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752  CHAPTER 14 Advanced Wastewater Treatment Processes and Water Reuse
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Figure 14.10 Rate of nitrification relative to maximum rate
versus pH of the mixed liquor. [From: Manual for Nitrogen
Control, Environmental Protection Agency, EPA/625/R-93/ -
010 (September 1993): 93]

No detectable inhibition of nitrification occurs at dissolved—oxygen levels above
1.0 mg/1. Nevertheless, a minimum dissolved-oxygen level of 2.0 mg/1isrecommended
in practice to prevent reduced nitrification during the passage of peak ammonia concen-
trations through the aeration tank. L

Sludge-age and temperature are interrelated factors in establishing and maintaining

healthy nitrifier populations essential to efficient ammonia oxidation. In continuous-

sludge wasting and washout in the plant effluent). The supply of organic matter controls
the growth of heterotrophic organisms, while the quantity of ammonia annlied ocavarnc
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Figure 14.13 Effect of temperature on the rate of

( denitrification. [From Nitrification and Denitrification UU !T S |

Facilities, Environmental Protection Agency, Technology "
Transfer (August 1973): 28.] .
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FIGURE 11-12

Flow diagram and aerial view of treatment plant with separate stages for carbon oxidation and nitrifi-
cation (Marlborough, MA; design average flowrate = 5.5 Mgal/d).
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e Plants like all living things need small amounts of

phosphorus (P)

e Not extremely common at earth’s surface so plants jeme

really compete for it

¢ P loading leads to eutrophication, hence phosphate
control essential water treatment technology.

-

e But phosphate is a vital resource: fertilizers, o
\,__cleaning solutions and other chemical processes §:

e Mined as rock mineral Hydroxyapatite ix?
e PO,+NH,+CO, + sunlight — greenplants %

® PO, +BOD+ NH; —bacterial biomass

Ca **
Al *?
e PO , +| Fe ™’
Fe **

eic .

— Insoluble “MPO,” precipitatesi .



Why care about phosphorus removal?
» Until about 10 years ago- not mandated by law
* Secondary treatment still all that’s practiced in some
parts of the country
e Not needed when holdlng lagoons are used
‘..o Today engineered wetlands are sometimes used for
- -nutrient removal
o Ljke the wetlands within the Oregon Gardens
e Untied sewer agency “Jackson Bottoms”-Hillsboro
o Used where land is available- passive treatment

e Most important where effluent released to s

o Lakes Ce2 a
e Slow moving streams or rivers

Phosphorus increased alga production in great lakes due to
phosphorus in detergents. In much of the mid-west this
type of detergent is now illegal.

e [ocally the Tualatin River has a high P level
* Some due to agriculiure g Lo o .
e Some due to high P concentrations in groundwater
e Originally due to some wastewater facilities
® Today wastewater standards for the Tualatin are lower
than the natural river back;round levels
o Normally rivers dilute wastewater discharges
o Here effluent is diluting river water

ally or

Phosphorus can be removed either chemic
biologically



Remaval of Phosphorus by Chemical Action

¢ Chemicals used produce insoluble or low-solubility
salts

- e Principal chemicals used are:

e Alum

¢ Sodium Aluminate

» Ferric chloride or sulfate (pickle liquor)
e [.ime

Factors affecting the choice of chemical

1. Influent phosphorus level
2. Wastewater suspended solids
3. Alkalinity
4. Chemical cost (including transportation)
5.Reliability of chemical supply
6. Sludge handling facilities
7. Ultimate disposal methods
8. Compatibility with other treatment process



Actual Chemistry of PO4

H,PO, <+H" +H,PC; Phosphoric Acid- Dominate at < pH 2
H,PO; <>H" +HP 04'2 Monobasic Phosphate- Dominate at pH 2-7
HPO;” <+H" +PO;”  Dibasic Phosphate — Dominate t pH 7-12

PO, Phosphate — Dominate at pH >12
Together they make up total phosphate or “PO,>”

Alum Removal of P
AL(SO,); *143H,0+ 2P0} =2AIPQ, ..., +3SOF +143H,0

However near pH 7 the reaction is more like (with waters omitted):
Al,(SO,),; + ZHPO:)‘ =2AIPO , + 3S0;2 +2H"™

Consumes alkalinity and lowers the pH

Iron Removal of P
Ferric (Fe(lll))

FeCl+HPQ" —FePQgy,,,.., +H" +3CI
Ferrous (Fe(Il))
3FeCl+2HPQ —Fe(PQ) iy +2H +6CT

Lime removal of P
5Ca™ +3P0,” + OH™ < Ca,(PO,),0H
Ca™ +CO;* < CaCoO,



' PO4 Removal via Fe precipitation

Two forms of iron can occur in water:

Ferrous- Fe(Il) : Fe**, FeOH*

Ferric- Fe(III): Fe™, FeOH*Z, Fe(OH),", Fe(OH);

Fe(II) is fairly soluble at all pH but at pH>35 it reacts
with O, to form Fe(III)

Fe(III) is soluble below about pH 4 and very
insoluble above about pH 6

Therefore excess Fe(III) can be removed just by
raising the pH and flocculating

A cheaper alternative to buying these in tech or
-industrial grades is to use steel “pickling” solutions
(Pickling: “removing surfaced impurities through the
use of chemicals)

Steel products are often pickled using HCl or H,SO,
Yielding primarily Fe(II): Ferrous chloride- FeCl, or
Ferrous sulfate FeSO,

If treated with O, or Cl, to oxidize the Fe™ then you
get: Ferric chloride FeCl; or Ferric sulfate Fe,(SO,);

Pickle liquor is cheap and sometimes free, but may
contain a lot of “free acid” and sometimes metal
impurities like Nickel and Chromium
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TRELTMENT SYSTEN
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FIGURE 11-30

Typical ime treatment process flow diagrams for phosphorus removal: (a) single-stage system and
(b} two-stags system.



Removal of P by Biological Methods

» Alternatives to chemical treatment by means of
incorporating orthophosphate, polyphosphate and ==
organically bound phosphorus into cell tissue oy =

e The key to biological phosphorus removal is the
exposure of the microorganisms to alternating
anaerobic and aerobic conditions

» This stress the organisms so that their uptake of P
rises (P is used for cell maintenance, synthesis,
energy transport and stored for subsequent use)

e The resulting sludge containing the excess P is then
wasted

® Process can either be in the mainstream of the plant
processing or in the return-sludge “side stream”

e These processes are proprietary

1. The A/O process used for mainstream
Phosphorus removal

2. The PhoStrip process for side stream
Phosphorus removal

3. The sequencing batch reactor (SBR) is used
for smaller wastewater flows (it can also
remove Nitrogen)



"A/O Process (Mainstream Phosphorus Removal)
e Used for combined carbon oxidation and P removal N6
e Single-sludge suspended-growth system AR
o Combines anaerobic and aerobic sections in sequence T
@®
[ ]

=)
%

| STRess

™o

il

If aerobic time lengthened can also remove Nitrogen AR
Settled sludge returned to influent end of reactor and R,
mixed with incoming wastewater e
e Under anaerobic conditions P released as soluble ‘
phosphates
 Under aerobic this P is taken up by the cell mass

(PhoStrip | Process ]
e Portion of return activated sludge dlverted to anaerobic
phosphorus stripping tank | / |
e Retention time 8-12 hours. NO / AR
AR
e Phosphorus released passes out of tank in supernant é A
e Phosphorus- poor activated sludge returned to aeration s ‘f’
tank > [ “%
e Phosphorus rich supernant is treated with limeina s
separate tank, flocculated and clarified. i%?}gr
s
) Sequencing Batch Reactor )
! LimE TaTMT

e Can be used for P and N removal

e With or without chemical additions

e P can be removed by coagulant addition or biologically

e Overall cycle times 3-24 hours |

e Carbon source required in anoxic phase to support
denitrification
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