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Strength of Materials and Failure Theories 2010 

 

State of Stress 

 

 
This is a 2D state of stress – only the independent stress components are 

named.  A single stress component z can exist on the z-axis and the state of 

stress is still called 2D and the following equations apply.  To relate failure 

to this state of stress, three important stress indicators are derived: Principal 

stress, maximum shear stress, and VonMises stress. 

 
Principal stresses: 
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If y=0 (common case) then 
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If x =y=0 then 1 =2 xy.  If  y= xy = 0, then 1 = x and 2=0. 
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Maximum shear stress – Only the absolute values are important. 
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If 3=0, the  
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The Vom Mises stress: 
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When 3=0, the von Mises stress is: 
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When only x, and xy are present (as in combined torsion and bending/axial 

stress or pure torsion), there is no need to calculate the principal stresses, the 

Von Mises stress is: 

 

22 3 xyxv  
 

Note that in pure shear or pure torsion x =0.  If x =0, then  

xyxyv  33 2   

 

According to distortion energy theory, yielding occurs when v reached the 

yield strength Sy.  Therefore in pure shear, yielding occurs when xy reaches 

58% of Sy. 
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Common loading applications and stresses (when oriented properly) 

 
Direct Tension/Compression (only x) 

 

 

 

Beam bending (only x on top/bottom)  

 

 
Pure torsion (only xy )  

 

 
Rotating shafts (bending + torsion) – (x and xy) 

 

 

 

Problem #S1 
A member under load has a point with the following state of stress: 
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Determine 1, 2, max (Ans: 11444 tensile, 6444 Compressive, 8944 psi) 

x=10500 

xy=4000 

y=5500 
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Strain (one dimensional) 

 
A bar changes length under the influence of axial forces and temperature 

changes. 

 
Total strain definition: 
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Total strain is a combination of mechanical and thermal strains: 
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Both the mechanical and the thermal strains are algebraic values.  T is 

positive for an increase in temperature.  F is positive when it is a tensile 

force. 

 

Problem #S2 
The end of the steel bar has a gap of 0.05” with a rigid wall.  The length of 

the bar is 100” and its cross-sectional area is 1 in
2
.  The temperature is raised 

by 100 degrees F.  Find the stress in the bar.  ANS: 4500 Psi Comp. 
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Bending of “straight” beams 

 
Bending formulas in this section apply when the beam depth (in the plane of 

bending) is small (by at least a factor or 20) compared to the beam radius of 

curvature. 

 
 

Bending stress for bending about the Z-axis: 
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Iz is area moments of inertias about the z and represents resistance to 

rotation about z axis.  Bending stress for bending about the Y-axis: 
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Iy is area moments of inertias about the y and represents resistance to 

rotation about y axis. Use tables to look up moments of inertia for various 

cross-sections.  The parallel axis theorem can be used to find moment of 

inertia w/r a parallel axis. 
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Problem #S3 

 
The solid circular steel bar with R=2” (diameter 4”) is under two loads as 

shown.  Determine the normal stress x at point Q.  Point Q is on the surface 

closest to the observer and the 2000 lb goes into the paper. 

 
[The most common stress analysis problems in exams involve simple 

bending, simple torsion, or a combination of the two.  This is an example of 

the combination – the torsion analysis would be treated later.] 

 

Answer: 15600 psi 

 

Problem #S4 

 
A beam with the cross-section shown is under a bending moment of 

FL=Mz=10000 lb-in acting on this cross-section. The thicknesses of all webs 

are 0.25 inches. 

 

Determine: 

a)  The location of the neutral axis (0.667 from bottom) 

b)  The moment of inertia about the z-axis (0.158 in
4
) 

c)  Bending stress at D (52700 psi) 

d)  Solve part b) if the cross-section was H-shaped 

 
[Finding area moments of inertias are popular exam questions.  This 

problem is a little longer than typical ones but it is a good preparation 

exercise] 
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Bending Stresses in Curved Beams  

 

 

 

 

 

 

 

 

 

 

 

 
Maximum bending stresses occur at ri and ro -  The magnitude is largest at ri 
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The stress at the outer surface is similar but with ro replacing  ri.  In this 

expression, M is the bending moment at the section, A is the section area and 

e is the distance between the centroidal axis and neutral axis.  These two 

axes were the same in straight beams.  
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nrre   
The radius of the neutral axis for a rectangular section can be obtained as: 
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Refer to Shigley or other design handbooks for other cross-sections: 

 Circular 

 Trapezoidal 

 T-shaped 

 Hollow Square 

 I-Shaped 

 

Note:  When finding bending moment of forces, the exact moment arm is rn 

but the centroidal radius is also close enough to be a good approximation.  

 

For a circular shape with a radius of R, rn is: 
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Where rc = R + ri 

 

Check Shigley for other cross-section forms such as T-shaped beams.
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Problem #S5 

 
Given: ri = 2 in ro = 4 in 

  b = 1 in 

  F = 10000 lb 

 

Find:  maximum bending stress 

  Maximum total stress  

 

Answer:  57900 psi (bending only) 

  62900 psi (total) 

 

 

Torque, Power, and Torsion of Circular Bars 

 
Relation between torque, power and speed of a rotating shaft: 
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H is power in Hp, T is torque in lb-in, and n is shaft speed in rpm.  In SI 

units: 

 TH   

H is power in Watts, T is torque in N-m, and  is shaft speed in rad/s. 

 

The shear stress in a solid or tubular round shaft under a torque: 
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The shear stress is a maximum on the surface of the bar.  The state of stress 

can be represented as a case of pure shear: 

 
The shear stress is: 
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J is the area polar moment of inertia and for a solid (di=0) or hollow section,  
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The Von Mises stress in pure shear is: 

 xyxyV  33 2 
 

When the behavior is ductile, yielding occurs when v reaches the yield 

strength of the material.  This is based on the distortion energy theory which 

is the best predictor of yielding.  According to this, yielding occurs when: 

yxyyxy

yxyyV

SOrS

SS

58.0
3

1

3









 

This predicts that yielding in pure shear occurs when the shear stress reaches 

58% of the yield strength of the material.  

 

 

 

xy 
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The angle of rotation of a circular shaft under torque 
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The angle of rotation is in radians, L is the length of the bar, and G is a 

constant called the shear modulus.  The shear modulus can be obtained from 

the modulus of elasticity E, and the poisson’s ration : 
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For steels, this value is 11.5*10
6
 psi. 

 

Problem #S6 
 

Consider the loading situation shown in Problem #S3.  Determine: 

a) the torsional shear stress for an element on the shaft surface. 

b) The maximum shear stress at point Q.  Use the given (as answer in 

Problem #S3) maximum normal stress at point Q to estimate the 

maximum shear stress.   

Answers: a) 11460,  b)13860 

 

6 ft 

4.5 ft 4.5 ft 

20000 lb 

2000 lb 

Q 



 12 

Beam and Frame Deflection - Castigliano’s Theorem 
 

“When a body is elastically deflected by any combination of loads, the 

deflection at any point and in any direction is equal to the rate of change of 

strain energy with respect to the load located at that point and acting in that 

direction” – even a fictitious load. 

 

When torsion or bending is present, they dominate the strain energy.  The 

deflection due to torsional and bending loads is: 
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Example: Solid steel tube with ID=1.75 and OD= 2.75 inches.  

Determine the deflection of the end of the tube. 
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9 ft 

P=100 lb 
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Example: Solid steel tube with ID=1.75 and OD= 2.75 inches.  

Determine the deflection of the end of the tube. 

 
Deflection from bending in the 9-ft span 
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Deflection from bending in the 4-ft span 
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Deflection from torsion in the 9-ft span 
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Total Deflection = 0.596 + 0.157 + 0.353 = 1.1 in 
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Deflections, Spring Constants, Load Sharing 
 

Axial deflection of a bar due to axial loading 

 

 
The spring constant is: 
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Lateral deflection of a beam under bending load 

 

A common cases is shown.  The rest can be looked up in deflection tables. 
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For cantilevered beams of length L: 
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Torsional stiffness of a solid or tubular bar is: 
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L
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The units are in-lbs per radian.  

 

Load Distribution between parallel members 

 

If a load (a force or force couple) is applied to two members in parallel, each 

member takes a load that is proportional to its stiffness.   

 
 

The force F is divided between the two members as: 
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The torque T is divided between the two bars as: 
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Problem #S7 
 

A one-piece rectangular aluminum bar with 1 by ½ inch cross-section is 

supporting a total load of 800 lbs.    Determine the maximum normal stress 

in the bar.   
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Answer: 960 psi 

 

Problem #S8 
A solid steel bar with 1” diameter is subjected to 1000 in-lb load as shown.  

Determine the reaction torques at the two end supports. 

 

 
 

Answer: 600 on the left, 400 on the right. 
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Direct shear stress in pins 
 

Pins in double shear (as in tongue and clevis) is one of the most common 

method of axial connection of parts. 

 

The shear stress in the pin and bearing stresses are approximately uniformly 

distributed and are obtained from: 
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The clevis is also under tear-out shear stress as shown in the following figure 

(top view):  

 
Tear-out shear stress is: 
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In this formula Aclevis=t(Ro-Ri) is approximately and conservatively the area 

of the dotted cross-section.  Ro and Ri are the outer and inner radii of the 

clevis hole.  Note that there are 4 such areas. 
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Shear stresses in beams under bending forces 
 

When a beam is under a bending force, its “layers” like to slide on one-

another as a deck of cards would do if bent.  Since the beam “layers” can not 

slide relative to each other, a shear stress develops within the beam just as 

shear stresses develop between card faces if they were glued together.  This 

is shown below.  The shear stress in beams is relatively small and can be 

ignored for one-piece beams.  But for composite beams that are glued, 

welded, riveted, bolted, or somehow attached together, this shear stress can 

be significant enough to tear off the welding or bolts.   

 
 

The value of the shear stress depends on the following: 

 The shear force V acting on the cross-section of interest.  In the above 

figure, the shear force is F in all cross-sections.  The larger the force, 

the larger the stress. 

 The width of the beam b at the cross-section.  The wider the beam, the 

lower the stress. 

 The area moment of inertia of the entire cross-section w/r to neutral 

axis.  The more moment of inertia, the less the stress. 

 The last parameter is Q which is the “bending stress balance factor”. 

The more Q, the more bending stress has to be balanced by shear. 
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A1 is the area of the cross-section left hanging and y1 is the distance between 

the centroid of A1 and the neutral axis (which is the same as the centroidal 

axis of the entire cross-section). 

 

The following is another example.   
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Problem # S9 : 2 by 4 Pine wood boards have been glued together to create 

a composite beam as shown.  Assume the dimensions are 2” by 4” (in reality 

they are less than the nominal value).  If the shear strength of the glue is 11 

psi, determine the largest load P that the beam can carry w/o glue failure.  

Assume beam is long enough for the classical beam theory to apply.  Do not 

consider failure due to bending stresses. Answer:90.4 lbs 

 

 

 
 

Problem #S10:  A composite beam is glued as shown.  Horizontal members 

are 1 by 6 inch and the vertical members are ¼ by 10 inch.  Transverse load 

at this cross-section is F=250 lbs.  Determine the required minimum glue 

strength in shear.  Answer: 11.8 psi 

 

P 

Cross-section 

Z 

Y 

250 



 21 

Shear Center of a C-Channel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Transverse loads on non-symmetric sections can create twisting torques and 

warp beam flanges.  If such transverse loads are applied at an offset location, 

the shear forces balance and do not twist the beam.  This location is called 

the Shear Center.  For the C-channel shown 
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For a semi-circular cross-section, the shear center is at: 
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Torsion of Thin-walled Tubes 

 

 

 

 

 

 

 

 

 

 

 

 
Shear stress in thin-walled tubes (left for closed tubes – right for open tubes) 

 2

3

2 St

T

At

T
   

Where T is the torque, t is the wall thickness, S is the perimeter of the 

midline, and A is the cross-sectional area defined by the midline of the tube 

wall.  Using area or perimeter of the inner or outer boundary is also 

acceptable since the wall thickness is small. 

 
For a member of constant cross-section, the angle of twist in radians is 
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Where S is the perimeter of the midline, L is the length of the beam, and G is 

shear modulus.  There is a similar formula for open tubes. [Shigley] 

 

Problem #S11:  A square tube of length 50 cm is fixed at one end and 

subjected to a torque of 200 Nm.  The tube is 40 mm square (outside 

dimension) and 2 mm thick.  Determine the shear stress in the tube and the 

angle of its rotation. 

 

Answer: Stress 34.6 Mpa  

Rotation (twist of the beam end): 0.011 radians or 0.66 degrees 

T 
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Stress in Thin-Walled Cylinders 
 

If the thickness t is less than 1/20
th

 of the mid radius of the pressure vessel, 

the stresses can be closely approximated using the following simple 

formulas.  The critical stress point in pressure vessels is always on the inner 

surface. 

 
 

The tangential or hoop stress is: 

   t
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P is the internal pressure, t is the wall thickness, and di is the inner diameter.  

The axial stress is: 
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The radial stress on the inner surface is P which is ignored as it is much 

smaller than the hoop stress. 

 

Stresses in Thick-walled Cylinders 
 

In thick-walled cylinders the tangential and radial stresses vary 

exponentially with respect to the radial location within the cylinder and if 

the cylinder is closed the axial stress would be a constant.  All the three 

stresses are principal stresses when stress element is cut as a pie piece – they 
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occur on surfaces on which shear stresses are zero.  The critical stress point 

is on the inner surface. 

 

 
The tangential stress: 
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The radial stress is: 
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When the external pressure is zero, the stresses on the inner surface are: 
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When the ends are closed, the external pressure is often zero and the axial 

stress is 
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Problem #S12:  A steel cylinder with a yield strength of 57 ksi is under 

external pressure only.  The dimensions are: ID=1.25” and OD=1.75”.  If the 

external pressure is 11200 psi, what is the factor of safety guarding against 

yielding.  Use the distortion energy theory. Answer: 1.25. 

 

Stresses in rotating disks 

 

 
 

A rotating disk develops substantial inertia-caused stresses at high speeds.  

The tangential and radial stresses in a disk rotating at  rad/sec is as follows: 
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where  is the mass density and  is the Poisson’s ratio.  The disk thickness 

is to be less than 1/10 of the outer radius.  
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Problem #S13: A disk is rotating at 2069 rpm.  The disk’s OD=150 mm and 

its ID is 25 mm.  The Poisson’s ratio is 0.24 and the disk’s mass density is 

3320 kg/m
3
.  Determine the maximum tensile stress in the disk as a result of 

rotation.  Answer: 0.715 Mpa. 

 

Interface pressure as a result of shrink or press fits 
 

When the internal pressure is high, shrink-fit cylinders lower the induced 

stresses.  When two cylinders with a radial interference of r are press or 

shrink fitted, an interface pressure develops as follows: 

  

 
The interface pressure for same material cylinders with interface nominal 

radius of R and inner and outer radii of ri and ro:  
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Problem #S14:  A collar is press-fitted on a solid shaft.  Both parts are made 

of steel.  The shaft diameter is 40.026 mm and the collar diameter is 40 mm.  

The outer diameter of the collar is 80 mm.  Find the interface pressure.  

Answer: 50 Mpa. 

 

When both shrink fit and internal pressure is combined, the method of 

superposition must be used. 

 

ri 
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Impact Forces 
 

The equivalent static load created by an object falling and impacting another 

object can be very large.  Equations of energy in dynamics can be used to 

determine such loads.  Two common cases involve an object falling from a 

height and a speeding object impacting a structure.  In both cases the 

damping is assumed to be small. 

 

 
 

For a falling weight (ignoring the energy loss during impact): 
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If h=0, the equivalent load is 2W.  For a moving body with a velocity of V 

before impact, the equivalent force (ignoring energy losses) is: 

 mkVFe   

 

These are conservative values as ignoring the energy loss leads to larger 

equivalent forces. 
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Problem #S15: A 1000 lb weight drops a distance of 1-in on a platform 

supported by a 1 in
2
 steel bar of length 12 inches.  What is the theoretical 

tensile stress that would develop in the bar.  Answer: 70.7 ksi. 

 

 
 

Problem #S16:  This is the same problem as #S15 but the bar is made up of 

two segments.  The upper segment has an area of 2 in
2
.  Determine the 

maximum theoretical stress developing in the bar as the result of the weight 

dropping on the platform.  Answer: 81.6 ksi. 

 

 

Exercise Question:  You have made grocery shopping and the cashier 

placed all your items in a paper bag.   The bag’s dead weight is now 15 lbs.  

What force would the bag handles experience if you: 

a) Lift the bag gently and lower it? 

b) Slide the bag off the countertop and suddenly resist the weight of the 

bag at a rate of 30 lbs/in of drop? 

c) Let the bag slide off and drop 5” before you suddenly resist it at a rate 

of 30 lbs per/in of drop.  

d) Same as c) but rate of resistance is 60 lbs/in.  

 

1000 

12” 

# S15 

1000 

6” 

# S16 

6” 
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Failure of columns under compressive load (Buckling) 
 

A beam under axial compressive load can become unstable and collapse.  

This occurs when the beam is long and its internal resistance to bending 

moment is insufficient to keep it stable.  The internal resistance is a function 

of area moment of inertia, I, and the stiffness of the material.    

 

Note that the longer the beam, the more 

bending moment is created at the center and 

for the beam to remain stable, it needs to be 

stiffer or have more bending resistance area.  

 

For every long beams there is a critical load 

beyond which even a tiny nudge would result 

is a collapse.  This critical load can be found 

using Euler formula.   

 

In shorter columns the critical load may cause 

stresses well above the yield strength of the 

material before the Euler load is reached.  For 

such cases, Johnson formula is used which 

relates the failure to yielding rather than 

instability. 

 

 

The critical Euler load for a beam that is long enough is: 

 2

2

L

EI
CPcr




 

 

C is the end-condition number.  The following end-condition numbers 

should be used for given cases: 

 

 When both ends are free to pivot use C=1.  Free to pivot means the 

end can rotate but not move in lateral direction. Note that even if the 

ends are free to rotate a little, such as in any bearing, this condition is 

applicable. 

 When one end is fixed (prevented from rotation) and the other is free, 

the beam buckles easier. Use C= 1/4 . 

P 
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 When one end is fixed and the other end can pivot, use C=2 when the 

fixed end is truly fixed in concrete.  If the fixed end is attached to 

structures that might flex under load, use C=1.2 (recommended). 

 When both ends are fixed (prevented from rotation and lateral 

movement), use C=4.  Again, a value of C=1.2 is recommended when 

there is any chance for pivoting. 

 

These conditions are depicted below: 

 

 
An alternate but common form of the Euler formula uses the “slenderness 

ratio” which is defined as follows: 

 
A

I
kwhere

k

L
RatiosSlendernes 








  

 

k is the area radius of gyration of the cross-section. 

Pivot - Pivot 

Fixed - Free 

Fixed - Pivot 

Fixed - Fixed 
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Range of validity of the Euler formula 
 

Experimentation has shown that the Euler formula is a good predictor of 

column failure when: 

 

 
yS

EC

k

L 22


 

If the slenderness ratio is less than the value in the formula, then the better 

predictor of failure is the Johnson formula: 

 

 

























CEk

LS
SAP

y

ycr

1

2

2

  

 

Alternatively, we can calculate the critical load from both the Euler and the 

Johnson formulas and pick the one that is lower.   

 

Problem #S17:  The axial load on a round solid steel bar in compression is 

5655 lbs.  The material is AISI 1030 HR.  Assume the end conditions are 

pin-pin or pivot-pivot.  Determine the factor of safety against failure for the 

following two conditions: 

a) L=60” and D=diameter=1.5” 

b) L=18” and D= 7/8 ”  

Answers: a) 3.6 and b) 4.4 

 

 
Note: When a beam is under compression, it would buckle about the axis 

with smaller area moment of inertia.
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Eccentrically loaded columns 

 
The more general case of column loading is when the load is applied 

eccentrically.  This eccentric load exacerbates the situation as it induces 

more bending moment due to its eccentricity.  The prediction formula is 

known as the Secant Formula which is essentially a classical bending stress 

formula although it may not look like it.  The secant formula is: 

 


















EA

P

Ck

L

k

ec

AS
P

cr

y

cr

4
sec1

2

 

where e is the eccentricity, c is the distance from the outer layer to the 

neutral axis, and the rest of the symbols have already been defined.   

 

A slight technical difficulty with this formula is that Pcr appears on both 

sides of the equation resulting in the need to use trial-and-error or use a non-

linear equation solver.  However, usually the load is given and you would 

calculate the stress (in place of Sy in the formula). 

 

 

 

c 
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Example: A column has a fixed end and the other end is free and 

unsupported.  The column length is 8 feet long.  The beam cross-section is a 

square tube with outer dimensions of 4 by 4 inches.  The area of the cross-

section is calculated to be 3.54 in
2
 and its smallest area moment of inertia is 

8 in
4
.  Determine the maximum compressive stress when the beam is 

supporting 31.1 kips at an eccentricity of 0.75 inches off the beam axis. 

 

 

 

 

Solution 

 

We find the stress  from the secant formula. The area radius of gyration is: 

in
A

I
k 5.1

54.3

8
  

The formula is  


















EA

P

Ck

L

k

ec

AS
P

cr

y

cr

4
sec1

2

 

For this problem,  P=31100 lbs is known and Sy becomes the unknown max. 

Substituting the numbers: 


















)54.3)(10)(29(4

31100

)5.1)(25.0(

)12(8
sec

)5.1(

)2(75.0
1

)(54.3
31100

62

max

 

Calculating for max we get: 

max = 22000 psi 

Notes: 

1. The end condition is C=0.25 (some books do not apply C but instead 

they use an equivalent length Leq which is L divided by square root of 

C.   

2. The argument of the secant function is in radians.  Convert to degrees 

first before taking cosines. 

3. The angle in degrees in secant function must be between 0 and 90 

degrees (0 and /4 in radians).  Add or subtract multiples of 90 

degrees until the angle is between 0 and 90 degrees.  In this problem 

the angle is 126 degrees. 
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Failure Theories 
 

Failure under load can occur due to excessive elastic deflections or due to 

excessive stresses.  Failure prediction theories due to excessive stresses fall 

into two classes: Failure when the loading is static or the number of load 

cycles is one or quite small, and failure due to cyclic loading when the 

number of cycles is large often in thousands of cycles.   

 

Failure under static load 

 

Parts under static loading may fail due to:  

 

a) Ductile behavior: Failure is due to bulk yielding causing permanent 

deformations that are objectionable.  These failures may cause noise, 

loss of accuracy, excessive vibrations, and eventual fracture.  In 

machinery, bulk yielding is the criteria for failure.  Tiny areas of 

yielding are OK in ductile behavior in static loading. 

b) Brittle behavior:  Failure is due to fracture.  This occurs when the 

materials (or conditions) do not allow much yielding such as 

ceramics, grey cast iron, or heavily cold-worked parts.   

 

Theories of ductile failure (yielding) 

 

Yielding is a shear stress phenomenon.  That means materials yield because 

the shear stresses on some planes causes the lattice crystals to slide like a 

deck of cards.  In pure tension or compression, maximum shear stresses 

occur on 45-degree planes – these stresses are responsible for yielding and 

not the larger normal stresses.   

 

The best predictor of yielding is the maximum distortion energy theory 

(DET).  This theory states that yielding occurs when the Von Mises stress 

reaches the yield strength.  The more conservative predictor is the maximum 

shear stress theory (MST), which predicts yielding to occur when the shear 

stresses reach Sy/2. For example in a pure torsion situation, the DET predicts 

the yielding to start when  reaches 58% of Sy.  But the MST predicts 

yielding to start when  reaches 50% of Sy. Use of DET is more common in 

design work. 

Note that in static loading and ductile behavior, stress concentrations are 

harmless as they only create small localized yielding which do not lead to 
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any objectionable dimensional changes.  The material “yielding” per se is 

not harmful to materials as long as it is not repeated too many times.   

 

Problem # S18:  A 2” diameter steel bar with Sy=50 ksi is under pure 

torsion of a 20,000 in-lb.  Find the factor of safety guarding against yielding 

based on: a) Distortion energy theory, and b) Max shear stress theory.  

Rounded answers: 2.3 and 2. 

 

Theories of brittle failure 

 

There are two types of theories for brittle failure.  The classical theories 

assume that the material structure is uniform.  If the material structure is 

non-uniform, such as in many thick-section castings, and that the probability 

of large flaws exist, then the theory of fracture mechanics predicts the failure 

much more accurately.  Many old ship hulls have split into two while the 

existing classical theories predicted that they should not.  We will only look 

at the classical brittle failure theories.    

 

An important point to remember is that brittle materials often show much 

higher ultimate strength in compression than in tension.  One reason is that, 

unlike yielding, fracture of brittle materials when loaded in tension is a 

normal stress phenomenon.  The material fails because eventually normal 

tensile stresses fracture or separate the part in the direction normal to the 

plane of maximum normal stress (or principal stress – see Page 1).     

 

In compression the story is quite different.  When a brittle material is loaded 

in compression, the normal stress cannot separate the part along the direction 

normal to the plane of maximum normal stress.  In the absence of separating 

normal stresses, shear stresses would have to do the job and separate or 

fracture the material along the direction where the shear stresses are 

maximum.  In pure compression, this direction is at 45 degrees to the plane 

of loading.  Brittle materials, however, are very strong in shear. The bottom 

line is that it takes a lot more compressive normal stress to create a fracture.   

 

We only discuss these theories for a 2D state of stress – 3D is similar but is 

more formula-based.  Theories of failure in brittle fracture divide the 1-2 

region into 4 quadrants.  In the first quadrant, both principal stresses are 

positive. 
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When both 1 and 2 are positive (tensile), the fracture is predicted to occur 

when one of the two principal stresses reaches Sut.  When both 1 and 2 are 

negative (compressive), the fracture occurs when the magnitude of one of 

the two principal stresses reaches Suc.  The magnitude of Suc is often more 

than Sut as the prior discussion indicated.      

 

In the other two quadrants, where one principal stress is positive and the 

other is negative, the Columb-Mohr theory is a conservative theory for 

failure prediction.  It is also easy to use.  The Columb-Mohr theory failure 

line simply connects the failure points as shown in the figure as double lines.  

Using only the magnitudes of the stresses, in Quadrant II or IV: 

In this formula (1,2) is the load point (two principal stresses), and n is the 

factor of safety associated with that load point.  The positive principal stress 

is associated with Sut and the negative principal stress is associated with Suc. 

 

Problem #S19:  A flywheel made of Grade 30 cast iron has the following 

dimensions: ID=6”, OD=10” and thickness=0.25”.  What is the speed that 

would lead to the flywheel’s fracture?  Answer: 13600 rpm 

1 

2 

Sut 

Sut Suc 

Suc 

I II 

III 

IV 

nSS ucut

121 

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Summary of Failure Theories 
 

Ductile Failure Definition 

 Macroscopic and measurable bulk deformation 

 Slight change in geometry 

 

Conditions for ductile failure 

 Metals (Except cast irons and P/M parts) 

 At least 2% strain before fracture 

 

Cause of failure (deformation) 

 Excessive SHEAR stresses 

 

Prediction Theories 
 Maximum DET 

o Yielding occurs when yV S
 

 

 Maximum Shear Stress Theory 

o Yielding occurs when 
2

max

yS
  

 

What to do with stress concentration? 
 IGNORE them – They cause small areas of yielding and do 

not cause macroscopic and measurable bulk deformation. 
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Brittle Failure Definition 

 Fracture 

 

Conditions for Brittle failure 
 Gray cast irons and P/M parts [I], ceramics [II] 

 Other metals in special conditions: 

o Extreme cold or extreme impact 

o Extreme cold-working or extreme heat treatment 

 

Cause of failure (fracture) 

 Excessive normal stresses in tension, shear in compression 

 

Prediction Theories 
 Columb-Mohr theory 

 

nSS ucut

121 


 

 

What to do with stress concentration? 
 Ignore for [I] –their strength is already reduced, Apply for [II] 

1 

2 

Sut 

Sut Suc 

Suc 

I II 

III 

IV 
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Fatigue Failure 
 

Repeated loading can lead to fatigue failure at loads much less than those 

leading to static failure.  Fatigue failure is sensitive to the magnitude of the 

stress regardless of how localized and small the stress area is.  Therefore, 

stress concentrations play an important role in fatigue failure.  Note:  If the 

material bulk itself is full of unseen stress raisers (such as in grey cast iron), 

the geometric stress raisers must be ignored.   

 

Design for infinite life starts with test results of the material in rotating 

bending test (known as Moore test).  The Moore test stress limit is called the 

rotating bending endurance limit, S’n.  This is the stress for which no failure 

occurs regardless of the number of cycles.  In the absence of direct 

experimental data, Moore test endurance limit is 50% of the ultimate stress 

for steels. 

 

 
 

The rotating bending or Moore test endurance limit has to be corrected for 

the actual part loading and conditions. This includes corrections for surface 

roughness, gradient effect, and size of the part (in Moore test the specimens 

are polished, under rotating bending, and are 0.3” in diameter). The result of 

these corrections is the endurance limit Sn.   Another notation for endurance 

limit is Se 

 

 

 

 

Number of cycles - N 

103 106 
105 

S’n 

Sf 

S10
3 
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Purely Alternating Load 

 
 

 

Combined Alternating Loading 

 

When the state of stress is known, the Von Mises stresses can be analyzed.     

In the case of this figure all stresses are purely alternating. 

 

 
Most common loadings in shafts involves x, xy, or both. 

a 

x,a 

xy,a 

y,a 

V,a 
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The index a in the above formula emphasizes that the loading is purely 

alternating. 

 

Problem #S21 

 

The steel shaft shown below is under purely alternating torque of 56 N-m.  

The torque fluctuates between 56 Nm CW and 56 Nm CCW.  Assume 

Sut=518 MPa, and the correction factors of 0.9 and 0.78 apply for gradient 

and surface finish.  Also assume a fatigue stress concentration factor of 1.48 

for the shoulder fillets.  Answer: About 2 

 

 

 
 

V,a 

Sn Endurance Limit 

Von Mises 

Stress 

20 mm 
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Fluctuating and Steady Loads (optional) 

 

 

 
 

When both mean and fluctuating loads are present, the Goodman criterion is 

used to determine how much the mean loading affects (reduces) the 

endurance limit.  To begin the analysis, determine the mean and alternating 

Von Mises stresses.  These are actual maximum stresses and they do include 

the fatigue stress concentration factors.  As a result we should be able to 

calculate the following: 

The mean Von Mises is only due to mean loads and the alternating Von 

Mises is only due to alternating loads.  In power transmission shafts the 

loading includes a steady shear (power torque) and an alternating bending 

stress (due to shaft flexure and rotating just like Moore test set up).  

  

The load points plot in the Goodman diagram as shown below: 

 

 

 

Mean Stress 

Alternating Stress 

aV

mV

,

,




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nSS u

m

e

a 1
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To determine the factor of safety guarding against fatigue failure, we must 

consider the overload mechanism.  If both the steady and alternating 

components of stress are subject to increase as shown, the margin of safety 

is determined by the Goodman line.  

 

Fatigue Failure Definition 

 Fracture 

 

Conditions for Fatigue failure 

 Repeated loading 

 All metals 

 

Cause of failure (fracture) 

 Excessive LOCALIZED SHEAR stresses causing repeated 

yielding  Local brittle fracture  Crack growth 

Sn 

Su v,m 

v,a 

Load Point 
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Prediction Theories 
 

 Failure occurs when the local VonMises stress reaches the 

Endurance Limit. 

 

What to do with stress concentration? 

 Apply to all (mean and alternating stresses) except gray cast 

iron or other materials with type-I internal structure 

 

Endurance Limit 

 
 

Cumulative Fatigue Damage (Miner’s or Palmgren Rule) 
 

If a part is stressed to a load for which the fatigue life is 10
3
 cycles, then 

each cycle takes 0.001 of the life of the part.  If stressed to a load for which 

the fatigue life is 10
4
 cycles, then each cycle takes 0.0001 of the life of the 

part and so on.  This inference leads to the following cumulative fatigue 

damage formula: 

1...
2

2

1

1 
k

k

N

n

N

n

N

n

 

Number of cycles - N 

S10
3 
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Sn 

Sf 
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In this relation, n1 is the number of cycles in a loading that would have a 

fatigue life of N1 cycles, etc. 

 

Example:  A critical point of a landing gear is analyzed for fatigue failure.  

Experiments show that in each landing a “compound load cycle” is applied 

to the member consisting of 5 cycles of 80 ksi stress, 2 cycles of 90 ksi, and 

1 cycle at 100 ksi stress.  All stress cycles are fully reversed (no mean 

component).  An experimental S-N curve is also available for this part (this 

curve can also be constructed using Moore test but for critical parts it is 

always best to spend the money and create a true S-N curve).  The S-N curve 

shows the fatigue lives of the component at the loading stresses to be as 

follows: 

  

Stress Level Number of 

cycles 

Fatigue life 

80 Ksi 5 10
5
 cycles 

90 Ksi 2 38000 cyc 

100 Ksi 1 16000 cyc 

 

Determine the life of this part in the number of compound cycles. 

 

Solution: Each compound cycle takes the following fraction of life out of the 

part: 

0001651.0
16000

1

38000

2

10

5
5

  

The number of cycles is reciprocal of this value which is 6059 cycles. 

 

 

Unit Conversions 

 

Problem #S11: Length: 1.640 feet    

Torque: 147.4 ft-lb OD: 1.575 in  

Thickness: 0.07874 in  Answer (Stress): 5 Ksi 

 

Problem #S14: Shaft Diameter: 1.5758” Collar diameter: 1.5748” 

OD of collar:  3.1496” Answer (Pressure): 7.25 Ksi 

 

 

 


