get

0 = E[x2]

= E[x2
r]− E[x2

i ] + 2jE[xrxi].

Thus, E[x2
r] = E[x2

i ] and E[xrxi] = 0. For jointly Gaussian random variables, uncor-
related implies independent. Also, since they are zero mean and have the same second
moment, xr and xi are i.i.d. random variables.

Exercise A.6. Let x be i.i.d. complex Gaussian with real and imaginary part dis-
tributed as N (0,Kx). Then the covariance and pseudo-covariance of x is given by:

K = E[xx∗],

= (Kx(1, 1) + Kx(2, 2))I,

J = E[xxt],

= (Kx(1, 1)−Kx(2, 2) + 2jKx(1, 2))I.

Now, let y = Ux, then the covariance of y is given by

E[yy∗] = UE[xx∗]U∗
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= (Kx(1, 1) + Kx(2, 2))I.

The pseudo-covariance of y is given by

E[yyt] = UE[xxt]Ut

= (Kx(1, 1)−Kx(2, 2) + 2jKx(1, 2))UUt.

Since for general U, UUt cannot be identity, we get Kx(1, 1) = Kx(2, 2) and Kx(1, 2) =
0. That is, x should be circularly symmetric.

Exercise A.7. The ML decision rule is given through the likelihood ratio which is

P(y|x = 1)

P(y|x = −1)
=

Pz(y − h)

Pz(y + h)
,

=
n∏

i=1

Pzi
(yi − hi)

Pzi
(yi − hi)

,

where zi,yi and hi are two dimensional vectors with entries as the real and complex
parts of the ith entry of z,y and h respectively. Now,

Pzi
(yi − hi)

Pzi
(yi − hi)

=
exp (−(yi − hi)

tK−1
x (yi − hi)/2)

exp (−(yi + hi)tK−1
x (yi + hi)/2)

, = exp
(−(ht

iK
−1
x yi + yt

iK
−1
x hi)/2

)
,

= exp
(−ht

iK
−1
x yi

)
.

Thus, the likelihood ratio can be written as

exp

(
−

n∑
i=1

ht
iK

−1
x yi

)
.

Note that
∑

i h
t
iyi = h∗y. Thus for the likelihood ratio to be a function of only h∗y,

we need that every hi should be a right-eigenvector of K−1
x with the same eigenvalue.

Note that this condition is trivially satisfied if Kx is a scalar multiple of the identity
matrix.

Exercise A.8. 1. z ∼ N(0, σ2In). Let H0 = {x = 1} and H1 = {x = −1}. Then,

p(y | H0) = K exp(−‖y − h‖2/(2σ2))

p(y | H1) = K exp(−‖y + h‖2/(2σ2))

LLR(y) = log

[
p(y | H0)

p(y | H1)

]
= − 1

2σ2
[‖y‖2 + ‖h‖2 − 2yTh− ‖y‖2 − ‖h‖2 − 2yTh]
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=
2

σ2
yTh

Ĥ=0

≥
<

Ĥ=1

0

This last expression is the ML detection rule. Therefore yTh is a sufficient
statistic.

Pe = P (yTh > 0 | x = −1) = P [(−h + z)Th > 0] = P (hTz > ‖h‖2)

= P

(
hTz

‖h‖ > ‖h‖
)

= Q

(‖h‖
σ

)

where we have used the fact that E
[

hT z
‖h‖

zT h
‖h‖

]
= σ2.

We see that Pe is minimized by choosing any h such that ‖h‖ = 1. In this case
Pe = Q(1/σ).

2. z ∼ N(0,Kz), with non-singular Kz. Let H0 = {x = 1} and H1 = {x = −1}.
Then,

p(y | H0) = K exp
[−(y − h)TK−1

z (y − h)/2
]

p(y | H1) = K exp
[−(y + h)TK−1

z (y + h)/2
]

LLR(y) = log

[
p(y | H0)

p(y | H1)

]
= yTK−1

z h + hTK−1
z y

= 2yTK−1
z h

Ĥ = 0
Ĥ=0

≥
<

Ĥ=1

Ĥ = 1

0

This last expression is the ML detection rule. Therefore yTK−1
z h is a sufficient

statistic.

Pe = P (yTK−1
z h > 0 | x = −1) = P [(−h + z)TK−1

z h > 0] = P (zTK−1
z h > hTK−1

z h)

= P

(
zTK−1

z h√
hTK−1

z h
>

√
hTK−1

z h

)
= Q

(√
hTK−1

z h
)



Tse and Viswanath: Fundamentals of Wireless Communication 131

We see that Pe is minimized by choosing h to be the norm one eigenvector of K−1
z

associated with its maximum eigenvalue, which is the norm one eigenvector of

Kz associated with its minimum eigenvalue λmin. In this case Pe = Q
(√

λ−1
min

)
.

This choice of h makes the signal of interest hx lie in the direction where the
noise is smallest, maximizing the signal to noise ratio in the received signal y.

3. If Kz is singular then the noise vector z lies in a proper subspace of Rn which
we call S. Then letting S⊥ be the orthogonal subspace associated to S, we can
choose h ∈ S⊥, project onto this direction, and obtain a noise-free sufficient
statistic of x. The corresponding probability of error is 0.



Appendix B

Solutions to Exercises

Exercise B.1.

Exercise B.2. 1. f(x) is concave if for any λ ∈ [0, 1]:

λf(x1) + (1− λ)f(x2) ≤ f [λx1 + (1− λ)x2] (B.1)

for all x1, x2 ∈ Dom(f).

2. Jensen’s inequality: for a random variable X and a concave function f(·):
E[f(X)] ≤ f [E(X)] (B.2)

Proof by picure:

x1 x3x2=E[X]

f(x)

f(x1)

f(x3)

f(E(X))E(f(X))

Figure B.1: Example of Jensen’s inequality for a discrete random variable that takes only 3 values
with equal probability and a concave function f(·).

132
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3.

H(X)−H(X|Y ) = I(X; Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= −
∑
x,y

p(x, y) log
p(x)p(y)

p(x, y)
(B.3)

≥ − log

[∑
x,y

p(x, y)
p(x)p(y)

p(x, y)

]
(B.4)

= − log 1 = 0

where the inequality follows from Jensen’s inequality and the convexity of− log(·).
We have equality iff p(x)p(y) = p(x, y) for all x, y, i.e. X and Y are independent.

For the required example consider X|y = 0 ∼ Bernoulli(1/2), X|y = 1 ∼
Bernoulli(0) and Y ∼ Bernoulli(1/2). It is easy to check that X ∼ Bernoulli(1/4)
and we can compute the different entropies. H(X) = H(1/4) = 0.811, H(X|y =
0) = H(1/2) = 1, H(X|y = 1) = 0, and H(X|Y ) = (1/2)H(X|y = 0) +
(1/2)H(X|y = 1) = 1/2, where we used H(p) to denote the entropy of a
Bernoulli(p) random variable. We see that H(X|y = 0) > H(X) but H(X|Y ) <
H(X) in agreement with the inequality that we just proved.

Exercise B.3.

Exercise B.4.

Exercise B.5.

Exercise B.6.

Exercise B.7.

Exercise B.8.

Exercise B.9.

Exercise B.10.

Exercise B.11.

Exercise B.12.


