Khronos and OpenGL ES Status

Neil Trevett
Vice President Embedded Content, NVIDIA
President, Khronos
Khronos News – SIGGRAPH 2006
Khronos News – SIGGRAPH 2006

Khronos membership close to 120 – Apple, Google, Dell and S3 join
All active members of OpenGL ARB have joined / joining
Intel and Samsung have seats on Board of Promoters – Apple will soon
Khronos now driving dynamic media standards for embedded and desktop
Khronos News – SIGGRAPH 2006

Khronos membership close to 120 – Apple, Google, Dell and S3 join
All active members of OpenGL ARB have joined / joining
Intel and Samsung have seats on Board of Promoters – Apple will soon
Khronos now driving dynamic media standards for embedded and desktop

COLLADA gains strong Momentum since joining Khronos one year ago
Used by all major authoring tools as 3D asset exchange standard
Adopted as an import format by Google Earth
Essential to OpenGL and OpenGL ES for FX Framework and authoring
Khronos News – SIGGRAPH 2006

Khronos membership close to 120 – Apple, Google, Dell and S3 join
All active members of OpenGL ARB have joined / joining
Intel and Samsung have seats on Board of Promoters – Apple will soon
Khronos now driving dynamic media standards for embedded and desktop

COLLADA gains strong Momentum since joining Khronos one year ago
Used by all major authoring tools as 3D asset exchange standard
Adopted as an import format by Google Earth
Essential to OpenGL and OpenGL ES for FX Framework and authoring

Defining a complete native API set for handheld media applications
Like DirectX for cell phones – except cross-platform and an open standard
Gaining strong support from Wireless Operators – Vodafone joins Khronos
Includes OpenGL ES for 2D/3D graphics
Khronos Dynamic Media Ecosystem
Khronos Dynamic Media Ecosystem

2D/3D

Vector 2D

Streaming Media

Enhanced Audio

Embedded Media Acceleration APIs
Khronos Dynamic Media Ecosystem

Includes mixed media acceleration and OS portability APIs

“DirectX-like” set of native APIs
Khronos Dynamic Media Ecosystem

Khronos Dynamic Media Ecosystem

Includes mixed media acceleration and OS portability APIs

“DirectX-like” set of native APIs

Embedded Media Acceleration

APIs

Dynamic Media Authoring Standards

COLLADA

3D Authoring

OpenML

Dynamic Media Authoring

OpenVL

Streaming Media

OpenMAX

Enhanced Audio

OpenCL

2D/3D
c

Vector

2D

OpenKODE

© Copyright Khronos Group, 2006 - Page
Khronos Dynamic Media Ecosystem

Cross-platform graphics authoring/acceleration Ecosystem

OpenGL
Cross platform 2D/3D

COLLADA
3D Authoring

Dynamic Media Authoring Standards

Dynamic Media Authoring

OpenML

Embedded Media Acceleration APIs

“DirectX-like” set of native APIs
Includes mixed media acceleration and OS portability APIs

OpenGL ES
2D/3D

OpenVG
Vector 2D

OpenMAX
Streaming Media

OpenSL ES
Enhanced Audio

OpenCODE

© Copyright Khronos Group, 2006 - Page

© Copyright Khronos Group, 2006 - Page
OpenGL ES – Two Track Standard

- Two tracks - manage mobile graphics through programmable transition
 - With maximized portability and minimized platform costs
- OpenGL ES 2.0 ruthlessly eliminates redundancy – just like 1.X
 - Deprecates all fixed functionality that can be replaced by shaders
 - Significant reduction in engine cost and driver complexity
- Platforms can ship either or both 1.X and 2.X libraries
 - Cheaper, more flexible than one large driver with both fixed and programmable functions
 - With full backwards compatibility maintained in each track
- OpenGL ES 2.X does NOT replace OpenGL ES 1.X
 - Will always need lowest cost, non-programmable hardware for certain high-volume devices
OpenGL ES – Two Track Standard

- Two tracks - manage mobile graphics through programmable transition
 - With maximized portability and minimized platform costs

- OpenGL ES 2.0 ruthlessly eliminates redundancy – just like 1.X
 - Deprecated all fixed functionality that can be replaced by shaders
 - Significant reduction in engine cost and driver complexity

- Platforms can ship either or both 1.X and 2.X libraries
 - Cheaper, more flexible than one large driver with both fixed and programmable functions
 - With full backwards compatibility maintained in each track

- OpenGL ES 2.X does NOT replace OpenGL ES 1.X
 - Will always need lowest cost, non-programmable hardware for certain high-volume devices

OpenGL ES 1.X – Fixed Function Acceleration
OpenGL ES 1.1
- For software and fixed functionality hardware
- All 1.X specifications are backwards compatible

OpenGL ES 2.X – Programmable Acceleration
OpenGL ES 2.0
- Vertex & pixel shaders through GLSL ES shading language
- All 2.X specifications will be backwards compatible
OpenGL ES 1.x Current Work & Roadmap

• Future versions (1.2) on hold until demonstrated market need exists
 - OpenGL ES 1.x content marketplace best served by stability
 - OpenGL ES 1.1 Extension Pack (2005) provides future direction for those that need it
 - Will release OpenGL ES 1.2 when and if it is needed

• Actively supporting OpenGL ES 1.1 and create healthy content market
 - Spec clarifications and bug fixes
 - Improvements to conformance tests
 - Drive more consistent behavior and more reliable implementations
 - Documentation
 - Implementer’s Guide (Mark Callow, HI Corp)
 - Man Pages (Ross Thompson, NVIDIA)
 - Education: Khronos Developer University worldwide series
 - Building Community
 - Programming contest
 - Support for Open Source (Hans-Martin Will, Vincent)
 - Encouraging tools and infrastructure – gDEBugger from Graphic Remedy
OpenGL ES 2.0 Status

• Final specification planned for 4Q06
 - OpenGL ES 2.0 provisional specification released at SIGGRAPH 2005

• Making sure the standard is rock solid when released
 - Conformance tests will ship with the final specification
 - Requiring two working implementations to shake out the spec

• Raising the bar for OES extensions
 - Require conformance test before promotion to OES status
 - Require one working implementation
OpenGL in Khronos

- Can synergize resources and outreach
 - Common Conformance tests, marketing and web-site, tool chains etc.

- API collaboration
 - OpenGL, OpenGL ES, COLLADA, OpenKODE (EGL and debugging), OpenVG

- OpenGL and OpenGL ES Working Groups will remain independent
 - Both groups will be able to make decisions that best serve their own markets
 - OpenGL Working Group for desktop graphics
 - OpenGL ES Working Group for embedded graphics
OpenGL in Khronos

• Can synergize resources and outreach
 - Common Conformance tests, marketing and web-site, tool chains etc.

• API collaboration
 - OpenGL, OpenGL ES, COLLADA, OpenKODE (EGL and debugging), OpenVG

• OpenGL and OpenGL ES Working Groups will remain independent
 - Both groups will be able to make decisions that best serve their own markets
 - OpenGL Working Group for desktop graphics
 - OpenGL ES Working Group for embedded graphics
OpenGL Roadmap Synergy

- OpenGL is now foundation of coherent family of market-focused APIs
 - Strong roadmap synergy between OpenGL, OpenGL ES and COLLADA
- “OpenGL 3.0” could use OpenGL ES 2.0 design for lean and mean core
 - Add nexgen performance, shaders (geometry, sample, uniforms), tool integration, object model
- Both APIs can share same conformance test foundation
 - Significant recent investment in OpenGL ES conformance tests by Khronos
OpenGL Roadmap Synergy

- OpenGL is now foundation of coherent family of market-focused APIs
 - Strong roadmap synergy between OpenGL, OpenGL ES and COLLADA
- “OpenGL 3.0” could use OpenGL ES 2.0 design for lean and mean core
 - Add nextgen performance, shaders (geometry, sample, uniforms), tool integration, object model
- Both APIs can share same conformance test foundation
 - Significant recent investment in OpenGL ES conformance tests by Khronos