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Vibrations 

 
Topics 

 
 Finding the natural frequency of a system  

o Force / Acceleration methods 

o Energy method 
o Equivalent mass-spring system 

 

 Response of an un-damped system in free vibration 
 

 Response of a damped system in free vibration 

o The system response when under-damped 

o The system response when critically damped 

o The system response when over-damped 

o Logarithmic Decrement 

 

 Forced Response of Damped Systems 

o Forced Response of Damped Systems to Rotating 

Imbalance mass 

o Force Transmissibility 

 

 Mass Response to Base Vibration 

 

 Seismic Effect of base Vibration 
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Finding the natural frequency of a system 
 
There are two common ways of finding the natural frequency of a single 

degree of freedom system: 1) based on the equation of motion and 2) using 

the energy method.   

 

Using the Equation of Motion 

 

For simple systems that do not involve multiple link and masses connected 

together, this method is simple to apply.  The simplest system is shown 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

If we move the mass by a distance X to the right where X is measured from 

the free length of the spring, and release it,  the FBD of the mass is 

 
and the equation of motion is  
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Once the equation of motion is derived in this format, the natural frequency 

is: 

x 
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For a hanging mass, we get the same natural frequency: 

 

Measuring X from the static equilibrium 
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In systems in which hanging masses are balanced by springs, the equations 

can be derived more quickly by “Ignoring the weight of the mass and 

assuming that at the spring is at free-length at the position of static 

equilibrium”.  This is a technique that also works with energy methods for 

deriving the equations of motions. 

 

Rotational systems are treated similarly except for changing m with I and x 

with .  

 

 
 

Show that the natural frequency of this disk and shaft is  

x 
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What are the units for kt and I? 

 

Problem #V1 

 

Determine the natural frequency of oscillation of a 10-ft steel beam of 

standard 2” by 2” square cross-section with ¼ inch thickness when it 

supports a 100-lb weight in the its middle with the two ends free to rotate.  

Ignore the mass of the beam. 

 
Answer: 54.17 rad/sec 

  

Problem #V2 

 

Determine the natural frequency of oscillation of the 10 foot, 100-lb bar 

connected to the end spring with k=500 lbs/ft and a torsional spring at the 

pivot point having a spring constant of 50 ft-lb per full turn. 

 

 
 

Answer: 3.5 cycles/sec 

 

 

Kt 
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Problem #V3 

 

Find the natural frequency of oscillations of a pendulum when it makes 

small angle oscillations.  The pendulum weighs 1 lb and the length of the 

string is 2 feet, Ignore the mass of the string. 

 

Answer:0.64 cycles/sec 

 

Using the energy method for natural frequencies 

 

When all the forces acting on a mass can not be easily determined, the 

derivation of the equation of motion using FBDs become cumbersome, slow, 

and error-prone.  This is because to determine all the forces, the system has 

to be taken apart into multiple pieces and each FBD must be solved to 

determine the forces necessary to set up the equation of motion.  For 

example, consider the following case: 

 

 
The block mass is M, the disk’s mass moment of inertia is I and the smaller 

and larger radii are r1 and r2 and the spring constant is K. 

 

To determine the natural frequency, we can use the FBD of the block and 

derive the following: 

xmT   
 

x 
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Note that the weight of the block is ignored by pretending that the spring is 

at free length.  This is based on the technique underlined before.  Now we 

need the FBD of the disk  

 

 

 ITrkr  12  

 

From the kinematics of unwinding a string from a pulley, we know that: 


1rx 

 

 

Substituting in the first equation we get: 
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The natural frequency then becomes 
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Note that we had to draw two FBDs, we had to make sure the direction of 

forces and accelerations are selected consistently, and then solve the 

resulting equations to find the natural frequency. The energy method 

removes this long error-prone procedure and only requires a kinematic 

r2 
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relationship between the system elements to find its kinetic energy.  The 

energy method would be illustrated next using the same example.  We have 

the choice of developing the equation of motion based on  or based on x.  

This solution uses .  Assume the system has a   and,,  

 

The kinetic energy of the system is: 
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Similarly the potential energy of the system is: 
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Note that for any hanging mass system, the gravitational 

energy is ignored and the spring is assumed to be at free length 

in static equilibrium.   
 

We can use the kinetic and potential energies of the system to find 

equivalent masses (for translational DOF) or inertias (for rotational DOF).  

We can also use the potential energy to find the equivalent linear springs (for 

translational DOF) or torsional springs (for rotational DOF).   
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The equivalent inertia is:  
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The equivalent torsional spring is: 
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This equivalent system yields the following natural freq. 
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Equivalent Viscous Damping 
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Problem #V4 

 

Find the natural frequency of this 

system in terms of the following  

variables.  

 

Rod’s mass = m 

Rod’s I w/r to pivot = IR 

Cylinder mass = M 

Cylinder’s I w/r to its CG= Ic 

Radius of Cylinder = R 

 

(Do not substitute for IR and Ic) 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Answer:  
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Response of an un-damped system in free vibration 

 

Equation of motions: 

 
0 x

m

k
x

 

 

 

 

The response is: 

 

 )sin()( 0 nntAtx    

 

where 
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Where 0x  is the initial displacement and 0x  is the initial 

velocity of the mass.  The measurement for x is from the 

static equilibrium of the mass. 

 

Rotational system 

 I

k
where

I

k t
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Where the angles are measured in radians. 
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Response of a damped system in free vibration 

 

Equation of motion: 

 

0 kxxcxm   
 

 

 

The natural frequency n is 

the same as the un-damped 

system. 

 

c is the damping coefficient in the units of lbs per in/sec.  

The unit-less damping ratio is: 

nm

c




2


 

 

The damped natural frequency is: 

 nd  21  

The system response when under-damped: 1  
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The system response when critically damped: 1  
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The system response when over-damped: 1  

tt nn eCeCtx
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C1 and C2 are the constants that are lengthy in closed-form.  

They can be found numerically by the initial conditions. 

 

Logarithmic Decrement 

Logarithmic decrement is a unit-less characterizer of an 

under-damped system.  Logarithmic decrement is: 
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The logarithmic decrement relates the peak amplitudes 

(n=1,1.5,2, etc) as the mass oscillates according to: 

nn e
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Problem # V5 

 
The figure shows a model for a gate.  It is composed of a rod with a 

concentrated end mass, a torsional spring, and a torsional damper.  The 

parameters of the system are: 

 m = Mass of the uniform rod = 10 kg [0.6854 slugs] 

M = concentrated mass = 2 kg [0.137 slugs] 

k = 20  N-m/rad. [14.752 ft-lbs/rad] 

Determine: 

a) Natural frequency of the system 

 

If the door is opened 75 degrees and released without any initial velocity.  

 

For a critically damped system determine: 

b) The angle of rotation w/r to closed position after 2 seconds. 

 

For an under-damped system with a damping ratio of 0.5 determine: 

c)  Damped natural frequency of the system 

d) The 1
st
 overshoot (in degrees) relative to the closed position using 

logarithmic decrement relationship. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Answers: a) 1.937 rad/sec, b) 7.6 deg, 

  c) 1.68 rad/sec, d) 12.2 deg. 

 

1.0 m 

[3.28 ft] 
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Forced Response of Damped Systems 

 
The mass oscillates with same 

frequency as the forcing function. 

 

There is a phase shift between the 

mass and the forcing function.  

 

The mass amplitude peaks near the  

Forcing frequency.  The smaller 

the damping ratio, the larger the 

amplitude. 
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The amplitude is: 
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r


   

 

Plot the amplitude versus the frequency ratio using MathCad for 

different values of the damping ratio. 
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Forced Response of Damped Systems to Rotating 

Imbalance mass 

 

Motors are not perfectly 

balanced and create inertially-

induced sinusoidal forcing 

functions.   
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The magnitude of this forcing 

function is the centrifugal force 

as indicated.  In this relation me 

is the mass times eccentricity 

(mass imbalance) and is usually given in lb-in units which 

should be converted to slugs-in units. 

 

The system response is 
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Force Transmissibility 
 

Any machine with rotating masses transmits forces to its 

foundation.  The more this transmitted force, the more shaking is 

felt through the floor which can be annoying or adversely affect 

other precision machines.   

 

The force transmitted to the ground 

is the summation of the spring force 

and the force through dashpot.  Force 

Transmissibility is the ratio of the 

transmitted force to the induced 

force: 
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Problem #V6 

 

The motor of a 100 lb machine is running at 1000 rpm.  The motor 

has a load imbalance of 20 lb-in.  The damping ratio of the 

supporting material is 0.20 and would be a constant.  Determine K, 

the spring constant for the foundation that would reduce the 

transmitted force to the ground by 90%.  Also, determine the 

amplitude of the transmitted force. 

 

 

 

 

 

 

 

 

 

Answers:  128.2 lbs/in , 57.1 lbs 

 

Mass Response to Base Vibration 

 

 
 

 

 

 

 

 

A harmonic base vibration creates a harmonic system (mass) 

vibrations.  Given the amplitude of the based motion and its 

frequency, we can find the amplitude of the mass – its frequency of 

motion is the same as the base motion.  The mass motion 

amplitude is: 
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Where X is the amplitude of the mass and Y is the amplitude of the 

base motion, and r is the frequency ratio 

 

Force transmitted to the base in base vibration is: 
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Problem #V7 

 

A trailer is being pulled by a car traveling at 55 mph.  The road 

contour has a sine wave profile with an amplitude (peak to peak) of 

0.5” and a period (distance between two peaks) of 10 feet.  The 

damping ratio of the trailer suspension is 0.050 and it has a natural 

frequency of 16 rad/sec including the load it carries.  Determine 

the amplitude of vibration of the trailer and the load. 

Ans: 0.06 inches 
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Natural Frequency of Rotating Shafts 

 

 
When a rotating shaft carries a number of weights, the first natural 

frequency of the shaft’s lateral vibration can be found by the 

following approximate formula: 

 

Where f is the frequency in Hz, g is the gravitational acceleration, 

Ws are the weights of the hanging element, and s are the static 

deflection under the weights only (exclude the deflection due to all 

external forces). 

 

Problem #V8 

 

Determine the first natural frequency of the two pulley system 

shown above when the shaft is made of 2” diameter steel, W1=80 

lbs, W2=120 lbs, the distance between W1 and left bearing support 

is 30”, the distance between the two weights is 40”, and the 

distance between W2 and the right bearing support is 20 inches. 

Answer: f=11.8 cycles/sec 
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The beat phenomenon 

 

If two machines working at slightly different frequencies are next 

to each other, their transmitted vibration to the ground would 

intensify and subside due to the beat phenomenon.  Beat happens 

because the two amplitudes add and subtract regularly creating the 

beat effect.  The beat frequency is the difference between the two 

constituent frequencies. 

 

The following plot shows the response of two sinusoidal waves 

with a frequency difference of 0.5 radians per second.  The beat 

frequency is 0.5 rad/sec or 0.08 Hz.  The period is calculated to be 

12.56 seconds.  Similar situation happens with sound waves. 

 

  


